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Other reasons to be excited about summer 2021

Department of Energy

Secretary Granholm, Danish Climate,
Energy, and Utilities Minister J@rgensen
Establish Historic Agreement Focused on

Clean Energy Research, Science
Collaboration

JUNE 7, 2021

|



U.S. green economy is growing...

WIREE Annual sales revenue

[T\ Jobs supported

Green economy := environmental, low carbon and renewable energy activities

Georgeson, L., Maslin, M. “Estimating the scale of the US green economy within the global context.” Palgrave Communications 5, 121 (2019)



... but so are climate challenges

1980-2020 Year-to—Date United States Billion-Dollar Disaster Event Count (CPI-Adjusted)
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Solutions? If they work, they will matter!

GHG emissions (GtCO.e/year)
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Beneficial electrification and flexible demand

Energy sector, transportation, and buildings are key!

Annual Global Total Greenhouse Gas Emissions (GtCO,e)
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[1] UN Environmental Program, Emission Gap Report 2019 (source for figure, too)
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[2] Goldenberg, et al, “Demand Flexibility: The Key To Enabling A Low-cost, Low-carbon Grid,” Tech. Rep., Rocky Mountain Institute, 2018.
[3] Hledik et al, “The National Potential for Load Flexibility: Value And Market Potential Through 2030,” Tech. Rep., The Brattle Group, 2019.

Combine renewable and efficiency with
electrification of end use. [1]

Flexible demand enables significantly
more renewable generation and reduces
duck-curve ramping effects [2]

59GW of DR today will become 200GW
of flexible demand by 2030 [3
\ y [3] J
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Simple idea: turn connected loads into flexible demand

D -side DER icati trol . .
emand-side s + communication + contro Every ne1ghborhood1, feeder, or c1ty2»3»4

can be coordinated as a single resources:
I A a virtual battery (VB)
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[1] Chakraborty ,et al, Virtual Battery Parameter Identification using Transfer Learning based Stacked Autoencoder, ICLMA, 2018

[2] Hao, et al, Aggregate Flexibility of Thermostatically Controlled Loads. IEEE Transactions on Power Systems. 2014

[3] Hughes, et al, Identification of Virtual Battery Models for Flexible Loads. IEEE Transactions on Power Systems. 2018

[4] Khurram, A., et al., “Real-world, full-scale validation of power balancing services from packetized virtual batteries,” in IEEE PES ISGT, Washington, D.C., 2019.




No free lunch: respect the human in the loop

Almost all flexible demand today = static DR programs:

 ComEd Smart HVAC progra
« “Fenway frank problem’

NAVIGANT

National Grid Smart Energy Solutions

Final Evaluation Report

Prepared for:

National Grid

nationalgrid
swneary: 107 OF participants

Navigant

S overriding 3hr ever,

Boulder, CO 80302

wmue  *  25% are overriding
events.
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[1] Michael B Kane and Kunind Sharma, “Datz

.Smart Thermostat Energy Saving:

" Texas Power Companies Remotely

Raise Temperature at Home

00800

Teejay Boris, Tech Times | 20 June 2021, 04:06 am

An energy-saving program in Texas left some residents sweating
inside their homes after power companies remotely raised the
temperature in their smart thermostats.

-, ermostat users override a
P point change of 2 °F within

'm~+~ A-jven |dentification of Occupant

istat-Behavior Dynamics

inind Sharma®

/il and Environmental Engineering, Northeastern University, Boston, 02151, MA, USA

behavior drives significant differences in building energy use, even in automated
istrust in the automation causes them to override settings. This results in responses
ioth the occupants’ and/or the building automation’s objectives. The transition toward
icient buildings will make this evermore important as complex building control systems
for comfort, but also changing electricity costs. This paper presents a data-driven
thermal comfort behavior dynamics which are not captured by standard steady-state

ch as predicted mean vote.

lel captures the time it takes for a user to override a thermostat setpoint change as a
nual setpoint change magnitude. The model was trained with the ecobee Donate Your
min. resolution data from 27,764 smart thermostats and occupancy sensors. The

n-level model shows that, on average, a 2°F override will occur after ~30 mins. and an

% of 27,000 Ecobee smart

30 minutes [1]

1.06705, 2019.




