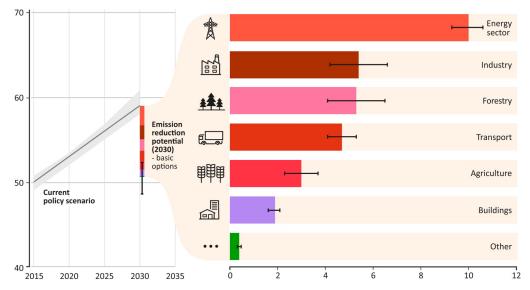


CINTOFINS ANNUAL MEETING 2021 ANAHEIM, CALIFORNIA

Grid-aware Aggregation and Realtime Disaggregation of Distributed Energy Resources in Radial Networks

Panel Session: Optimization for distribution grid operations


Nawaf Nazir (Pacific Northwest National Lab) **Mads Almassalkhi (University of Vermont/Pacific Northwest National Lab)** October 26, 2021 11:00 AM - 12:30 PM

Beneficial electrification and flexible demand

Sectoral emission reduction potentials in 2030

Electrifying energy, transportation, and building sectors are key to GHG reductions

Annual Global Total Greenhouse Gas Emissions (GtCO₂e)

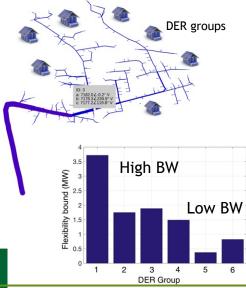
Combine renewables and efficiency with electrification of end use. [1]

Flexible demand enables significantly more renewable generation and reduces duckcurve ramping effects [2]

59GW of DR today will become **200GW of** flexible demand by **2030** [3]

> Need to manage <u>millions</u> of behind-the-meter loads

[1] UN Environmental Program, Emission Gap Report 2019 (source for figure, too)

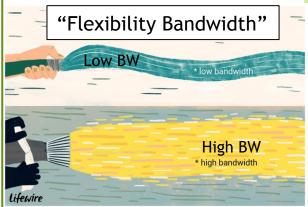

[2] Goldenberg, et al, "Demand Flexibility: The Key To Enabling A Low-cost, Low-carbon Grid," Tech. Rep., Rocky Mountain Institute, 2018.
 [3] Hledik et al, "The National Potential for Load Flexibility: Value And Market Potential Through 2030," *Tech. Rep.*, The Brattle Group, 2019.

What is the role of the distribution grid/network?

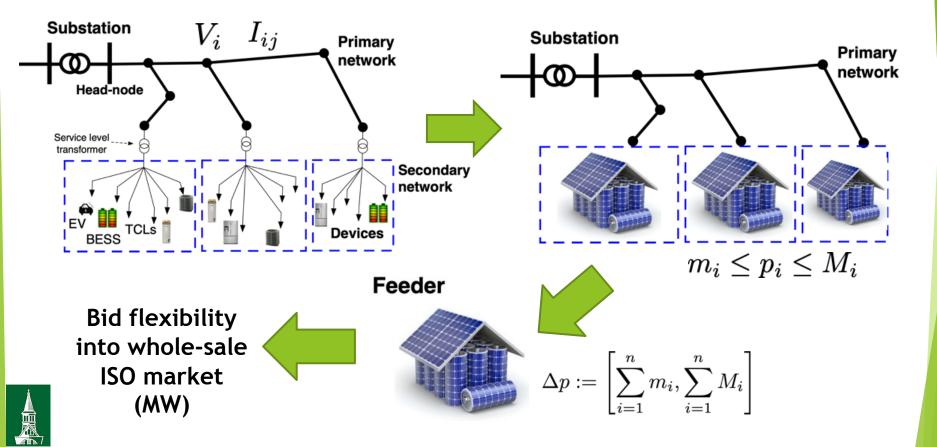
Utility (grid information/data)

- Needs to ensure grid reliability
- Wants to protect grid data
- Lack direct access to devices
- Knows grid availability

