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Legal Disclaimer

M. Almassalkhi was co-founder of and holds equity in Packetized Energy,
which commercialized energy/grid technologies.
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Non-topics today

Optimal EV charging via distributed optimization
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Vermont is amazing platform for power/energy R&D

v VT is 8% of the population of Switzerland and 60% land area.

v VT population: 650,000 people with a peak load of ca. 1GW

> AMI deployed at >95% of customers in State
Vermont Renewable Portfolio Standard (RPS): 75% by 2032

v University of Vermont (UVM = Universitas Viridis Montis)
v Founded 1791, 12,000 students, 4,100 faculty, one of the smallest EE programs in USA

v
v
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v
v

>
v

v VT is #2 state in U.S. for Clean Energy Momentum (UofCS, 2017)

66% of consumed electricity is renewable (2019)
15% of electricity from solar PV (#4 in US in 2020; #6 per capita)




Vermont is amazing platform for power/energy R&D
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Vermont is amazing platform for power/energy R&D
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Interdisciplinary group: energy & autonomous systems

Objective: sustain and strengthen UVM’s research impact in the area of understanding,
controlling, and optimizing sustainable, resilient, and autonomous systems and networks by
leveraging a group of diverse, interdisciplinary, and research-active faculty.

Broad expertise

* Power/energy

* Grid modeling

« Optimization

« Control theory

* Network science

* loT/Comms

« Data science

* Machine learning

« Energy equity/justice
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Impactful R&D with industry & research partners

Recent and ongoing industry-supported projects with
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Recent success with translational research

Packetized energy management: asynchronous and anonymous
coordination of thermostatically controlled loads

Mads Almassalkhi. Member. IEEE Jeff Frolik. Senior Member. IEEE Paul Hines. Senior Member, IEEE
T Gunvensry Tl Gunvensry O sy
S8 VERMONT S8 7 VERMONT Sl 7 VERMONT
Abstract—Because of their intermal energy storage, elec- “faimess” properties with regard to providing statistically
ically powered, y loads  jdentical grid access to each load,
ave Witk b 4 DEM

Optimal Frequency Regulation using
Packetized Energy Management

Samaduti Brahma, Member, IEEE, Adil Khurram, Member, IEEE,
Hamid Ossarch, Senior Member, IEEE, and Mads Almassalkhi. Semior Member, IEEE

| available from fleets of distributed energy resources

Hani Mavalizadeh  Luis A. Duffaut Espinosa Mads R. Almassalkhi

L'%.“& Improving frequency response with synthetic damping

Real-Time Grid and DER Co-Simulation
Platform for Testing Large-Scale DER
Coordination Schemes

Adil Khurmum', Member, IEEE, Mahraz Amini™ , Member, IEEE,
Luis A, Duffaut Espinosa”™ , Senior Member, [EEE, Paul D. H. Hines™, Senior Member, 1EEE,
and Mads R. Almassalkhu™, Senior Member. 1EEE

Numerous academic papers+
research projects+ IP +
industry partners
(2012-present)

y O

PACKETIZED

ENERGY

Co-founded startup company
(2016)

® CANARY MEDIA

EnergyHub buys Packetized
Energy to get millions of
thermostats and EVs to help
balance the grid

®®O6

Utilities need to orchestrate energy-smart devices at
a massive scale. This startup’s radically distributed
approach could help.

Company acquired!
Technology now has access to scale
with 1,000,000 devices

(2022)



Focus on decarbonization & electrification

GHG emissions (GtCO,e/year)

80 - | Gross positive GHG emissions

e e b Lo S amissions  Examples of associated technologes Requires massive
70 || CHa, N2O and F-Gases
60 S TW-scale
%0 % abatement technologies renewa b le
- integration

30

20

A massive
power systems
challenge!

Gross negative
CO; emissions

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Key: power systems is climate change mitigation engineering with a global impact!

UN Environmental Program, Emission Gap Report 2017 (Chapter 7)



Annual Global Total Greenhouse Gas Emissions (GtCO,e) Sectoral emission reduction potentials in 2030
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Flexibility can help: intelligent electrification

Energy, transportation, and building sectors are key!

Energy
sector

Emission

reduction

pOtenﬁaI Q - Transport
(2030)

- basic

Buildings \

Combine renewable and efficiency with
electrification of end use. [1]

Flexible demand enables significantly
more renewable generation and reduces
duck-curve ramping effects [2]

o 59GW of DR today will become 200GW
oo R = of flexible demand by 2030 [3,4
& rones

_J

[1] UN Environmental Program, Emission Gap Report 2019 (source for figure, too)
[2] Goldenberg, et al, “Demand Flexibility: The Key To Enabling A Low-cost, Low-carbon Grid,” Tech. Rep., Rocky Mountain Institute, 2018.
[3] Hledik et al, “The National Potential for Load Flexibility: Value And Market Potential Through 2030,” Tech. Rep., The Brattle Group, 2019

[4] Almassalkhi and Kundu, “Intelligent Electrification as an enabler of Clean Energy and Decarbonization,” Current Sustainable/Renewable Energy Reports (under review)
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Simple idea: turn connected loads into flexible demand

Demand-side DERs + communication + control . .
Every device, home, neighborhood,

N % town, and state can become a
% N O OJ\\\ i

dispatchable resource
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Value-stacking can be significant for flexibility

Fast
GRID BALANCING, : o
ANCILLARY SERVICES @ V"'t.Ual power plant
Virtual battery™

Prosumer™ (J’

LMP ENERGY ARBITRAGE, /Tﬂ

RENEWABLE SMOOTHING

$100 to $1000

per kW per year*

+f
AVOIDED T&D CAPEX,
NON-WIRES ALTERNATIVES, *

DIST. GRID MANAGEMENT

T=5Lnm

sunrun

-
| =7
=+

((
AVOIDED GEN CAPACITY M

-+ EnergyH

*Values from representative 2019 ISO New England market prices and services and from RMI/Brattle.