Packetization of data
on Internet
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Random access
protocols

Method is called packetized energy management
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PEM for a single load: ensures privacy and comfort

‘A. Prioritize energy packets stochastically based on device “need” - anonymous requests
”~
&

- Packetizing bulky consumption = many smaller energy packets
PEM

B e e A

— -
When temperature is low, heating elements turns ON ” !
and consumes energy > bulky demand

(o]

M. Almassalkhi, J. Frolik, and P. D. H. Hines, “Packetized energy management: asynchronous and anonymous coordination of thermostatically controlled
loads,” American Control Conference, 2017




« Device coordinator accepts/denies request based on tracking errors, so

control mechanism is simple, but powerful

Modulate acceptance rate of packet requests =» Regulate aggregate demand

Opt-in/out rates
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Randomizing requests based on energy need leads to very light communication overhead at scale!




Built real-time, cyber-coupled DER test-bed

5000 real-time, emulated water heaters
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Mahraz Amini, et al. “A Model-Predictive Control Method for Coordinating Virtual Power Plants and Packetized Resources, with Hardware-in-the-
Loop Validation”. In: IEEE PES General Meeting. Atlanta, Georgia, 2019




Completed field trial with > 150 homes in Vermont’
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Lesson: dynamics of the “Aggregation” depends on communication & control methods




Key technical challenges with coordinating @ scale
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(1) A. Khurram, Luis Duffaut Espinosa, Roland Malhamé, Mads Almassalkhi, “Identification of Hot Water End-use Process of EWHs from Energy Measurements,” EPSR, 2020.

(2a) L. Duffaut and M. Almassalkhi, “A packetized energy management macromodel with QoS guarantees for demand-side resources,” IEEE Trans. on Power Systems, 2020.

(2b) L. Duffaut, A. Khurram, and M. Almassalkhi “Reference-Tracking Control Policies for Packetized Coordination of Diverse DER Populations,” IEEE Trans. on Control Systems Tech., 2020.
(2c) L. Duffaut Espinosa, A. Khurram, and M. Almassalkhi, “A Virtual Battery Model for Packetized Energy Management,” in IEEE Conference on Decision and Control (CDC), 2020.

(3) M. Amini and M. Almassalkhi, “Corrective optimal dispatch of uncertain virtual energy resources,” IEEE Transactions on Smart Grid, 2020.
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And what role should the grid/network play?

“... create open networks that increase value through the interaction of
intelligent devices on the grid and prosumerization of customers
Moreover, even greater value can be realized through the synergistic
effects of convergence of multiple networks” [1].

Telecom Electricity

1880s - " ﬁ@ﬁ
% 1980s

“Distribution will also need to become
more like transmission by evolving from Today
passive/reactive management to active

management” [2].
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[1]: Taft/DOE, Grid Architecture 2, 2016 Source [2]: De Martini/EEI, Future of Distribution, 2012




Utility & Aggs: asymmetry of information & control

Utility (grid information/data)
Need to ensure grid reliability
Need to protect grid data
Lack access to devices
Knows grid availability
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Aggregators (device access, market

Need to ensure device QoS
Need to provide market services
Lack access to grid data

Knows device availability

| “Flexibility Bandwidth”




Rethink utility/DSO and aggregator cooperation: ISP
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Example of dynamic nodal hosting capacity

Nodal hosting capacities [p;,p;'] enable an open-loop, distributed, and grid-aware DER control policy
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N. Nazir and M. Almassalkhi, "Convex inner approximation of the feeder hosting capacity limits on dispatchable demand,” IEEE Conference on Decision and Control (CDC), 2019.
-, “Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks”, under review in IEEE Transactions on Power Systems (Rev02), 2021




Summarizing

1. Distributed control of DERs needs to be aware of

» customer expectations and requirement (comfort & privacy)

» device operating requirements (cycling)
» grid requirements (voltage, power ratings)
» communication costs at scale (need low cost)
2. Utilities/DSO and Aggregators need tools to cooperate across devices and grid to ensure
» reliable grid operation
» access to markets for DERs

» empower people to become part of (socio-techno-economic) climate solutions

3. Internet-like thinking can unlock energy flexibility at scale




Thank you! Any questions or comments?