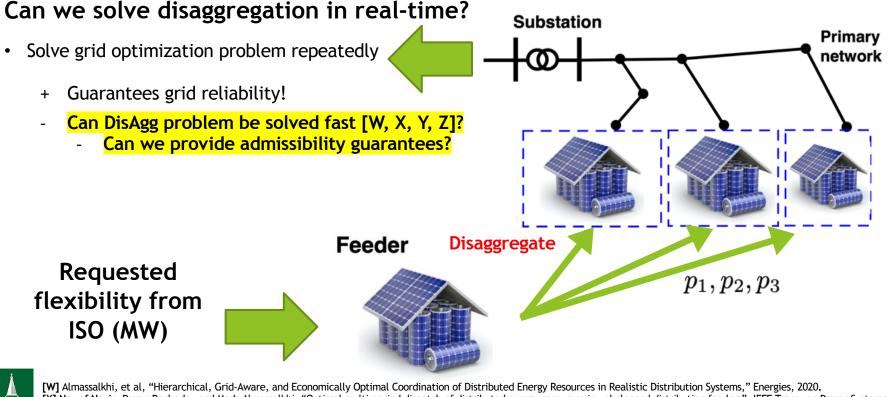
ÎΠΠ



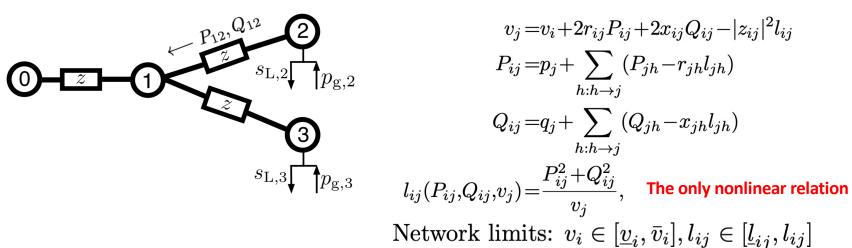
Fundamental asymmetries in information & control



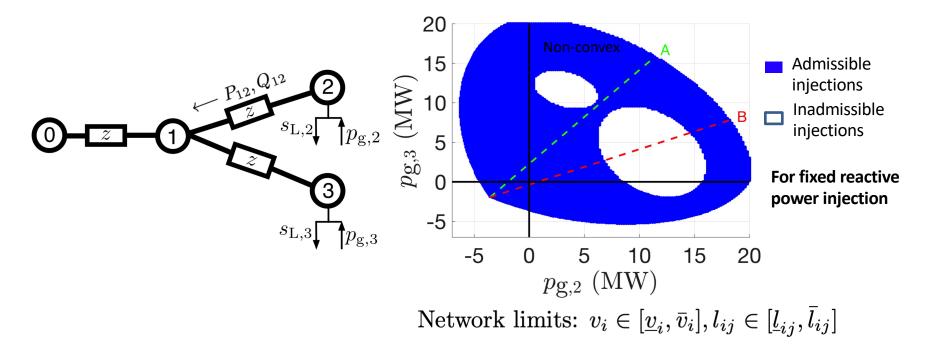
Aggregators (device control)


- Needs to ensure device QoS
- Wants to provide market services
- Lack direct access to grid data
- Knows device availability

