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VECTORS: Vermont Energy Center for conTrol and
Optimization of Resilient Systems

Objective: sustain and strengthen UVM’s research impact in the area of understanding, controlling, and
optimizing sustainable, resilient, and autonomous systems and networks by leveraging a group of
diverse, interdisciplinary, and research-active faculty.
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* Power/energy
* Grid modeling
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VECTORS works with industry & research partners
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Recent success with translational research

Packetized Plug-in Electric Vehicle Charge
Management

Pooya Rezaei, Student Member, IEEE, Jeff Frolik, Senior Member, IEEE and Paul Hines, Member,
IEEE

Packetized energy management: asynchronous and anonymous

Mads Almassalkhi, Member, IEEE

Abstract— Because of their internal energy storage, elec-
trically powered, distributed thermostatically controlled loads
(TCLs) have the p. ial to be d ically ged to
match their aggregate load to the available supply. However,
in order to facilitate consumer acceptance of this type of load
management, TCLs need to be managed in a way that avoids
degrading perceived quality of service (QoS), autonomy, and
privacy. This paper presents a real-time, adaptable approach
to managing TCLs that both meets the requirements of the
grid and does not require explicit knowledge of a specific
TCL’s state. The method leverages a packetized, probabilistic
appmach to energy dcllvery that draws inspiration from digital

We ate the ketized approach
using a case-study of 1000 simulated water heaters and show
that the method can closely track a time-varying reference
signal without noticeably degrading the QoS. In addition, we
illustrate how placing a sunple ramp- -rate limit on the aggregate
resp overcomes Sy tion effects that arise under
prol d peak curtail scenarios.
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Jeff Frolik, Senior Member, IEEE
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“fairness™ properties with regard to providing statistically
identical grid access to each load.

With the proposed PEM architecture, the grid operator
or aggregator only requires a two dimensional measure-
ment from the collection of loads: aggregate power con-
sumption and an aggregate request process. This repre-
sents a significant advantage over aggregate model-estimator-
controller state-space approaches in [4], which requires an
entire histogram of states from the collection of loads to
update a state bin transition model. In [4], this is addressed
through an observer design to estimate the histogram based
on aggregate power consumption; however, in some cases,
the model may not be observable [S5]. Recent work has
extended [4] to include higher order dynamic models and
end-user and compressor delay constraints [6] and stochastic
dynamical performance bounds [7]. Similar to the mean-field

Paul Hines, Senior Member, IEEE
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coordination of thermostatically controlled loads )l
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EnergyHub

Numerous academic papers+ research funding
+ Lots of IP + industry partners
(2012-present)

Co-founded startup company
(2016)

Company acquired
(2022)




1000X

Accessing scale: from 700 devices to 700,000!

® CANARY MEDIA

yahoo/ | =
Energ]Hub buys PaCl(etiZ e d = Mail News Finance  Sports  Entertainment  Life  COVID-19  Shopping  TechTips  YahooPlus ..
@ Energy 100) get mﬂlions Of @ ousnesswire
® thermostats and EVs to help EnergyHub Acquires Packetized Energy to

Extend High-Value Grid Service Capabilities

balance the grid

Utilities need to orchestrate energy-smart devices at
a massive scale. This startup’s radically distributed
approach could help.

(2] March 1,2022 - 3 min read

3 March 2022




Vermont is amazing platform for power/energy R&

v Population: 650,000 people with a peak load of ca. 1GW

> AMI deployed at >95% of customers in State
Vermont Renewable Portfolio Standard (RPS): 75% by 2032

v
v

>
v
v

>
v

v VT is #2 state in U.S. for Clean Energy Momentum (UofCS, 2017)

5.4% of workforce is clean energy economy (#1 in 2021)
» Next largest are at ~3%

99.9% of VT generation is renewable (#1 in US in 2019)
66% of consumed electricity is renewable (2019)
- 15% of electricity from solar PV (#4 in US in 2020; #6 per capita)
g - 5.4% of new cars sold are EVs in 2021 (VT was #9 in 2018)




Vermont is America’s living energy laboratory
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Why does it matter? Economies are going green!

