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Recent success with translational research

Packetized Plug-in Electric Vehicle Charge
Management

Pooya Rezaei, Student Member, IEEE, Jeff Frolik, Senior Member, IEEE and Paul Hines, Member,

known as smart charving) methods is ope step to facilitute the

Packetized energy management: asynchronous and anonymous
coordination of thermostatically controlled loads

Mads Almscmlkhl Member IEEE Jeff Frolik S'tm'nr Member IEEE Paul Hines. Senior Member, IEEE

UNIVERSITY
o VERMONT

Abstruct—Because of (heir internal energy storage, elec-
trically powered, loads
{TCLs) have the potential to be d\mmlcﬂ) managed to
match their agzregate load to the available sapply. However,
in order to facilitate consumer acceptance of this type of load
management, TCLs need to be managed in a way that avoids
degrading perceived quality of service (QoS), autonomy, and
privacy. This paper presents a real-time, adaptable approach
to managing TCLs that both meets the requirements of the

and does net require cxplicit knowledge of a specific

(“\I\I RSITY .(“\I\TR\] Y

« VERMONT Pl ¥ VERMONT
“faimess” propertics with regard to providing statistically

identical prid access to each load,

With the proposed PEM architecture, the grid operator
or aggregator only requires a two dimensional measure-
ment from the collection of loads: aggregate power con-
sumption and an aggregate request process. This repre-
sents a signifi | ge over del-estima
controller state-space approaches in [4]. which requires an
entire histog of states from the collection of loads to

TCL's state. The method leverages a
appraach to "mgy chm'y that draws inspiration  from digital

the approach
using a tur-swdy o( 1000 simulated water heaters and show
that the method can cosely track a time-varying reference
signal without moticeably degrading the QoS. In addition, we
illustrate how placing a simple ramp-rate limit on the aggregate
response overcemes synchronization effects that arise under
prolonged peak curtallment scenaros.

update a state bin (ransition model. In [4], this is addressed
through an observer design (o estimate the histogram based
on aggregate power consumption; however, in some cases,
the model may not be observable [S5]. Recent work has
extended [4] to include higher order dynamic models and
end-user and compressor delay constraints [6] and stochastic
dynamical performance bounds [7]. Similzr to the mean-field

Numerous academic papers+
research projects+ IP +
industry partners
(2012-present)
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Co-founded startup company
(2016)

Company acquired! Technology
now has access to scale:
1,000,000 devices
(2022)




Vermont is amazing platform for power/energy R&D

v Population: 650,000 people with a peak load of ca. 1GW

> AMI deployed at >95% of customers in State
Vermont Renewable Portfolio Standard (RPS): 75% by 2032

v Small state =» easy to collaborate, test ideas, create change, make an impact

v Close partnerships with nationally-recognized innovative industries
> VELCO, GMP, BED, VEIC, Dynapower, Vermont Gas, Beta Technologies, etc.

v Joint appointment program with national lab (PNNL)

v Strong presence with competitive federal E programs
> Past funding from ARPA-E NODES, SETO ENERGISE, NSF CAREER, CRISP, DOE GMLC

v Outstanding interdisciplinary collaborations with the UVM Complex Systems
Center and Gund Institute for Environment

v VT is #2 state in U.S. for Clean Energy Momentum (UofCS, 2017)
5.4% of workforce is clean energy economy (#1 in 2021)
» Next largest are at ~3%
99.9% of VT generation is renewable (#1 in US in 2019)
66% of consumed electricity is renewable (2019)
15% of electricity from solar PV (#4 in US in 2020; #6 per capita)
5.4% of new cars sold are EVs in 2021 (VT was #9 in 2018)




What | will not talk about today Packetized energy management
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Green economies are rising....

/ Green economy := environmental, low carbon and renewable energy activities

Georgeson, L., Maslin, M. “Estimating the scale of the US green economy within the global context.” Palgrave Communications 5, 121 (2019)



...but so are climate challenges

1980-2020 Year-to-Date United States Billion-Dollar Disaster Event Count (CPI-Adjusted)
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NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and Climate Disasters (2020)
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Solutions? If they work, they will matter!