How do we define flexibility (kWgy)?

Proposal: How much power, how fast, and for how long?

» “Magnitude, response rate, and duration”

~B:Q\t'tery: a collection of identical modul
identical, known cells and equal load sharing (BMS)

Lumped parameters of a battery’s flexibility
« State of charge (50C)

* Net injections (power limits)

« (Capacity (energy limits)

Flexibility is defined by set of admissible u(t) to

£(1) = —tx(t) + Meue (1) — %uda)

u(t) =uc(t) —uy(t)
0= uc(t)ug(t)
0 <uc(t),uq(t) <u
0<x(t)<x
x(0) = xo




How do we define flexibility (kWy.,) from virtual batteries?

A collection of heterogeneous DERs with unequalload sharing  How much power, how fast,
4
\\\ and for how long:
] Nt e

\J \\\J

oAl
\\\ A \\
J\\_ : .\\\:,. .\\ _ n CI.\\\ B w o Do e
e o .\\\ | E‘:j::' = ,‘;.fl-‘- e
N -
T s O i@ %} ) What is even the model?
— What are the parameters?

What is control (load sharing) policy?




Coordination must respect the human in the loop

Almost all flexible demand today = static DR programs:
« ComEd Smart HVAC program pays bill credit for $5-10/mo
« “Two-pint problem”, “Zurich Zopf problem”

NAVIGANT

7t SAMU K2
AMS -
. O
National Grid Smart Enerav Solutions Pilot San D SAMUEL
U‘l C‘J Lu'-_}’u’}nau Ls,‘,-'..' UI_/, be ] | ‘H'L‘C«.' L L Leli (}:-' Yy « YOIULIUIIS FHIOUL ,&I)‘F\*[‘IPSL Sﬁ)}t\Is
Final Evaluation Report aBTON LAGER e@mu LAGER

Prepared for:

National Grid

nationalgrid

wneary: * 10% OF participants are

Navigant
1375 Walnut Street

Boulder, CO 80302

[ ]
303.728.2500

navigant.com

May 5, 2017

i overriding 3hr events.

25% are overriding 8hr
events.

It’s really about quality of |

service (QoS)!

Data-driven Identification of Occupant
Thermostat-Behavior Dynamics

Michael Kane™?, Kunind Sharma®

* Department of Civil and Environmental Engineering, Northeastern University, Boston, 02151, MA, USA

ABSTRACT

Building occupant behavior drives significant differences in building energy use, even in automated
buildings. Users’ distrust in the automation causes them to override settings. This results in responses
that fail to satisfy both the occupants’ and/or the building automation’s objectives. The transition toward
grid-interactive efficient buildings will make this evermore important as complex building control systems
optimize not only for comfort, but also changing electricity costs. This paper presents a data-driven
approach to study thermal comfort behavior dynamics which are not captured by standard steady-state

comfort models such as predicted mean vote.

The proposed model captures the time it takes for a user to override a thermostat setpoint change as a
function of the manual setpoint change magnitude. The model was trained with the ecobee Donate Your
Data dataset of 5 min. resolution data from 27,764 smart thermostats and occupancy sensors. The

resulting population-level model shows that, on average, a 2°F override will occur after ~30 mins. and an

" 50% of 27,000 Ecobee smart
thermostat users override a

setpoint change of 2 °F within
30 minutes [1]

[1] Michael B Kane and Kunind Sharma, “Data-driven Identification of Occupant Thermostat-Behavior Dynamics,” arXiv preprint:1912.06705, 2019.




Quality of service (QoS): a need for energy (NFE)

Example: An electric water heater Example: An electric vehicle
kWh needed now
Turn OFF NFE = —— b —
Ty Need for energy is low! np X hours remalning
~ Need for energy 1
GL) 0.9
= NFE increases with
&8 ~71/Temperature Y i
@ . 0.7
Desperate
aQ
E %30 (NFE > 1)/ 0.6
Q 5 . 05
|_
T :% 20 / 0.4
Turn ON y 0.3
/ Need for energy is desperate! 10 s

Hours available

Key: coordination schemes can embed NFE to dynamically prioritize responses



Some challenges with aggregated resources

Optimize
dispatch

control horizon

Stochastic end-use Uncertain resource

Estimate end-
use parameters

Markov renewal process Power consumption
y(t) (measured)

m() . oo
Modeling & control k
e Mime
. VPP 05— \ control time step ’1 e
B Qe Conrallerfir e / \

! | : . ‘ j
\ q(t) s @ —p 1 N : o1 |/ \
End-use process s o 1 (3> o | Ml — _,
(unobservable) ) w5 - :
ON Timer OFF = SR . T

- hrs SoC

=
Distribution

(1) A. Khurram, Luis Duffaut Espinosa, Roland Malhamé, Mads Almassalkhi, “Identification of Hot Water End-use Process of EWHs from Energy Measurements,” EPSR, 2020

(2a) L. Duffaut and M. Almassalkhi, “A packetized energy management macromodel with QoS guarantees for demand-side resources,” IEEE Trans. on Power Systems, 2021

(2b) L. Duffaut, A. Khurram, and M. Almassalkhi “Reference-Tracking Control Policies for Packetized Coordination of Diverse DER Populations,” IEEE Trans. on Control Systems Tech., 2021
(2c) L. Duffaut Espinosa, A. Khurram, and M. Almassalkhi, “A Virtual Battery Model for Packetized Energy Management,” in JEEE Conference on Decision and Control (CDC), 2020

(3a) M. Amini and M. Almassalkhi, “Corrective optimal dispatch of uncertain virtual energy resources,” IEEE Transactions on Smart Grid, 2020

(3b) N. Qi, P. Pinson, M. Almassalkhi, et al, "Chance Constrained Economic Dispatch of Generic Energy Storage under Decision-Dependent Uncertainty," IEEE TSE. 2023




“ Estimate hot water end-use (nominal demand)

» Problem: how do people interact with
DERs nominally?