/ Green economy := environmental, low carbon and renewable energy activities

Georgeson, L., Maslin, M. “Estimating the scale of the US green economy within the global context.” Palgrave Communications 5, 121 (2019)



Why does it matter? Inaction is inexcusable!

1980-2020 Year-to—Date United States Billion-Dollar Disaster Event Count (CPI-Adjusted)
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NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and Climate Disasters (2020)



Solutions? If they work, they will matter!

GHG emissions (GtCO,e/year)

80 = gaosfs pos}tive I(:;HGI emi;sions iticatel . .
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Gross negative

. challenge!

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

‘ Key: Re-think power engineering as climate-change mitigation engineering

UN Environmental Program, Emission Gap Report 2017 (Chapter 7)




Annual Global Total Greenhouse Gas Emissions (GtCO,e) Sectoral emission reduction potentials in 2030
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Flexibility can help: intelligent electrification

Energy, transportation, and building sectors are key!

Energy
sector

Emission

reduction

pOtenﬁaI Q - Transport
(2030)

- basic

Buildings \

Combine renewable and efficiency with
electrification of end use. [1]

Flexible demand enables significantly
more renewable generation and reduces
duck-curve ramping effects [2]

o 59GW of DR today will become 200GW
o - of flexible demand by 2030 [3
& Ry

_J

[1] UN Environmental Program, Emission Gap Report 2019 (source for figure, too)
[2] Goldenberg, et al, “Demand Flexibility: The Key To Enabling A Low-cost, Low-carbon Grid,” Tech. Rep., Rocky Mountain Institute, 2018.
[3] Hledik et al, “The National Potential for Load Flexibility: Value And Market Potential Through 2030,” Tech. Rep., The Brattle Group, 2019.
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Simple idea: turn connected loads into flexible demand

Demand-side DER icati trol . .
emand-side UERs + communication + contro Every neighborhood’, feeder, or city?:34

R\ OQO.\\\ can become a dispatchable resource
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[1] Chakraborty ,et al, Virtual Battery Parameter Identification using Transfer Learning based Stacked Autoencoder, ICLMA, 2018

[2] Hao, et al, Aggregate Flexibility of Thermostatically Controlled Loads. IEEE Transactions on Power Systems. 2014

[3] Hughes, et al, Identification of Virtual Battery Models for Flexible Loads. IEEE Transactions on Power Systems. 2018

[4] A. Khurram, et al, "Real-time Grid and DER Co-simulation Platform for Validating Large-scale DER Control Schemes,"” IEEE Transactions on Smart Grid, (accepted 2022).




Technical challenges for intelligent electrification

Comfort & convenience (local) Gl'ld conditions & rellablllty (global)
= s f >
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Method #1: Broadcast-based approach (top-down)

Measured
Uncontrollable
Net-load

xR e(t) hes u(t) il +T Paem
—N:?—> Coordinator ———» —P>

(VPP)
DER N

Balancing
signal

Time to turn ON
may be random

Broadcast control signal to all devices synchronously.

Local device Control signal may be explicit price or implicit PDF.

logic can
guarantee QoS

i

Depends on feedback from estimate and/or all
devices streaming back data/status or is open-loop

But challenging to distinguish individual device
constraints or grid location (i.e., DER cycling and local
grid conditions).

Transition probability




Broadcast control example: California in 1982

Demand subscription service (DSS): radio-controlled fuse limits demand to subscribed level

-

Human becomes the
actuator in-the-loop

_imitar - J
Thanks to Shmuel Oren for sharing this story from SCE in 1982

Today, some utilities use SMS




Another example: direct load control or TOU pricing




Consider indirect control: EV charging scenario

Consider a fleet of EVs served by a transformer (with dynamic temperature rating)

Distribution Distribution-level

Substation EV objective: charge quickly!