GHG emissions (GtCO,e/year)

80 - | Gross positive GHG emissions

e e b Lo S amissions  Examples of associated technologes Requires massive
70 || CHa, N2O and F-Gases
60 S TW-scale
%0 % abatement technologies renewa b le
- integration

30

20

A massive

power systems
challenge!

Gross negative
CO; emissions

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Key: power systems is climate change mitigation engineering with a global impact!

UN Environmental Program, Emission Gap Report 2017 (Chapter 7)



Annual Global Total Greenhouse Gas Emissions (GtCO,e) Sectoral emission reduction potentials in 2030

70 1

60

50 1

40 - r T T T T T 1
2015 2020 2025 2030 2035 0 2 4 6 8 10 12

Flexibility can help: intelligent electrification

Energy, transportation, and building sectors are key!

Energy
sector

Emission

reduction

pOtenﬁaI Q - Transport
(2030)

- basic

Buildings \

Combine renewable and efficiency with
electrification of end use. [1]

Flexible demand enables significantly
more renewable generation and reduces
duck-curve ramping effects [2]

o 59GW of DR today will become 200GW
o - of flexible demand by 2030 [3
& Ry

_J

[1] UN Environmental Program, Emission Gap Report 2019 (source for figure, too)
[2] Goldenberg, et al, “Demand Flexibility: The Key To Enabling A Low-cost, Low-carbon Grid,” Tech. Rep., Rocky Mountain Institute, 2018.
[3] Hledik et al, “The National Potential for Load Flexibility: Value And Market Potential Through 2030,” Tech. Rep., The Brattle Group, 2019.
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Simple idea: turn connected loads into flexible demand

Demand-side DERs + communication + control . .
Every device, home, neighborhood,

N % town, and state can become a
% N O OJ\\\ i

dispatchable resource
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Value-stacking can be significant for flexibility

Virtual power plant™
Virtual battery™
Prosumer™

GRID BALANCING,
ANCILLARY SERVICES

$100 to $1000

per kWge per year*

LMP ENERGY ARBITRAGE, m

RENEWABLE SMOOTHING

++
AVOIDED T&D CAPEX,
NON-WIRES ALTERNATIVES, *

DIST. GRID MANAGEMENT

T=5Lnm

j sunrun

*Values from representative 2019 ISO New England market prices and services and from RMI/Brattle.

((
AVOIDED GEN CAPACITY M




DER coordination is hard-and-complicated fun

Who knows what? Who controls what?

Transmission E Z‘ =|  Markets
= ikl

Reliability

v S

I | |
| | |
l l l
I | |
2 Data sharing? DER
. | Grid Operator |#— — —° — :
i | i Coordinator(s)
I | i |
| Grid | — DER
| control : _ | control
| signals Grid | Uity 1 signals DER
I data I - _—1 I data
I | |
| Grid | j DERs
l l i
I | |
| | |
I | |



How can we define flexibility (kWyiex)?

» Asset being responsive to (incentive/control) signals
» Ability to defer/change (net) consumption?

» Flexibility of a stand-alone battery is straight-forward

Key parameters of a battery’s flexibility
State of charge (50C)

Ramp-rate (change in power)

Net injections (power limits)

Capacity (energy limits)

How much power, how fast, and for how long?
= Magnitude, response rate, and duration




For heterogenous mix of DERs, it’s complicated!

Uncertain resource

Stochastic end-use

control horizon

Markov renewal process Power consumption
y(t) (measured)
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(1) A. Khurram, Luis Duffaut Espinosa, Roland Malhamé, Mads Almassalkhi, “ldentification of Hot Water End-use Process of EWHs from Energy Measurements,” EPSR, 2020
(2a) L. Duffaut and M. Almassalkhi, “A packetized energy management macromodel with QoS guarantees for demand-side resources,” IEEE Trans. on Power Systems, 2021
(2b) L. Duffaut, A. Khurram, and M. Almassalkhi “Reference-Tracking Control Policies for Packetized Coordination of Heterogeneous DER Populations,” IEEE Trans. on Control Systems Tech., 202
(2c) L. Duffaut Espinosa, A. Khurram, and M. Almassalkhi, “A Virtual Battery Model for Packetized Energy Management,” in IEEE Conference on Decision and Control (CDC), 2020
3
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a) M. Amini and M. Almassalkhi, “Corrective optimal dispatch of uncertain virtual energy resources,” IEEE Transactions on Smart Grid, 2020
b) N. Qi, P. Pinson, M. Almassalkhi, et al, "Chance-constrained economic dispatch of generic energy storage under decision-dependent uncertainty,” IEEE Trans. on Sust. Energy, 2023
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Example: field trial with coordinating 150 loads (2019)
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Dynamics depend on control architecture + parameters + end-users