» Outcome: from just kWh interval meter
data and (homogeneous) tank
parameters, we can estimate (constant)
hot water heater consumption rate

» Next: time-varying usage intensity rate,
relax homogeneity assumption, validate

on real data and generalize to other
devices.

Input

1. Measured kWh data
2. EWH parameters e.g. tank
size, rating of heating element

i § 50 .
= 40 Estimated . Cold-load —
= \, Picku — = 1min
2 = , DER fleet  pickup 1 min
3 g i response ~——— 5 min Different
DE = = 15min interval
: g | = data
88 a *0 Force OFF 4 hrs
< © |
© 0 2 6 8 10 = S
— 60
()
8
8 ®50
5] .
80 I )
LA Estimated
o P40
> 2 avg. fleet
e °E’ SoC
+ 30 : : _ |
hrs
Output
isti Estimation Parameters of
Get statistics of stimatio
ower consumption from —> end-use
P g moments process

Adil Khurram, Luis Duffaut Espinosa, Mads Almassalkhi, Roland Malhamé, “Identification of Hot Water End-use Process of Electric Water Heaters from

Energy Measurements,” Power Systems Computation Conference (PSCC) and EPSR, 2020.




e Modeling/control: foundational work in load control

1979: Electric power load management (techno-eco-social-regulatory issues; Morgan/Talukdar)

1980: Frequency Adaptive Power and Energy Reschedulers (FAPER, Schweppe/Kirtley)
Used locally measured temperature to prioritize resources dynamically
Change temperature dead-band based on measured grid frequency = devices switch ON or OFF
Meant to provide 5-minute demand services. But challenges with synchronization & sensing ($55)
(Brokish 2009) revisited FAPER and considered Probabilistic FAPER to reduce synchronization effects
Topic picked up in 2009-ish with Hiskens/Callaway work on load control, then field exploded...
1980 3 2009

Temperature

60.2

Frequency




eCommon architectures: top-down vs. bottom-up

How to coordinate DERs? What’s measured/estimated?

Direct load control

Top-down coordination
Temporary opt-out Uncontrollable

Netjload

Bottom-up coordination

Preg(t) ol Pagg (1)

Coordinator

Internal
synchronous
estimate

Asynchronous communication

External synchronous estimate




6 A new load control policy inspired by the Internet
Packetization of data X o~

on In temet

\
.....
L

Random access
protocols

Method is called'vpacketlzed energy management (PEM)

M. Almassalkhi, J. Frolik, and P. Hines, "How To Prevent Blackouts By Packetizing The Power Grid" IEEE Spectrum, February, 2022.
M. Almassalkhi et al, "Asynchronous Coordination of Distributed Energy Resources with Packetized Energy Management,” In: Energy Markets and Responsive Grids. Springer, 2018.
M. Almassalkhi, J. Frolik, and P. Hines, "Packetized energy management: asynchronous and anonymous coordination of thermostatically controlled loads," ACC, 2017.

i



PEM example load: guaranteeing QoS

Device’s need for energy (NFE) drives its mean time to request (MTTR) - stochastic requests

R .

Packetizing bulky consumption = many smaller energy packets

B e e A

When temperature is low, heating elements turns ON
and consumes energy > bulky demand

I T

I~
m’\
| -
S
e
©
| -
0]
aQ
5
|_

€

E [
® < : . !‘,'
M. Almassalkhi, et al, “Packetized energy management: asynchronous and anonymous coordination of thermostatically controlled loads,” ACC, 2017
M. Almassalkhi, et al, "Asynchronous Coordination of Distributed Energy Resources with Packetized Energy Management, In: Energy Markets and Responsive Grids., Springer, 2018.

O. Oyefeso, G. Ledva, |. Hiskens, M. Almassalkhi, and J. Mathieu, "Control of Aggregate Air-Conditioning Load using Packetized Energy Concepts,” IEEE CCTA, 2022.




PEM example load: guaranteeing QoS

Stochastic request process based on NFE
NFE dynamically prioritizes devices by modulating MTTR

~ 100 1 . i fo==—140
N : : :Stop requestmé
~ ! ! )
Low NFE — 80 | | =
— ® [ I =
b = 1 | R
o 2 e0f - : g
- 1 1 &y
o+ s (<5)
© S : ! 20 T &
— +~ i I Q
£ S 40 ! ! IE
Qo - (<5)
= = ! : =S
N\
(D)} ) 1 | e
— . : I I -
H]gh NFE o 20+ 1 1 S
z I I =
..8 [ [
= Opt out ! s
42 44 46 48 50 52 54 56 58
Water temperature of water heater
M. Almassalkhi, et al, “Packetized energy management: asynchronous and anonymous coordination of thermostatically controlled loads,” ACC, 2017
M. Almassalkhi, et al, "Asynchronous Coordination of Distributed Energy Resources with Packetized Energy Management," 20th In: Meyn S., Samad T., Hiskens I., Stoustrup J. (eds)
Energy Markets and Responsive Grids. The IMA Volumes in Mathematics and its Applications,, pp 333-361, vol 162. Springer, 2018.




Closing the loop with PEM’s packet requests

« Coordinator accepts/denies request based on tracking error
Simple: If error(t) < 0, then coordinator accepts incoming request; else deny request.
Key: Modulating acceptance rate for packet requests regulates aggregate demand

= PEM effectively solves a hard scheduling problem in real-time
Next: analyze and model system when packet length is randomized

i Measured
Opt-in/out rates | Uncontrollable
Net-load
DER 1
4+t I & dem
- Z >
DER N

Bal.gnci;wg Stochastic
signa I
\@ access requests
(

Incoming request rates are based on devices’ NFE and leads to scalable event-based comm overhead!