Sn [k + 1] — Sn [k] + nnin [k]

Transformer challenge:
uncoordinated charging = overload
=» overheat = insulation loss

Transformer temperature: 7T[k] < T

Load
Aggregator
and
Price

| Manager

T (k] + Y(isotat [k])2 + PTamb K]

Aggregate current cotpls

N
ltotal [k] — Z.bgd [k] + Z
n=1

M. Botkin-Levy, A. Engelmann, T. Muhlpfordt, T. Faulwasser, and M. Almassalkhi, "Distributed control of charging for electric vehicle fleets under dynamic transformer
ratings,” IEEE Transactions on Control Systems Technology, 2021.

decisions:




EV charging scenario: direct load control

With full information (EV + Transformer), solve open-loop optimal control problem

_______________________ Receding-horizon
S Open Loop Optimization / implementation
i 14 ~u] QP Optimization Solver :
| | i (1)
| [PWL Transformer Model | | 1 1°n = - Nonlinear Transformer
EV Charging Model : EV Batteries
T 4"l J
o R e ! N
anager T Tmeas, {Smeas”n,}n:]-
N K-1 charge quickly! limit high currents
. N\ N\
mll£1>4 >4qn(sn[l€—|—1]—1) + 7 (1 | K] E Jn(in,Sp)
1

M. Botkin-Levy, A. Engelmann, T. Muhlpfordt, T. Faulwasser, and M. Almassalkhi, "Distributed control of charging for electric vehicle fleets under dynamic transformer
ratings,” IEEE Transactions on Control Systems Technology, 2021.

i




EV charging scenario: indirect load control

With limited information (EVs do not share specs), solve distributed control problem

COORDINATOR

v ,! Many ways to update price! R
v o Y

»7 /in Price embodies EVs’ "need for energy”

- 7 ! \ Distribution-level
Substation
Local EV 1 ) R4 " \\ Transformer
Problem , ) \
4 4 \
V4 \
V4 \
Local EV 2 S N
Problem /’ \\
\\ ® %k
o Lgotal
IRCYS  Local Transformer
Prioritizes EVs over time Allocates ampacity Problem
. [ ] [ ] - 3 —I_ :
min J,, (in, sp) + A, ahead of time min —A\ ' iiotal

1, ltotal

M. Botkin-Levy, A. Engelmann, T. Muhlpfordt, T. Faulwasser, and M. Almassalkhi, "Distributed control of charging for electric vehicle fleets under dynamic transformer
ratings,” IEEE Transactions on Control Systems Technology, 2021.
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Method #2: Device-driven (bottom-up) coordination

v Measured
S(‘ ) Optaoul ralee P Uncontrollable
g ¢ Net-load
I ref e(t)

DER 1
BER Yes/No 4t Pdem
Coordinator ———P» = —P
\ + (VPP) 2

P
L )

Stochastic «
access requests ®

signal

DER N «
Balancing T '

T Leverage asynchronous device-to-cloud comms to
have devices request temporary access to energy

Local device logic
guarantees QoS

Controller accepts or denies packet request, so can
estimate total demand (enables feedback).

Request probability

Request can embed local grid measurements to

: adapt scope of control to non-wire alternatives.
d for energy (NF High g P




Inspired by the Internet: coordination of DERS
Packetization of data ) e |

on Internet

.~
*
hhhh
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Random access
protocols

Method is called packetlzed energy management (PEM)




Power

PEM for a fleet: coordination & flexibility

 Inspired by how the Internet works: PEM is a scalable concept
« Bottom-up approach: local intelligence enables devices to learn their need for energy (comfort)

« Randomization of requests: device stochastically request a packet based on need for energy
» Packetization of device demand: all devices interact with coordinator the same way (requests)

Supply Flexible load

Time

BEFORE PACKETIZATION AFTER PACKETIZATION AFTER RANDOMIZATION

TLDR: PEM effectively solves a hard scheduling problem in real-time



PEM for one load: ensures quality of service (QoS)

'A. Device’s need for energy (NFE) drives its mean time to request (MTTR) = stochastic requests
&

- Packetizing bulky consumption = many smaller energy packets
PEM

[ TTTT] ™

When temperature is low, heating elements turns ON
and consumes energy > bulky demand : i

[©] L i | S S

M. Aimassalkhi, et al, “Packetized energy management: asynchronous and anonymous coordination of thermostatically controlled loads,” ACC, 2017
M. Almassalkhi, et al, "Asynchronous Coordination of Distributed Energy Resources with Packetized Energy Management," 20th In: Meyn S., Samad T., Hiskens I., Stoustrup J. (eds)
Energy Markets and Responsive Grids. The IMA Volumes in Mathematics and its Applications,, pp 333-361, vol 162. Springer, 2018.