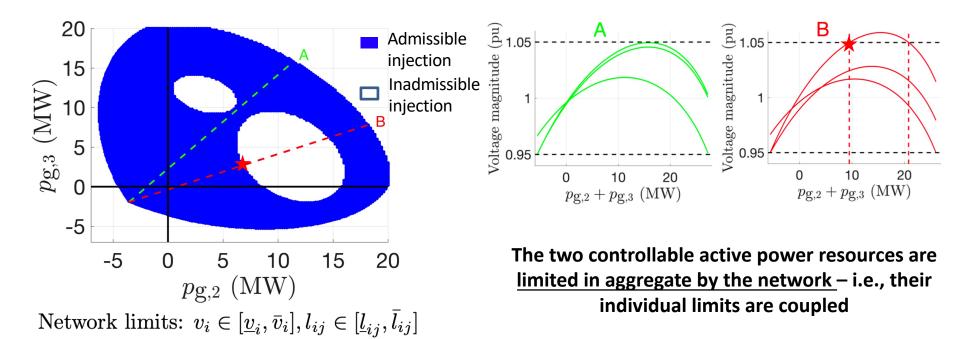
Motivating example: aggregation



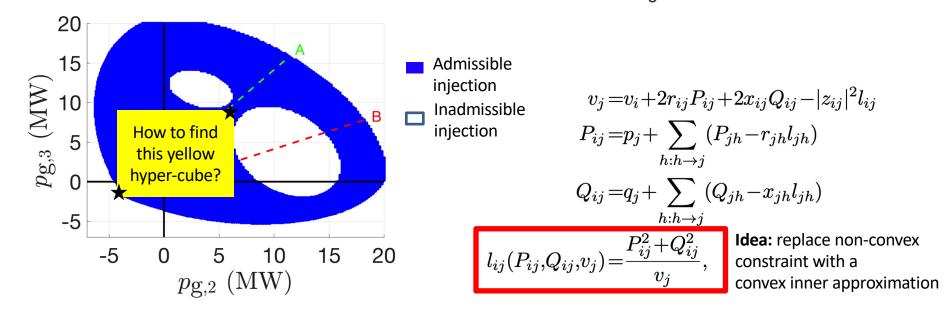
Motivating example: disaggregation


[X] Nawaf Nazir, Pavan Racherla, and Mads Almassalkhi, "Optimal multi-period dispatch of distributed energy resources in unbalanced distribution feeders", IEEE Trans. on Power Systems, 2020 [Y] Nawaf Nazir and M. Almassalkhi, "Voltage positioning using co-optimization of controllable grid assets," IEEE Trans. on Power Systems, 2020. [Z] S. Brahma, Nawaf Nazir, et al. "Optimal and resilient coordination of virtual batteries in distribution feeders," IEEE Trans. on Power Systems, 2020.

Simple 3-node balanced distribution feeder with 2 controllable nodes modeled with *DistFlow:*

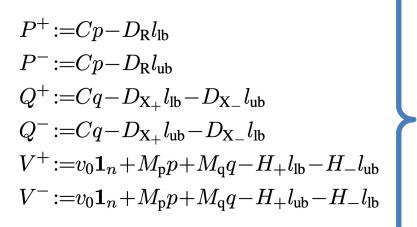


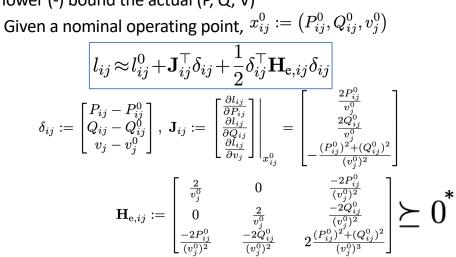
$$v_i := |V_i|^2$$
 and $l_{ij} := |I_{ij}|^2$


Simple 3-node balanced distribution feeder with 2 controllable nodes

Simple 3-node balanced distribution feeder example:

Goal: find largest hyperrectangle to determine p_g limts (decoupled)

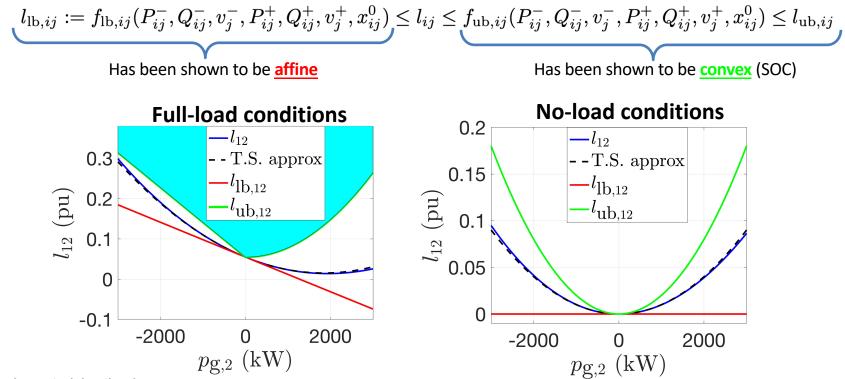



Convex inner approximation via proxy variables

If we can find envelope $\,l_{{
m lb},ij}\,\leq\,$

$$\leq l_{ij}(P_{ij},Q_{ij},v_j)=rac{P_{ij}^2+Q_{ij}^2}{v_j},\ \leq l_{\mathrm{ub},ij}$$

Then, we can create proxy variables that upper (+) and lower (-) bound the actual (P, Q, V)

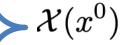


and from this model, we can <u>explicitly</u> define upper and lower bounds on l_{ij} that yield a convex inner approximation.