Milestone 1: built real-time, scalable DER platform

5000 real-time, emulated PEM water heaters

Devices request pacﬁe_t.s of energy g 8 B
5 ::---._~~ .f ~s~~‘~~‘ gﬁ‘~s, g é 6
. S ! - =
\\.\‘ \gu 'gn 'a_",'“ - 0
PP LR OS
VPP accepisirejects depending K- $P AL (2l
upon grid conditions ‘,/ﬁ ‘t.' %B, Oh 4 B
...E --------- o ,"':—"g - : | | | | | |
TeSmmEIIIITdm T et vs bt 0 20 40 60 80 100 120
measurements Tlme (minS)
Emulated on a high performance PC
1200 T T
1000 u
M OPAL-RT
—asm@l TECHNOLOGIES o 800F .
=}
600 - =
O
O 4ot -
0
120 125 130 135

Temperature (F)

M. Amini, et al. “A Model-Predictive Control Method for Coordinating Virtual Power Plants and Packetized Resources, with Hardware-in-the-Loop Validation”.
In: IEEE PES General Meeting. Atlanta, Georgia, 2019

A. Khurram, M. Amini, L. Duffaut Espinosa, P. H. Hines, and M. Almassalkhi, "Real-Time Grid and DER Co-Simulation Platform for Testing Large-Scale DER
Coordination Schemes," IEEE Transactions on Smart Grid, 2022




a Modeling system under PEM to aid analysis and control

Coordinator controls rate of
accepting charging and !
discharging requests (B4, B;) !

,
’

-
-

Opt-out control
guarantees
comfort/QoS

i

Laem Pret
s Virtual Power Plant e

Charge df‘ y | 'v-),'l :\’l'("i'l);}|blhll‘l‘

acceptance ‘harge ischaree rate .

o i st ' Charge & discharge reques
1/, il etk sttt N (n,5,n,9) arrive stochasticall
, .; from aggregated Standby bi
;I - 0 o \E
i [ A e = | . |\t Transitions can
[ 2 E b | = |t occur from any
L &| = D : Standby mode
AP % |~ | i basedon request
| o Y i probability
) - = b
) b
' E
!

! B o | | @ B i Timer states capture how

; .(.1,'3?’?".3 L9 l @ ('.ff.‘af-'f.'.';"‘.‘;. i long energy packets take to
; - waaaun Y L ( -

; o Standby opt-out rate R ' : Complete (B C/d)

A e O G ) e ?

E\\ Charge ..pmuT OI)t-Ollt Discharge opt-out ’,E

AN e T ' /, :




Validating PEM state bin transition model:

Incorporating opt-out dynamics and hot water usage pulse process statistics into dynamics

4000 - .
| — Start denying all
3000 g
B 2000 - Accepting all o |
Chargin Dischargin —— Agent based
1000 ( g g) ( 2 g) - = Macro-model
0 | | | | | | | | | | | |
50 100 150 200 250 300 350 400 450 500 550 600

Average temperature

Accepting all - sb Denying all - sb

100

___________ ~ Temperature
B4 b === == - = Tset

)

\O\/ —\ — = Deadband .
2F—-rA==eaa =~ - PEM Boundary|

% 50pF - - c e A - -

N

100 200 300 400 500
min

n [ Agent based 0 [ ] Agent based
8 e Macro-model 8 w Macro-model|
= 50 | 2 Snap-shot
B~ s of distribution
-1 3k F=
0
50 52 54 56 58 48 50 52 54
SoC (°C) SoC (°C)

L. Duffaut and M. Almassalkhi, “A packetized energy management macromodel with QoS guarantees for demand-side resources,” IEEE Trans. on Power Systems, 2020.




e Low-order predictive VB model

» Low-order virtual battery model captures average energy and aggregate power dynamics.

» Consists of four states (3+n,) and one input

1. Average SoC (1)

2. ON(T2)
3. Opt-out (T3) Virtual battery
4. Timers (2) X1 Opt-out rates
L2
5. Reference (U)
3 l DER1
u + e(t) PEM Yes / No . Pdem
: > ' >
coordinator _
) Z
DER N
T Stochastic access requests

Closed loop feedback system for PEM.
= L. Duffaut Espinosa, A. Khurram, and M. Almassalkhi, "A Virtual Battery Model for Packetized Energy Management," IEEE Conference on Decision and Control, 2020.




e Low-order predictive VB model in action

Case #1: MPC-based pre-compensator for (PJM) frequency regulation [1]
» Linearizes aggregate fleet power dynamics to predict when output is down ramp-limited

» Energy-neutral frequency regulation (PJM): SoC is approximately constant =» linearization works well!

» Freg regulation signal is fairly predictable 20-30 seconds out [2]

» RHMPC pre-emptively reject packets to avoid down ramp-limited situation: allow PEM “cuts corner”

» Next: incorporate new OFF-requests into model, consider data-driven methods [31, analvze randomized PL [1]

0. 3 min packet length - PEM Simulation

80 . ‘II...IIIIIII-.....-..-....‘-.--..l..-

= Improves in BOTH ‘
B2l metrics! 1300 = ‘
) 'B =
S0 & ~ == AGC
& % o ==PL = 1 min
':‘U = 'PL =3 min
&ﬁta» o "= PL =5min

= o == PL ~ U[2.5,3.5] min

IS —=PL ~ U[2,4] min

A S IV D . . o PL ~ U[1,5] min

-8 ‘ : .
0 100 200 300 50.5 51
Width (s) Time (min)

[1] S. Brahma, A. Khurram, H. Ossareh, and M. Almassalkhi, "Optimal Frequency Regulation using Packetized Energy Management,” IEEE Transactions on Power Systems, 2022.
[2] S. Brahma, H. Ossareh, and M. R. Almassalkhi, "Statistical Modeling and Forecasting of Automatic Generation Control Signals,". IREP, 2022.
[3] Mustafa Matar and Hani Mavalizadeh,, "Learning the state-of-charge of heterogeneous fleets of distributed energy resources with temporal residual networks," Journal of Energy Storage,




Q Low-order predictive VB model: results

Case #2: Optimize fleet’s economic dispatch: enforce energy limits from s-s operating point
Assumes homogeneous parameters for fleet of electric water heater