Closing the loop with PEM’s packet requests

« Coordinator accepts/denies request based on power reference tracking
error, so control mechanism is simple, but powerful

Modulate acceptance rate of packet requests =» Regulate aggregate demand

Opt-in/out rates

Measured

P Uncontrollable
Net-load

DER 1

DER N

Balancing _
signal ; Stochastic
$<‘ access requests
7

+t P, dem
ﬂ%}———»

Incoming request rates are based on devices’ NFE and leads to light event-based comm overhead!




Built scalable, real-time DER cyber test-bed

5000 real-time, emulated PEM water heaters

Devices request packets of energy § 8+
P e s =
\\\‘ \\\g g 0' g QLJ 6 B
. \ g w ;
\e & g X u g -
VPP accepisirejects depending | 88 :ﬂ ;9 &@ s OO_
upon grid conditions Ja'_‘ﬁ' ‘t’g ?B,'\',. - 4+
~'~. —""' 2PV o ! | | | I I
::::--_-— —-"‘ ':“': ! 5 S
Seupapz el e 0 20 40 60 80 100 120
measrements ) £ Time (mins)
Emulated on a high performance PC
1200 T T
1000 - il
= 800 - _
B =] | |
. D l l \ L R I 8 600
=W TECHNOLOGIES °© @ -

0
120 125 130 135
Temperature (F)

M. Amini, et al. “A Model-Predictive Control Method for Coordinating Virtual Power Plants and Packetized Resources, with Hardware-in-the-Loop Validation”.
In: IEEE PES General Meeting. Atlanta, Georgia, 2019

A. Khurram, M. Amini, L. Duffaut Espinosa, P. H. Hines, and M. Almassalkhi, "Real-time Grid and DER Co-simulation Platform for Validating Large-scale DER
Control Schemes," IEEE Transactions on Smart Grid, 2022




Completed field trial with > 150 loads in 2019

The 100 ~
UNIVERSITY P
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Jul 30, 2019

S. Brahma, A. Khurram, H. Ossareh, and M. Almassalkhi, "Optimal Frequency Regulation using Packetized Energy Management,” Under review (Rev02)
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Faster: demo w/ 200+ homes in December 2021 mmsm
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PEM demonstrates frequency regulation!
ARPA-E FastTracker Demo Power Data

100 -
75
=
=< 50 -
25 -
0 - Tests were conducted over two hours, for 4 different days .
avg 10sec power avg 10sec setpoint actual MW setpoint ===- actual kWh
baseline kWh

E?Ax-;o?performance. accuracy delay precision jcomposite | Better than PJM’s avg system
STTOTMAnGE SEore performance (80-90%) and outperforms

% 0.9509 0.9948 0.8281 all assets but MW-scale energy storage
i M. Almassalkhi, J. Frolik, and P. Hines, "How To Prevent Blackouts By Packetizing The Power Grid" IEEE Spectrum, February, 2022.




Even faster: damping with decentralized PEM

T [K]

54

Temperature (c°)
a 2 &

4]
[=]

£y
©

0 0 60 80 © 100 @ 120 140 160
Local timer(seconds)

K]

Temperature distribution at time k

Distribution of timer states at time k
(np = 10)

H. Mavalizadeh, L. Duffaut Espinosa, and M. Almassalkhi, “Decentralized Frequency Control using Packet-based Energy Coordination,” IEEE SmartGridComm, 2020

In PEM, TCLs consuming a packet
are defined by their temperature
states (not directly observable) and
timer state (known)

Adapt PEM to leverage local
measurements with a local control
policy to inform a TCL when to
interrupt its packet

Schweppe’s FAPE

from 19
Timer state
Temperature_
[

Frequency




Frequency-responsive PEM (fully decentralized)