*N. Nazir and M. Almassalkhi, "Voltage Positioning Using Co-Optimization of Controllable Grid Assets in Radial Networks," in *IEEE Transactions on Power Systems*, vol. 36, no. 4, pp. 2761-2770, July 2021, doi: 10.1109/TPWRS.2020.3044206.

Convex inner approximation via proxy variables

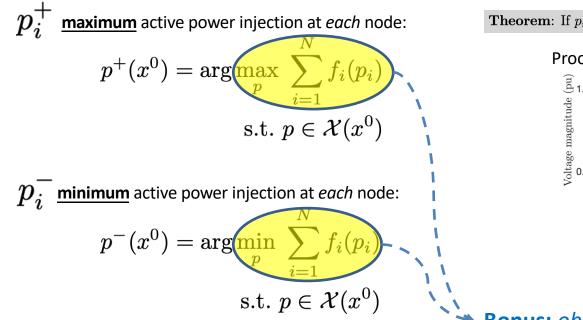
For mathematical details, please see:

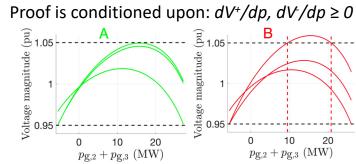

Nawaf Nazir and Mads Almassalkhi. "Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks." (Rev02)

Convex inner approximation via proxy variables

$$\begin{array}{l} P^{+}\!:=\!Cp\!-\!D_{\mathrm{R}}l_{\mathrm{lb}} \\ P^{-}\!:=\!Cp\!-\!D_{\mathrm{R}}l_{\mathrm{ub}} \\ Q^{+}\!:=\!Cq\!-\!D_{\mathrm{X}_{+}}l_{\mathrm{lb}}\!-\!D_{\mathrm{X}_{-}}l_{\mathrm{ub}} \\ Q^{-}\!:=\!Cq\!-\!D_{\mathrm{X}_{+}}l_{\mathrm{ub}}\!-\!D_{\mathrm{X}_{-}}l_{\mathrm{lb}} \\ V^{+}\!:=\!v_{0}\mathbf{1}_{n}\!+\!M_{\mathrm{p}}p\!+\!M_{\mathrm{q}}q\!-\!H_{+}l_{\mathrm{lb}}\!-\!H_{-}l_{\mathrm{ub}} \\ V^{-}\!:=\!v_{0}\mathbf{1}_{n}\!+\!M_{\mathrm{p}}p\!+\!M_{\mathrm{q}}q\!-\!H_{+}l_{\mathrm{ub}}\!-\!H_{-}l_{\mathrm{lb}} \\ 0 \leq l_{\mathrm{lb},ij} := f_{\mathrm{lb},ij}(P_{ij}^{-},Q_{ij}^{-},v_{j}^{-},P_{ij}^{+},Q_{ij}^{+},v_{j}^{+},x_{ij}^{0}) \\ \end{array}$$
rent limits $f_{\mathrm{ub},ij}(P_{ij}^{-},Q_{ij}^{-},v_{j}^{-},P_{ij}^{+},Q_{ij}^{+},v_{j}^{+},x_{ij}^{0}) \leq l_{\mathrm{ub},ij} \leq \bar{l}_{ij} \\ \frac{V}{p_{i}} \leq V^{-}, \ V^{+} \leq \bar{V} \\ wer limits \frac{V}{p_{i}} \leq p_{i} \leq \bar{p}_{i} \end{array}$