Explicit energy limits are used to eliminate (complex/fast) opt-out dynamics

>
>
» EKF is used online to infer SoC state (of aggregate) based on: 1) total fleet power and 2) number of requests
» Predictive model is implemented as NLP via Julia+IPOPT (solves in 7 secs)

>

Next steps: generalize to heterogeneous fleet, model opt-out dynamics, and derive QoS limit from opt-out bounds

SoC
>

min R'e k', k,a:k o (c)
po i, s Fret[E]glK],zlk]) ;

s.t. x[k+1]= f(z[k],Pet|k]) and (12),
Pret [k > Prate®2 [k]a
Pre k] < Prao(Prog (1 [H])(N — z3[l]) + K],
P; (k] = APyev [k]+9gk],
z<xlk| <z, Vk=1,....K+1,
z[0] =g,z [K +1] =[10]x0,

0.4 -]

NLP formulation = = oo = = S
; /\'\/\/ l[— Avg. SoC of the fleet, mq

initial

0.3 distributioy]

Distribution

0.1 -

0

hrs SoC
L. Duffaut Espinosa, A. Khurram, and M. Almassalkhi, "A Virtual Battery Model for Packetized Energy Management," IEEE Conference on Decision and Control, 2020.




e Defining flexibility from virtual batteries

Admissible inputs are defined from stochastic energy states/parameters

= begets a risk of saturation.

= can be managed with chance constraints
+ info on decision-independent uncertainties

T = ax + bu

@@

uw=cx+du+v

Estimated
energy capacity

=

S
\
\

arge risk
of capacity
saturatiQug@

Net-power (charge/discharge) variable

Estimated energy state

k-+M

M. Amini and M. Almassalkhi, "Optimal Corrective Dispatch of Uncertain Virtual Energy Storage Systems," /EEE Transactions on Smart Grid, vol. 11, no. 5, pp. 4155 - 4166, 2020.




e Defining flexibility from virtual batteries

What if we have control inputs that can actively shape the distribution?
=» Decision-independent uncertainty (DIU) = decision-dependent uncertainty (DDU)
Example: incentives expands range by temporarily overriding discomfort (contracts range)

A — Bounds®¥ m Bounds™"* mmm Bounds”"V:- — Bounds® — Strategy

T = ax + bu Q —
+ 2x
- 7 9]
uw=cr+du+v - ‘
Q< x <@u,xD §
u<u<u g Y0 _ DerviaD _
3 =
VSV &
(0 u(0) =u S >
():. () 0 0 Expansion Contraction 1" ¢

- > >

N. Qi, P. Pinson, M. Almassalkhi, L. Cheng, and Y. Zhuang, "Chance Constrained Economic Dispatch of Generic Energy Storage under Decision-Dependent Uncertainty," |EEE TSE, 20



Milestone 2: field trial with 150+ loads in 2019

The
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The dynamics of the Aggregation is a function of PEM parameters
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Milestone 3: field trial with 200+ loads in 2021 Bl

. arpa-@
PEM demonstrates frequency regulation! ™ "™~
ARPA-E FastTracker Demo Power Data

100 A
75
=
=< 50 -
29 -
0 - Tests were conducted over 120 minutes (on four different days) .
 LALLALLALALALLALALLLLALALLALE (RALLLLLLLLLLLLLLLLLLLELLALLAL LALLALALAALALAALALALALLALLLL LLLALLALALLLLLALLLLLLLLLLLLLY LRLLLLELLLLLALL LA LLLLLLLLLAL LLALALELLALELLALLLALLLLLLELL RALLLLLLLLLALLLLLLLLLLLLLLALY | LALLLLALLLLRALALLLLLLLALL
avg 10sec power avg 10sec setpoint actual MW setpoint ===- actual kWh
baseline kWh
Pay-for-performance:
PJM Performance score accuracy delay precision Jcomposite | Better than PJM’s avg system
performance (80-90%) and outperforms
0.9509 0.9948 0.8281 all assets but MW-scale energy storage
S. Brahma, A. Khurram, H. Ossareh, and M. Almassalkhi, "Optimal Frequency Regulation using Packetized Energy Management," IEEE Transactions on Smart Grid, 2023
M. Almassalkhi, J. Frolik, and P. Hines, "How To Prevent Blackouts By Packetizing The Power Grid" IEEE Spectrum, February, 2022.




Estimating power capacity/flexibility of VB

» Data-driven methodology to answer questions:
» How many devices for TMW flexibility?
» What is flexibility (+tkW) per device?

» Define flex-kW by fleet’s ability to track AGC signal

Electric water heaters

o

e
>

Baseload
©
C.O

kW-per-device kW-per-device

Cﬁss using simulator

o

kW-per-device
[an)
<t
T

0.4+ XK S :
= N3 Ssclaxmrs2sSsSax
e 2 _ R SE=N=! o 0l ; CESS USIIlg optlmlzatlon solver
5 023523383835 .
L Number of hours of AGC (k)
1 4 8 12 16 20 24

Hour of the day

Adil Khurram, Luis Duffaut Espinosa, Mads Almassalkhi, “A Methodology for quantifying flexibility in a fleet of diverse DERs,” |EEE PES PowerTech, 2021.




”Can you go faster yet with grid services?”