60.01 i T i i i i

» We adapt PEM scheme for fast frequency response.

nma;r - 1 (Estimated)
= = Mmax = 1 (Actual)
— Doz = 0.667 (Estimated)

60

59.99

1

» Design local control law around packet interruption - = Nmae = 0.667 (Actual)
threshold mechanism that begets responsiveness to co08 fz jgggg Eiiﬁ%ted)
frequency. Tmaz = 0 (Estimated)

——

5997  |= = Npae = 0 (Actual)

» Importantly, we show how DER coordinator can
estimate the equivalent damping on/ine from
previously accepted packets

Frequency (Hz
8

o
©
©
o
T

59.94 -

59.93 |-

Working to quantify tradeoff between synthetic
damping and frequency regulation services.

59.92

| 1 1 1 1
1 2 3 - 5 6 7 8 9

Time (seconds)

59.91 ! !
0

H. Mavalizadeh, L. Duffaut Espinosa, and M. Almassalkhi, “Decentralized Frequency Control using Packet-based Energy Coordination,” IEEE SmartGridComm, 2020



Back to EV charging: exploring NFE

Need for energy
/ ]

kWh needed
NppRax (hours left)

n

w
o

NFE, [k] =

kWh needed

20

NFE dynamically prioritizes EVs

if NFE > 1 =» Not enough time left to charge
= EV n opts out (desperate NFE)

if NFE ~ 0 =» No need to charge (low NFE)

Larger NFE = lower mean time-to-request (MTTR)

= higher request probability Hours available

M. Botkin-Levy, A. Engelmann, T. Muhlpfordt, T. Faulwasser, and M. Almassalkhi, "Distributed control of charging for electric vehicle fleets under dynamic transformer
ratings,” IEEE Transactions on Control Systems Technology, 2021.



Look-ahead PEM: need for energy (NFE)

Coordinator optimally accepts packet requests while keeping transformer from overloading

PEM COORDINATOR

Look-ahead acceptance of

Measured

Net-load

. ) Opt-in/out rates
incoming requests over a
small packet window via MIP
DER 1
DER
Predictive model of '?\'/"’;g?m' .
temperature dynamics DER N

*3%

Stochastic

Measured access requests

temperature

Substation
Transformer

T

»| Uncontrollable Distribution-level

Key: the number of incoming requests is << N

i

ratings,” IEEE Transactions on Control Systems Technology, 2021.

M. Botkin-Levy, A. Engelmann, T. Muhlpfordt, T. Faulwasser, and M. Almassalkhi, "Distributed control of charging for electric vehicle fleets under dynamic transformer




Comparing indirect control methods for EV charging
a

T 0600 —

00:00 02:00

08:00

ww Central
f A . . == Dual Decomp
150 / N, Active constraint can generate shadow —— PEM
~<100 4 N (marginal) prices that can inform —— ADMM
so dynamic pricing schemes — ALADIN
.y == Uncoordinated
%5000 22:00 :00 |
Time

M. Botkin-Levy, A. Engelmann, T. Muhlpfordt, T. Faulwasser, and M. Almassalkhi, "Distributed control of charging for electric vehicle fleets under dynamic transformer
ratings,” IEEE Transactions on Control Systems Technology, 2021.




Comparing different methods for EV charging: P’

Rates of convergence of price signals depend on info shared

o — i Privacy Algorithms have
ALl different (data)

\ privacy, processing,
"y and performance
g guarantees, and
- assumptions

1079

50 100 150 200

Tteration - Eerformance
— me= ALADIN (Cold)
~— 50 ===ALADIN (Warm)
= s PEM
4@; 40
. S 30} “!  Central
Computational ;’,; B ALADIN

complexity | 7 2° “ ADMM

= 10 — / ™ Dual Decomp
100 200 300 400
Number of EVs (V) Processing

M. Botkin-Levy, A. Engelmann, T. Muhlpfordt, T. Faulwasser, and M. Almassalkhi, "Distributed control of charging for electric vehicle fleets under dynamic transformer
ratings,” IEEE Transactions on Control Systems Technology, 2021.




