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Increased renewable generation and battery storage

» States like California and Vermont have ambitious “ Benefits of _ o &
targets = >50% of their energy met through 44 = E';:Tmes ts%i?ﬁcogrf:e 9
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California duck curve showing a snapshot of a 24-hour period and steep
ramping, source: CAISO




Challenge in battery
optimization

* Batteries cannot simultaneously charge
and discharge

* Results in non-convex complementarity
constraints

* Can be solved as a mixed-integer
program

* Not scalable, computationally expensive
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The resulting SoC trajectory can be expressed as

1
E(P.Py)=17Ey+nAP.— —APq,
Tld




Traditional approaches to scalable battery optimization

Relaxed model
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Traditional approaches to scalable battery optimization

Single input model
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The simplified model’s SoC trajectory is then

ES(Pb) =17Ey+nAPy,. 10 20 30




Linear robust batte ry Lemma IIL1. [finputs P, =P, —P,=P — P, satisfy P, Py =0
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[2] Nawaf Nazir, Mads Almassalkhi, “Guaranteeing a
physically realizable battery dispatch without charge-discharge
complementarity constraints,” IEEE PES Letters




TABLE1
SOLVE TIME (SEC) AND POWER TRACKING RMSE (KW) COMPARISON WITH

S | m u I at | O n S res u Its a n d INCREASING BATTERIES FOR RBD vs MIP vs NLP
. RBD MIP NLP
CO I I l p a rl SO n S Batteries Time RMSE Time RMSE Time RMSE
10 1.7 47.8 16.3 43.7 5.1 54
100 3.1 478.7 271.8 437.8 50.5 478.7
200 6.3 957.4 1114 866 133.2 1190.2
500 11.5 2327.4 - - 351.6 2415.2
1000 22.6 4787.1 — — 1115 4787.1
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the net battery output P, € [—Ppaxs Prax]- resulting from optimized dispatch with the energy limits [0, 60].
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Simulations results and conclusions

Conclusions

* A new linear formulation to optimally
dispatch batteries

* Guaranteeing satisfaction of SoC
constraints

* Avoiding non-convex/MIP formulations
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Modeling mismatch obtained for different ., =

e Corresponding cumulative objective function values ((Pref[k] — Py [k])z)
14 efficiencies.

showing reduced tracking performance with increased modeling
mismatch (i.e., lower efficiencies).



Thank you! Questions/comments?
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