T [K]

In PEM, TCLs consuming a packet

B are defined by their temperature
o states (not directly observable) and
B timer state (known)

E 51

Adapt PEM to leverage local
frequency measurements with a local
control policy to inform a TCL when
to interrupt its packet

4]
[=]

49

0 0 60 80 © 100® 120° 140 160 180
Local timer(seconds [ ]
) tnlk

Temperature distribution at time k

FAPER (1980)

€ €
Timer state

Distribution of timer states at time k
(np = 10) |

uenc
H. Mavalizadeh, L. Duffaut Espinosa, and M. Almassalkhi, “Decentralized Frequency Control using Packet-based Energy Coordination,” IEEE SmartGridComm, f(fl%q y
-, “Improving frequency response with synthetic damping available from fleets of distributed energy resources,” IEEE TPWRS (accepted)




Example: TCL packet interruption control policy

Since no packets are resumed from interruptions, the nadir defines the total interruptions = Damping

«10*  Timer distribution Local Control Law Power vs. Nadir
25 100 0 6
== ——NumBins = 5
; ——NumBins = 10 5098 - ——Tmar =0
~— NumBins = 20 N —— fjmaz = 0.333 —
90 - g 0.5 —NumBins = 50 ST e = 0.667 g
o 5094~ ——Tpar = 1 /
2 ~ 80 S 5092, Nadir_is_minimum_of frequency response _
E g =1 Quantization *% 2 4 6 8 - 1 12 4 " 1 20
S 70 o effects due Time(seconds)
3 = to binning st ‘ Only n o :
— 0 s oF y natural packet expiration rate
=15 g 60 =
2 200
8 . ——Thmar = 0
o = = S 10—y = 0.333
E 8 50 - o 2 = 160~ —Tmar = 0.667 |
L N on 10l T Thmer =1 \
3 = c \ :
Q 1 S 40 I 120 | More damping for larger max thresholds
g (9] pae % 2 4 6 8 10 12 14 16 18 20
&) () Time(seconds)
7, 30 >
,.(_U; -3 B —Thar =0 '
05 20 = 0. 8- T = 0.333
S Damping is A =000
- % — Thnaxr =
e O 2P related to W
51 ~ i =
the slope i FFR has no impact on temperature states (of course)
0 0 - L \ l . |
0 02 04 06 08 1 58 585 59 59.5 60 58 585 59 59.5 60 5 A 4 L & u = 4 L k =
. . . . Time(seconds
Normalized timer bin (%) Frequency (Hz) Nadir (Hz) ime(seconds)

Decentralized FFR policy works well!

H. Mavalizadeh, L. Duffaut Espinosa, and M. Almassalkhi, “Decentralized Frequency Control using Packet-based Energy Coordination,” IEEE SmartGridComm, 2020



Frequency-responsive PEM (fully decentralized)

60.01 i i i i i
» We adapt PEM scheme for fast frequency response.
nma;r - 1 (Estimated)
= = Nmaz = 1 (Actual)
. . . —’r]nz,a;[ — 0-667 (EStiHlated)
» Design local control law around packet interruption PN = = D = 0.667 (Actual)

threshold mechanism that begets responsiveness to s |~ Mmax = 0333 (Estimated)

- - nma_r == 0333 (Actual)
frequency. Tmaz = 0 (Estimated)

5997  |= = 7pge = 0 (Actual)

60

——

» Importantly, we show how DER coordinator can
estimate the equivalent damping on/ine from
timer distribution [2]

Frequency (Hz
8

o
©
©
o
T

59.94 -

59.93 |-

Analyze tradeoff between available synthetic
damping vs. frequency regulation capacity [2]

59.92

1 1 1 L 1
1 2 3 - 5 6 7 8 9 10

Time (seconds)

59.91 ! !
0

[1} H. Mavalizadeh, L. Duffaut Espinosa, and M. Almassalkhi, “Decentralized Frequency Control using Packet-based Energy Coordination,” IEEE SmartGridComm, 2020
[2] H. Mavalizadeh, L. Duffaut Espinosa, and M. Almassalkhi, “Improving frequency response with synthetic damping available from fleets of distributed energy resources,” |IEEE TPWRS, 2023




What active role should the grid operator play?

Q ID: 3
a: 7182.04-0.2° V

b: 7178.3£239.9° V
_ L errir.2£119.8V

g

“Distribution will also need to become
more like transmission by evolving
from passive/reactive management to
active management” [2].

[1]: Taft/DOE, Grid Architecture 2, 2016

“... create open networks that increase value through the interaction of

intelligent devices on the grid and prosumerization of customers

Moreover, even greater value can be realized through the synergistic
e effects of convergence of multiple networks” [1].

1880s

1980s

Telecom Electricity

o o

Source [2]: De Martini/EEI, Future of Distribution, 2012




Past experiences with "utility-centric” approaches

Utility-centric = utility does it all: network ops, DER coordination/dispatch, markets

Grid Market Layer
(1000 feeders & 1,000,000 DERs) <&

Transmission
¥ ¥ Local
mped

What are grld aware limits on DER dispatch? ="
" What is hosting capacity of feeder?
Can 3rd party Aggregators & utilities co-exist?

flexibility

/
N /
: > ~ 7 ’ ﬁ
o Bacific Northwest UNIVERSITY
Orange & Rockland P e . of VERMONT JOHNS “ OPKIN NH

[W] Almassalkhi, et al, “Hierarchical, Grid-Aware, and Economically Optimal Coordination of Distributed Energy Resources in Realistic Distribution Systems,” Energies, 2020.
[X] Nawaf Nazir, Pavan Racherla, and Mads Almassalkhi, “Optimal multi-period dispatch of distributed energy resources in unbalanced distribution feeders”, IEEE Trans. on Power Systems, 2020
[Y] Nawaf Nazir and M. Almassalkhi, “Voltage positioning using co-optimization of controllable grid assets,” IEEE Trans. on Power Systems, 2020.

[Z] S. Brahma, Nawaf Nazir, et al, “Optimal and resilient coordination of virtual batteries in distribution feeders,” IEEE Trans. on Power Systems, 2020




Fundamental asymmetries in information & control

Utility (grid information+data)
Need to ensure grid reliability
Need to protect grid data
Lack access to devices
Knows grid capacity

o (@

DER grou
‘ group

High capacity

N
o

Low cap

III-I
1 2 3 4 5 6

DER Group

Flexibility bound (MW)
o

et
123

-y

o

< Let’s try something different! >

Aggregators (device access, market

Prices to devices?