Ongoing research directions with PEM @ scale

Uncertain resource

Stochastic end-use

control horizon

Markov renewal process Power consumption
y(t) (measured)

. 'S - el . 4 4 g ]
o \ b x-zwxv-v l‘).n ity
- .y ( ! 1 — .
o _é &
k& et-poy variable
m(t)
. k k+1 k+ M
\ gttt ) Y Time
, V.P.P. 05— ] control time step
ontroller y, ) 3

s

oln®
1
End-use process it @ gQD
(unobservable) o
ON imer

(1) A. Khurram, Luis Duffaut Espinosa, Roland Malhamé, Mads Almassalkhi, “Identification of Hot Water End-use Process of EWHs from Energy Measurements,” EPSR, 2020

(2a) L. Duffaut and M. Almassalkhi, “A packetized energy management macromodel with QoS guarantees for demand-side resources,” IEEE Trans. on Power Systems, 2020

(2b) L. Duffaut, A. Khurram, and M. Almassalkhi “Reference-Tracking Control Policies for Packetized Coordination of Diverse DER Populations,” IEEE Trans. on Control Systems Tech., 2021
(2c) L. Duffaut Espinosa, A. Khurram, and M. Almassalkhi, “A Virtual Battery Model for Packetized Energy Management,” in JEEE Conference on Decision and Control (CDC), 2020

(3a) M.
(3b) N.

&)
g

Distribution

03
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o
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Amini and M. Almassalkhi, “Corrective optimal dispatch of uncertain virtual energy resources,” IEEE Transactions on Smart Grid, 2020
Qi, P. Pinson, et al, "Chance Constrained Economic Dispatch of Generic Energy Storage under Decision-Dependent Uncertainty,” (under review)




What active role should the grid operator play?

Q ID: 3
a: 7182.04-0.2° V

b: 7178.3£239.9° V
_ L errir.2£119.8V

g

“Distribution will also need to become
more like transmission by evolving
from passive/reactive management to
active management” [2].

[1]: Taft/DOE, Grid Architecture 2, 2016

“... create open networks that increase value through the interaction of

intelligent devices on the grid and prosumerization of customers

Moreover, even greater value can be realized through the synergistic
e effects of convergence of multiple networks” [1].

1880s

1980s

Telecom Electricity

o o

Source [2]: De Martini/EEI, Future of Distribution, 2012




Motivating example: characterize aggregate resource

Substation V; Iij

Primary Substation

Service level ____
transformer

| Secondary
| network

Bid flexibility

ISO market (MW) l | n e

into whole-sale




Motivating example: disaggregation of control signals

Can we solve disaggregation in real-time?

Substation

Primary
network

» Solve grid optimization problem repeatedly

+ Guarantees grid reliability!

- Can DisAgg problem be solved fast [W, X, Y, Z]?

- Can we provide admissibility guarantees? |r =
I
I
|

Feeder Disaggregate
Requested
flexibility from
ISO (MW)

P1,P2,P3

[W] Almassalkhi, et al, “Hierarchical, Grid-Aware, and Economically Optimal Coordination of Distributed Energy Resources in Realistic Distribution Systems,” Energies, 2020.

[X] Nawaf Nazir, Pavan Racherla, and Mads Almassalkhi, “Optimal multi-period dispatch of distributed energy resources in unbalanced distribution feeders”, IEEE Trans. on Power Systems, 20
[Y] Nawaf Nazir and M. Almassalkhi, “Voltage positioning using co-optimization of controllable grid assets,” IEEE Trans. on Power Systems, 2020.

[Z] S. Brahma, Nawaf Nazir, et al, “Optimal and resilient coordination of virtual batteries in distribution feeders,” IEEE Trans. on Power Systems, 2020




Past experience with "utility-centric” approaches

Utility-centric = utility does it all: network ops, DER coordination/dispatch, markets

Grid Market Layer
(1000 feeders & 1,000,000 DERs) <&

Transmission

Local
flexibility

Substation
\

\

\
NLELN ]

Local
flexibility

. Ij 1 DI TNIQ
e ook Pacific Northwest E{ of VERMONT JO.I INS HOI KINS N H

[W] Almassalkhi, et al, “Hierarchical, Grid-Aware, and Economically Optimal Coordination of Distributed Energy Resources in Realistic Distribution Systems,” Energies, 2020.