Cur

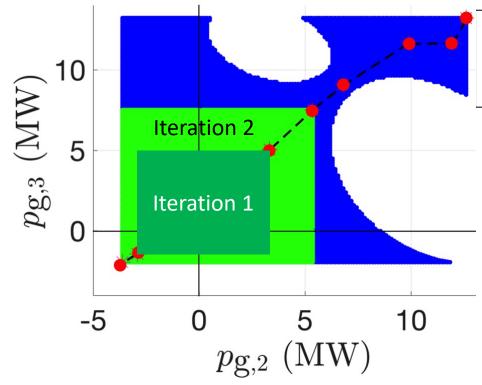

Active po


Feasible set represents a <u>convex</u> inner approximation

Determining active injection limits (corners)

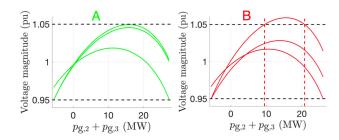
Theorem: If $p_i \in [p_i^-, p_i^+] \ \forall i \Rightarrow \underline{V} \leq V^-(p) \leq V(p) \leq V^+(p) \leq \overline{V}$

Monotonicity conditions: More load \rightarrow higher voltage Less load \rightarrow lower voltage

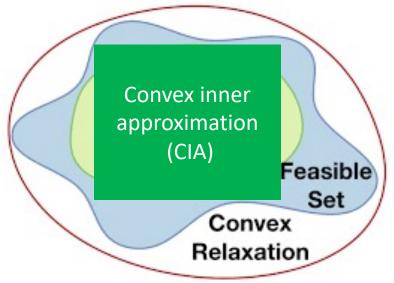

Bonus: objective is feeder's hosting capacity!

For mathematical proofs, please see:

Nawaf Nazir and Mads Almassalkhi. "Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks." (Rev02)


Algorithm for growing region

Requires coordination


Blue injection pairs are admissible White violates voltage constraints Green satisfies monotonicity conditions Red dots are feasible iterates

Example: after 2nd iteration, monotonicity conditions fail to hold and CIA is found.

Note: for iterations \geq 3, coordination is required (along piecewise affine path)

What about conservativeness?

Original Image source: D. Lee, H. D. Nguyen, K. Dvijotham and K. Turitsyn, "Convex Restriction of Power Flow Feasibility Sets," in *IEEE Transactions on Control of Network Systems*, vol. 6, no. 3, pp. 1235-1245, Sept. 2019.

Comparing hosting capacity results*

System	CIA (MW)	NLP (MW)	CR (MW)
13-node	[-1.5, 9.1]	[-1.5, 9.7]	[-1.5, 12]
37-node	[-2.7, 5.3]	[-2.7, 5.3]	[-2.7, 16]
123-node	[-4.5, 13.9]	[-4.5, 14]	[-4.5, 24]

Convex relaxation (CR) over-estimates maximum reactive power capability

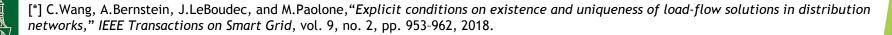
Nonlinear (NLP) has no optimality guarantees AND does not guarantee that entire range is admissible (i.e., no holes)

Proposed (CIA) method is <u>not overly conservative</u> and entire range is admissible

*Nawaf Nazir and Mads Almassalkhi. "*Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks*." (Rev02)

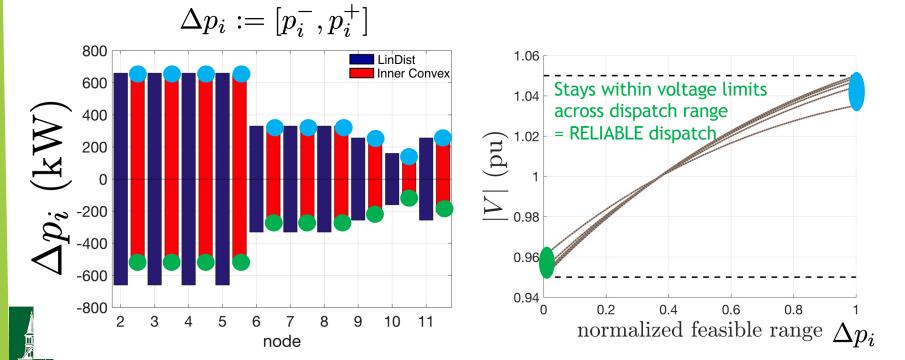
What about existence of solution?