Need to ensure device QoS
Need to provide market services
Lacks access to grid data

Knows device flexibility

| “Flexibility Bandwidth”




ldea: think like an internet service provider (ISP)

| -
Energy Time Shifting
(Day-ahead Market)
[
. Energy Time Shifling
Flexible

(Real-ime Market)

R

resources Grid constraints Markets - —
N S R
ﬁ\ e
Regulation
Aggregators: Utility: Decompose feeder HC at each node

flexibility from
coordinated devices

" [ lAge 1
B Agg. 2
Il Agg. 3
Bl Age. 4

Flexible node




Convex inner approximation unlocks hosting capacity

Feasible set contains all dispatch solutions that are
admissible (i.e., satisfy all constraints)

CORVERIFEIRRaEBNlcontains feasible set + some solutions

that are not admissible (infeasible).

——
| Hypercube @ I\

CIA
Feasib}.

,,—--\__Set _//

| “Convex
. .
» Relaxation

Convex inner approximation (CIA) contains a convex
subset of admissible solutions (suboptimal).

Goal: find largest hypercube to determine HC

Approach: eliminate non-convexity via convex bounds

Original Image source: D. Lee, H. D. Nguyen, K. Dvijotham and K. Turitsyn,
"Convex Restriction of Power Flow Feasibility Sets," in IEEE Transactions on

Control of Network Systems, vol. 6, no. 3, pp. 1235-1245, Sept. 2019. Shown tO be aff'i ne Shown tO be conveX

g Nawaf Nazir and Mads Almassalkhi. "Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks,” IEEE TPWRS, 2021.




Inner approximations enable grid-aware disaggregation

Nodal capacities [p;,p;"] enable an open-loop, distributed, and grid-aware DER control policy

— ()
@12
4 13 ——9 11
5 I T’ & 7 — Reference -
¢ , P10 g 10 - -Real-time admissible dispatch 8_, ‘- - - = Admissible diSpé;tCh l
o $14 - = Admissible range ~— = = = = Grid-agnostic dispatch | ! ! ! |
Tl - g 1,05 ---=-------> FiFrit e
! __ IS R e P . YO - | Fidigidin
2 o Of 5 L% (o
® 21 E bD e FRy o8 Fiis ~
% < 1 \] 8 // ]
s 1
= o | - = 0 E \‘l""'}
& ®26 36 Ls %P 0.95 e J J JI -------------
33 ) 27 Dqs-‘ —————— Z | | ﬁo !
32 il A ! )
I N -5 ‘ ‘ -
x . ~—e 0 40 50 80 20, 40 60 80
, Time steps (sec)
IEEE 37-node network Time steps (sec)

(from Baker/Dall’Anese)

N. Nazir and M. Almassalkhi, "Market mechanism to enable grid-aware dispatch of Aggregators in radial distribution networks,". IREP 2022.
N. Nazir and M. Almassalkhi, "Voltage positioning using co-optimization of controllable grid assets,” IEEE Transactions on Power Systems vol. 36, no. 4, pp. 2761-2770, July 2021.
N. Nazir and M. Almassalkhi, “Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks”, IEEE Transactions on Power Systems, 2021




Another inner approximation: fast battery dispatch

Nonlinear Battery Dispatch Model Linear (Robust) Battery Dispatch Model
z[k + 1] = ax[k] + Atncuc[k] — gud[k], Vke T Tk + 1] = az[k] + Aty (uc[k] — uqlk]), VkeT
e L — 0 UalF]
A L3 €7 Non-convex zlk+ 1] = azlk] + At ("c“c[’“] oy ) , VeeT

(Simultaneous dis/charging)

z[0] = zo 0<uck]<P, VkeT
SOC: x[k] 0<uclkl]<P, VkeT 0<wuglk] <P VkeT
0<uglk] <P VkeT ?Sz[kﬂl, VkeT
0<zk+1]<E, VkeT rk+1]<E, VkeT
z[0] = xq
25
SoC trajectory T|k]
§ 20 -
Net-charge |
Ue [k] — Ug []{3] g If robust model has
f 10L dispatch, then nonlinear
; model does too.
° & 5 e~ === | Jpper Bound
Grid e z(k

0 | | | |

0 5 10 15 20 25 30 35 40 45 50
Time (hr)
Mazen Elsaadany and Mads R. Almassalkhi, "Battery Optimization for Power Systems: Feasibility and Optimality,” IEEE Conference on Decision and Control, 2023.
N. Nazir and M. Almassalkhi "Guaranteeing a physically realizable battery dispatch without charge-discharge complementarity constraints,” IEEE TSG, 2021




Scaling grid optimization with Opti-KRON
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S. Chevalier and M. Almassalkhi, "Towards Optimal Kron-based Reduction Of Networks (Opti-KRON) for the Electric Power Grid," IEEE Conference on Decision and Control, 2022.




Hybrid Energy Systems

From virtual batteries to physical batteries




D

Hybrid Energy Systems:

Opportunities for
Coordinated Research

High-Level Findings: 2021 Was a Big Year for Hybrids in the US

Hybrid / co-located plants exist in many configurations

and are distributed broadly across the U.S.

= PV+Storage dominates in terms of number of plants (140),
storage capacity (2.2 GW), and storage energy (7 GWh)

= There is now more battery capacity operating within
PV+Battery hybrids than on a standalone basis

= Storage:generator ratios are higher and storage durations
are longer for PV+Storage plants than for other types of
generator+storage hybrids
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Hybrids comprise a large and

growing share of proposed plants

= 42% (285 GW) of all solar and 8%
(19 GW) of all wind in interconnection
queues are proposed as hybrids (up
from 34% and 6% in 2020)

= PV+storage dominates the hybrid
development pipeline (at >90%)

* Proposed plants are concentrated in
the West and CAISO
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Prices from a sample of 67 PV+Storage PPAs in 10 states totaling 8.0
GW, of PV and 4.5 GW,; / 18 GWh of batteries suggest that:
Lawelnag SPA Price (2001 §/MIAN3V)

» Levelized PPA prices  swm . .
have declined over time s L/J —

* But "levelized storage  s»
adders” for PV+Battery s
plants on the mainland s
have recently increased su

s
b

DOE is looking for answers. We can help!