Mads Ranne Almassalkhi malmassa@uvm.edu ’ @theEnergyMads

See you in Denmark in 2021-22! Coming to a folkeskole near you! ©
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Anti-causal slides




The value of flexibility can be significant

“Prosumer’

GRID BALANCING, \ “Virtual battery”
ANCILLARY SERVICES “Virtual power plant”

RENEWABLE SMOOTHING

LMP ENERGY ARBITRAGE, ./Tﬂ
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per kKWqey 0er year*

++
AVOIDED T&D CAPEX,
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*Values from representative 2019 ISO New England market prices and services



Realizing flexible demand requires control+comms+data

1. Utility/DSO-centric approach 2. Aggregator/Device-centric approach

Commercial DER hub

Grid Market Layer Feeder Operational Layer @ Service Transformer Layer Devices requeit ﬂcﬁels.ol energy
(1000 feeders & 1,000,000 DERs) (100-200 STLs per FOL) (5-15 DERSs per STL) B e -
Residential DER hub e . : "'=,~ e
oy T e i veEs T Yl , SEBE N e - oo “s-e S
. 3 o dl S m g .] H ®== Sso \‘B' g : g
‘! " Vl // -phase feeder model \\ Ve - \ N o " < o
.. ele ; S Balancing g®
| i ! K Solar PV (utility) \ 2 : A 4 - »
Pl / Residential | 57 At service transformer, aggregate uncertain Signal > g\g apr e
o S 7 DER hubs into equivalent stochastic battery VPP accepisirejects depending P gi :g = 2 L
“ ‘ :, models with power/energy bounds upon grid conditions e 5 A ,*-,'Bf A
P ' g i N

@/ \\J\\ ‘ /; _________ - - ~
; ooBoieg - \\\.\\ L 2 HH Em. -. HH Seesmzmsos .- -e""  Walof mm:s
w7 TEmE g measurements |
Emulated on a high performance PC
1. Relies on full network model (utility) 1. Requires device access to compute/sense (OEMs)
Hierarchical coordination/computation 2. Coordination becomes decentralized computing;

live sensing locally can help

Fits within existing utility communication
infrastructure/protocols (non-public networks) 3. Does not fit directly within existing utility comm

infrastructure (public networks)




Built real-time, cyber-coupled DER test-bed

Devices request packets of energy

5000 real-time, emulated water heaters
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Hardware-in-the-Loop Validation”. In: IEEE PES General Meeting. Atlanta, Georgia, 2019




Problem: how do people interact with
DERs nominally?

Outcome: from just kWh interval meter

data and tank parameters, we can

estimate how much people use hot
water
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Adil Khurram, Luis Duffaut Espinosa, Mads Almassalkhi, Roland Malhamé, “Identification of Hot Water End-use Process of Electric Water Heaters from
Energy Measurements,” accepted for the Power Systems Computation Conference, Lisbon, 2020.



Baseload

kW-per-device kW-per-device

Flexibility

Estimating power capacity/flexibility of VB

» Data-driven methodology to answer questions:
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» How many devices for TMW flexibility?
» What is flexibility (+tkW) per device?
» Define flex-kW by fleet’s ability to track AGC signal
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Adil Khurram, Luis Duffaut Espinosa, Mads Almassalkhi, “A Methodology for quantifying flexibility in a fleet of diverse DERs,” under review (arXiv)