How many DERs are needed for +1MW of freq reg?

Baseload

kW-per-device kW-per-device
o o
(e} w (@)

©
B

Flexibility

Up to 10,000 EWHs at night and 4000-5000 during day

Electric water heaters
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End-user behaviors & constraints and DER controller affect available flexibility

i

Adil Khurram, L. Duffaut Espinosa, R. Malhame, and M. Almassalkhi, "
Adil Khurram, L. Duffaut Espinosa, M. Almassalkhi, “

IEEE PES PowerTech, 2021.

Identification of Hot Water End-use Process of Electric Water Heaters from Energy Measurements,” PSCC+EPSR, 2020
A Methodology for quantifying flexibility in a fleet of diverse DERs,”




DER coordination requires a control architecture

How to control DERs? What’s measured/estimated?

Direct load control

Top-down coordination
Temporary opt-out Uncontrollable

Bottom-up coordination e foe
Control
Pref(t) ER signal . Pa'gg(t)

Coordinator

Asynchronous communication

Internal
synchronous
estimate

External synchronous estimate




Architecture #1: Broadcast-based approach (top-down)

Pref e(t)

DER
Coordinator
(VPP)

2 Sl

Balancing
signal

DER 1

DER N

Measured
Uncontrollable
Net-load
4 P, dem
—>

Time to turn ON
may be random

Local device
logic can
guarantee QoS

Transition probability

Low

d for energy (NF High

Broadcast control signal to all devices synchronously.
Control signal is explicit incentive (transactive) or pdf.

Requires feedback from actual/estimated demand and/o
having devices stream back data/status. Else is open-loop

But challenging to get feedback, hard to distinguish
individual device constraints or grid locations (i.e., DER
cycling and local grid conditions).

Chen, Y., Hashmi, M.U., Mathias, J., Busi¢, A., Meyn, S. Distributed Control Design for Balancing the Grid Using Flexible Loads. Energy Markets and Responsive Grids. IMA, 2018.
J. L. Mathieu, S. Koch and D. S. Callaway, State Estimation and Control of Electric Loads to Manage Real-Time Energy Imbalance, IEEE Transactions on Power Systems, 2013.
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Broadcast control example: California in 1982

Demand subscription service (DSS): radio-controlled fuse limits demand to subscribed level

) Radic Transmitter = W;::;q
- g7 = I\
9 \i o // ;;f/’/— : =
// /R X ;:| Iﬁj‘li 0
i
Dun/ i@". S ﬂ"‘-
TS —
S
i e
P 7__\.’—\J

Limitar

Source: Shmuel Oren, 1982

-_

Today many utilities use SMS

-

—

Human becomes the
actuator in-the-loop




Illustrating indirect control: EV charging scenario

Consider a fleet of EVs served by a transformer (with dynamic temperature rating)

Distribution Distribution-level

Trnetonr EVs’ objectives: charge quickly!

Sn [k + 1] — Sn [k] + nnin [k]

Transformer challenge: uncoordinated
charging =» overload = insulation loss

Transformer temperature: 7T[k] < T

Load
Ag?gawf Tk 4+ 1] = 7T[k] 4+ v(itotal [k])Q + pLam K]
e Aggregate current: N
Ltotal [k] — ibgd [k] + Z In [k]
n=1

M. Botkin-Levy, A. Engelmann, T. Muhlpfordt, T. Faulwasser, and M. Almassalkhi, "Distributed control of charging for electric vehicle fleets under dynamic transformer ratings,” IEEE
Transactions on Control Systems Technology, 2021.