[X] Nawaf Nazir, Pavan Racherla, and Mads Almassalkhi, “Optimal multi-period dispatch of distributed energy resources in unbalanced distribution feeders”, IEEE Trans. on Power Systems, 2020
[Y] Nawaf Nazir and M. Almassalkhi, “Voltage positioning using co-optimization of controllable grid assets,” IEEE Trans. on Power Systems, 2020.

[Z] S. Brahma, Nawaf Nazir, et al, “Optimal and resilient coordination of virtual batteries in distribution feeders,” IEEE Trans. on Power Systems, 2020




Past experience with network-aware PEM

Grid-aware PEM augments packet request mechanism with live grid conditions + traffic-light device logic

Requests >
Ll
@etwork-Admissible 1
PEM ’ ° °
Request .
_!\G qv ?| PEM Coordinator ; - 34 ‘ °
- Accept/Reject o S o
° 3 T Accept/Reject ° %
P Constraint Coordinator >
r-/
Grid Measurements \_ y, .
: K deake Accept/ Request > o
Accept/ Reject \;
Reject 3 E ‘
- ; 8
C 0
'3( Y ®

Grid Measurements

Open questions: measurement types, locations, update rates, data integrity, etc...

A. Khan, S. Paudyal, and M. Almassalkhi, "Performance Evaluation of Network-Admissible Demand Dispatch in Multi-Phase Distribution Grids,". IREP 2022 (to appear)



Fundamental asymmetries in information & control

Utility (grid information+data)
Need to ensure grid reliability
Need to protect grid data
Lack access to devices
Knows grid capacity

o (@

DER grou
‘ group

High capacity

N
o

Low cap

III-I
1 2 3 4 5 6

DER Group

Flexibility bound (MW)
o

et
123

-y

o

< Let’s try something different! >

Aggregators (device access, market

Prices to devices?

Need to ensure device QoS
Need to provide market services
Lacks access to grid data

Knows device flexibility

| “Flexibility Bandwidth”




Rethink Utility/aggregator cooperation: think like ISP
- EBEEE

\_/ m mr;.Enotgy TtmoShmm;
Flexible (Real-time Market)
resources Grid constraints Markets s —
o
ﬂ\ i
Regulation
Aggregators: Utility: Find hosting capacity (HC) for each node

flexibility from
coordinated devices

1 2 3 4 5 6 7 8
Flexible node




Finding set of admissible (active) injections

» Simple 3-node balanced distribution feeder with 2 controllable
nodes modeled with DistFlow:
vi = |[Vi|* and I == |I;; |
v; =v;+2ri; Py + 2245 Qij — | 255 °Lij
Pi=p;j+ ) (Pin—rjnlin)
h:h—j

Qi =q;+ Z (Cn—inlm)

h:h—j

P +Q5
big (Beyilligas ) = J,U. <,
)

Network limits: v; € [v;,;],1;; € [L;j,lq:j]

The only nonlinear relation




Finding set of admissible (active) injections

Simple 3-node balanced distribution feeder with 2 controllable
nodes

20
15+ g Admissible
B injections
2 10 Inadmissible
injections
5| ]
Q0 0 For fixed
reactive power
51 injection

5 0 5 10 15 20
pg,g (MW)

Network limits: v; € [v;, 0:],li; € [Lijal—ij]




Finding set of admissible (active) injections

Simple 3-node balanced distribution feeder example:

20,

g Admissible /5.\/1.05_-_-_-_5“': ____________ 51.05
15! injection g <
—~ Inadmissible £ £
B 10} injection & L4 & !
— 5 | %D 3
) R e et = 0.95 . '
Q0 a 0 10 20 ~ 0 10 20
= 0 Pg.2 -l—pg.:; (I\/IVV) Dg 2 +pg.:; (I\“IW)
O .
5 0 5 10 15 20 The two controllable active power resources are
Dg 2 (MW) limited in aggregate by the network - i.e., their

individual limits are coupled

~Metwork limits: v; € [Qz','l_)i]alij = [Lijvzij]



Finding set of admissible (active) injections

Goal: find largest hyperrectangle to determine p, limts (decoupled)

20
15+ g Admissible
g injection 5
= 107 Inadmissible V; =0;+2r;; P 4+ 22:,Qi5 — | 2i5 | “Lig
< ;W How to find injection P,;=p;+ Z (Pin—"inln)
CE-:E) h th-lS , h:h—j
S 0 yper-cube?