Leverage sufficient conditions from [*] in two ways:

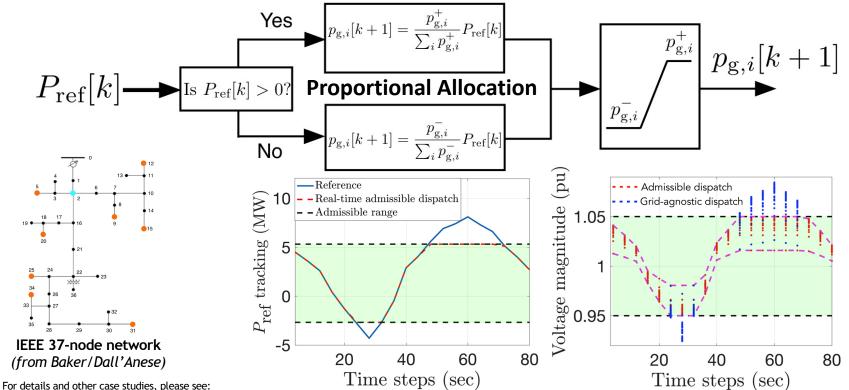

- At each iteration, verify existence of (new) operating point x_0 with explicit test condition
- Augment CIA formulation with N linear inequalities and N SOC constraints (still convex)

$$\sum_{j=1}^{N} t_{ij} < \chi \quad \forall i = 1, \dots, N$$

$$\left\| \begin{bmatrix} a_{ij}^{w} & b_{ij}^{w} \\ b_{ij}^{w} & -a_{ij}^{w} \end{bmatrix} \begin{bmatrix} p_{g,j} \\ q_{g,j} \end{bmatrix} \right\|_{2} \le t_{ij} \quad \forall j = 1, \dots, N.$$
(C3)


Added conservativeness from existence guarantees: *small impact*

Туре	13-node	37-node	123-node
Without C3 (MW)	[-1.5, 9.1]	[-2.7, 5.3]	[-4.5, 13.9]
With C3 (MW)	[-1.5, 8.8]	[-2.7, 5.3]	[-4.5, 13.8]

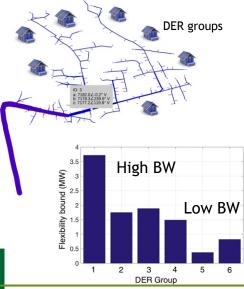

When found, inner approximations offer guarantees

Consider flexible resources on 10 nodes in a small network: a 10-dimensional hypercube

Can now do disaggregation in realtime

Nodal hosting capacities $[p_i, p_i^+]$ enable an open-loop, distributed, and grid-aware DER control policy

N. Nazir and M. Almassalkhi, "Convex inner approximation of the feeder hosting capacity limits on dispatchable demand," IEEE Conference on Decision and Control (CDC), 2019.

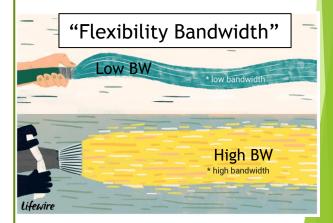

-, "Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks", under review in IEEE Transactions on Power Systems (Rev02), 2021

Putting it all together

Utility (grid information/data)

- Needs to ensure grid reliability
- Wants to protect grid data
- Lack direct access to devices
- Knows grid availability

論聚



Fundamental asymmetries in information & control

Aggregators (device control)

- Needs to ensure device QoS
- Wants to provide market services
- Lack direct access to grid data
- Knows device availability

Future direction

- Consider wind farm collector networks and reactive power capability of network
- Extend to market context with multiple aggregators within DSO network
- Study extension to unbalanced and meshed networks
- Consider role of feedback and available measurements/data for aggregators

Thank you! Questions/comments?

Mads Almassalkhi (UVM/PNNL) Nawaf Nazir (PNNL)

malmassa@uvm.edu mads.almassalkhi@pnnl.gov nawaf.nazir@pnnl.gov

@theEnergyMads

This work was supported by the U.S. Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) under Award DE-AR0000694. The work of Mads Almassalkhi was also supported in part by the National Science Foundation (NSF) under Award ECCS-2047306.