£4) Markets, Policy, and Regulation Opportunities

The objectives of the markets, policy, and regulation research area are to evaluate regulations, policies,
ownership structures, and market products that are emerging or needed to ensure efficient operation of HES.
To relate the greater sense of urgency for the markets, policy, and regulation opportunities, they are presented
prior to those for valuation and technology development; in otf-== === *i= =oeddstae s fm HIFE s sbmtioe iz

conventional approaches in markets, policy, and regulation. Tt
better understanding of the evolving development status, rule
responding to the potential impacts of higher penetrations of |
operations; improving the analysis of HES within interconnect?
providing analytical and technical support to state regulatory

Markets
Database

Studies

Synthesize and disseminate current

PRSI OB ARSI RS R D

Analyze the impacts o

LIl Aol andatinstan L

@ Technology Development Opportunities

Controls Development
and Testing

Expand efforts to develop rabust
and efficient control solutions for
additional technology combinations
and service types, and Improve
coordination for related research
activities across DOE offices.

@ Valuation Opportunities

The valuation research area focuses on tools, methods, and metrics for quantifying the value that different
HES can provide, given hybrid system configuration, energy system, and market characteristics. HES come in a 2/ dvanced computational
variety of types, are used in a variety of applications, and produce a variety of products. Comprehensive and
harmonized valuation methodologies that encapsulate these variations are essential for determining which

HES, if any, can best meet the needs of the electric and broader energy system. Opportunities are presented

and organized in terms of identifying sources of value, developing consistent metrics and methodologies, and

applying tools to estimate HES value over different scales and time horizons.

Y

Sources of Value

Methodologies and
Metrics to Measure Value

Establish common methods and
metrics for evaluating candidate

Enhance information sharing acrass
recent and ongolng HES research
in different DOE offices to achleve

harmonized value definitions
and categories.

comparison of candidate HES.

Products and Services Taxonomy: Resource and Product
Pt o

HES to enable an apples-to-apples

(N

Estimating Value

Estimate the value that HES can
provide through analyses that
expand and levarage past and

ongoing research for select
technology combinations.

Plant-Level vs. System-Level

blish a har: d defin for
the services and products that HES

.
ity: Exp g

Ayl e it oA

v -4
complementarity analyses to new
2 1394

Optimization: Evaluate how the

___________

Optimization

Improve coordination across efforts
to develop methods and toals for

evaluating the optimal sizing, linkages,

and operations of HES for a wide array
of technology combinations.

Advanced Computational
Methods for Design: Coordinate
'esearch activities related to the use

methods for optimizing the design of
the HES system and subsystems,
Including informing sizing, financial
serformance, technical

verformance, and lifetime
estimations to maximize the value
asroposition of the HES.

Dynamic Models: Develop
reduction techniques to accurately
nodel and simulate HES in dynamic
nodels.

o

Components Development
and Testing

Coordinate efforts to develop and
test power electronics, devices,
communications, heat exchangers, and
Intermediate loops for application at
various time steps, leveraging recent
and ongoing capabilities development
for independent technologies.

Hardware Development:
Coordinate activities to improve

the cost and performance of
electrical, thermal, and/or chemical
components that enable the efficient
integration of multiple technologies
to form HES.

Component Testing: Support
testing and simulation of HES
components across new and existing
facilities and software platforms,
including through emulation
focused on power electronics,
high-fidelity real-time simulations,
hardware-in-the-loop testing,
controller and power hardware,

and balance of plant systems.




New hybrid energy systems coming to UVM!

Hybrid energy systems = Coupling Heat + PV + Storage + Hydrogen + Power = Lots of Data = Learning

brid Sol C STC) @ il .
v v Hybrid Solar Test Center (HSTC) @ McNei — F'leld deployment and
@ Mol GeneratingFacly e - validation of R&D

(Particulates, humidity)
What is the Data { = 4> PV Monitoring * ]ntegrat]ng heat and
R T R electricity subsystems
Electriity engine | MOV | icaion [ || o thermal-electric
Accolarated * - modeling, control,
esting baclbad Heating . . .
Laboratory - i * * optimization,
(ATL) @ UVM VR R TO, Hydrogen Fuel Cells |  Lithium-based . .
- (H2FCo) Batrerios operations, planning
: Electic “—»| Thermal-electric optimization and control R grid Sel‘Vi ces
OfeamTme® e Hybrid PV+Storage Plant (Thrust 3)

+ reliability
» lifetime analysis

. m—
l ‘ .:t Accelerated

Thermal-electric energy storage

and inverter characterization Testing Lab (ATL)

I

|

I

|

|

|

I

|

! (Tasks T2.3+72.4)
ool for hardware-
entire PV panel : u enabled Energy

| .

|

|

Accelerated Testing Laboratory (ATL) @ UVM

BV & L

Aerosol Spectrometer, Particle Counter, Corona Charger, & SEM

Next-generation Energy
Systems Simulation
Testbed (NESZ2T)

PV temperature-
humiduty test
chamber

“Digital Twin of
Vermont’s Grid”

Advanced computational tools anda digital twin

Testing

Computational tools for HES, real-time HIL simulation, Accelerated solar panel degradation and
and a digital twin of HSTC (Thrust 1 & Tasks T2.6+T.7) particulate/moisture mitigation (Tasks T2.1+72.2)

Thermal subsystem
(Task T2.5)

HSTC = Hybrid Solar Test Center (1 mile from campus)




Summary: bottlenecks for intelligent electrification

Comfort & convenience (human constraints) Grid conditions & rellab1llty (network constraints)
\ s e
f ';%’ b 3 ' % ; |




Thank you! Questions? Comments?

malmassa@uvm.edu ’ @theEnergyMads www

Tradltlonal demand response Today’s flexibility: not your parent’s DR
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https://madsalma.github.io/