‘ ‘ ' ' Idea: replace non-convex
-5 0 5 10 15 20 constraint with a
convex inner

approximation




Convex inner approximation unlocks hosting capacity

Feasible set contains all dispatch solutions that are
admissible (i.e., satisfy all constraints)

CORVERIFEIRRaEBNlcontains feasible set + some solutions

that are not admissible (infeasible).

——
| Hypercube @ I\

CIA
Feasib}.

,,—--\__Set _//

| “Convex
. .
» Relaxation

Convex inner approximation (CIA) contains a convex
subset of admissible solutions (suboptimal).

Goal: find largest hypercube to determine HC

Approach: eliminate non-convexity via convex bounds

Original Image source: D. Lee, H. D. Nguyen, K. Dvijotham and K. Turitsyn,
"Convex Restriction of Power Flow Feasibility Sets," in IEEE Transactions on

Control of Network Systems, vol. 6, no. 3, pp. 1235-1245, Sept. 2019. Shown tO be aff'i ne Shown tO be conveX

For mathematical details, please see:
Nawaf Nazir and Mads Almassalkhi. "Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks,” IEEE TPWRS, 2021.




Convex inner approximation via proxy variables

No-load conditions

—l1
- -T.S. approx

2000 0O 2000 2000 O 2000
pgo (kW) pg2 (kW)

For mathematical details, please see:
Nawaf Nazir and Mads Almassalkhi. "Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks,” IEEE TPWRS, 2021.




Hypercube yields the nodal hosting capacities

» Consider flexible resources on 10 nodes in a small network: a 10-dimensional hypercube

Ap; = [p;,p;]

800 - | | ' | | " WM LinDist | 1.06

I Inner Convex e
600 ) 1 o4 | Stays within voltage limits
N 400 across dispatch range =
.= ADMISSIBLE dispatcheZ
g 200 =102 PeZ
= 1
~— O .
re> 200 = g0l
&' -400
4 0.9
) Bt Al Rl R e e e e T e g
0.94 ' ‘ ' ' '
0 0.2 0.4 0.6 0.8 1

2 3 4 5 6 7 8 9 10 11
node

N. Nazir and M. Almassalkhi, "Convex inner approximation of the feeder hosting capacity limits on dispatchable demand,” IEEE Conference on Decision and Control (CDC), 2019.

normalized feasible range Ap;




CIA enables real-time, grid-aware disaggregation

Nodal hosting capacities [p;,p;'] enable an open-loop, distributed, and grid-aware DER control policy

+
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—— Reference = ‘ [ . |
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3o 2 = § 105 - P T ]
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N. Nazir and M. Almassalkhi, “Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks”, IEEE Transactions on Power Systems, 2021




Summary: DHC overcomes data/control asymmetry!

Utility (grid information+data)
Dynamic hosting capacities
capture grid conditions and
limits

High capacity

Low cap
lll-l
1 2 3 4 5 6

DER Group

N
)

-t
wn

Flexibility bound (MW)
- )

et
123

o

Available hosting capacity )

Future work: find optimal
control/price signals

Available flexibility

Aggregators (device access, market

Flexibility captures device
availability and comfort limits

| “Flexibility Bandwidth”

e —— y < ==
bandwidth T g

High BW

* high bandwidth




Other interesting topics we didn’t get to today

Optimal Kron-based network reduction (Opti-KRON)
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Characterize flexibility from fleets of DERs as virtualbattery
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Thank you! Questions? Comments?

AT\
malmassa@uvm.edu ’ @theEnergyMads www

i



https://madsalma.github.io/