EV charging scenario: direct load control

With full information (EV + Transformer), solve open-loop optimal control problem

_______________________ Receding-horizon
= .+ OpenLoop Optimization implementation
1d \:* QP Optimization Solver :
| | H{in(0)}5,
: PWL Transformer Model 1 L' n=1 " Nonlinear Transformer
i EV Charging Model : EV Batteries
Ta )
Mapar:%er ---------------------- , N
T T meas» {Smeas,n}nzl
N K-1 charge quickly! limit high currents
. N\ N\
mll£1>4 >4qn(sn[l€—|—1]—1) + 7 (1 | K] E Jn(in,Sp)
1

M. Botkin-Levy, A. Engelmann, T. Muhlpfordt, T. Faulwasser, and M. Almassalkhi, "Distributed control of charging for electric vehicle fleets under dynamic transformer ratings,” IEEE
Transactions on Control Systems Technology, 2021.




EV charging scenario: indirect load control

With limited information (EVs’ do not share specs), solve distributed control problem

(Independent?) Coordinator

,Io—’----. \/ i F ﬁ '----§~~~~\A
; s p ,l Many ways to update incentive! ‘~

V4
& (R}
o" ,'

7 \‘ DistSribution-IeveI
ubstation
Local EV 1 ) R4 " \\ Transformer
Problem 7 \
s’ / \
/ \
/ \
Local EV 2 /’ N\
Problem ’ \\
~. “total
IRCYS  Local Transformer
Prioritizes EVs over time Allocates ampacity FIoBIE
. ° ° . . —I_ °
min J,, (in, Sp) + AT ahead of time min —A  iiotal

1, ltotal

M. Botkin-Levy, A. Engelmann, T. Muhlpfordt, T. Faulwasser, and M. Almassalkhi, "Distributed control of charging for electric vehicle fleets under dynamic transformer ratings,” IEEE
Transactions on Control Systems Technology, 2021.
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Architecture #2: Device-driven approach (bottom-up)

. Measured
-in/out
¢ TS| Uncontrollable

Net-load

¥ ref e(t) DER Yes/No ik T Pdem
Coordinator ———» : —P
\ + (VPP) ;

Balancing T DERN @'

signal Stochastic (0 ("'
access requests @'@'

(

T Leverage asynchronous device-to-cloud comms to have

Local device devices request temporary access to grid

logic can
guarantee QoS

Controller processes all incoming requests, so can
estimate total demand of fleet (feedback)

Request probability

Request logic can include device constraints to manage

d for energy (N High device health, QoS, and can embed local network

location to enable network-aware coordination




) PACKETIZED

T vERSITY
Example: field trial with 200+ loads in 2021 ofVERMONi
PEM demonstrates frequency regulation! el

ARPA-E FastTracker Demo Power Data

100 A
75
=
=< 50 -
29 -
0 - Tests were conducted over 120 minutes (on 4 different days) .
 LALLALLALALALLALALLLLALALLALE (RALLLLLLLLLLLLLLLLLLLELLALLAL LALLALALAALALAALALALALLALLLL LLLALLALALLLLLALLLLLLLLLLLLLY LRLLLLELLLLLALL LA LLLLLLLLLAL LLALALELLALELLALLLALLLLLLELL RALLLLLLLLLALLLLLLLLLLLLLLALY | LALLLLALLLLRALALLLLLLLALL
avg 10sec power avg 10sec setpoint actual MW setpoint ===- actual kWh
baseline kWh
Pay-for-performance:
PJM Performance score accuracy delay precision Jcomposite | Better than PJM’s avg system
performance (80-90%) and outperforms
0.9509 0.9948 0.8281 all assets but MW-scale energy storage
S. Brahma, A. Khurram, H. Ossareh, and M. Almassalkhi, "Optimal Frequency Regulation using Packetized Energy Management," IEEE Transactions on Smart Grid, 2023
M. Almassalkhi, J. Frolik, and P. Hines, "How To Prevent Blackouts By Packetizing The Power Grid" IEEE Spectrum, February, 2022.




New device-level logic enhances fleet’s performance

Opt-in/out rates Measured
£ P Uncontrollable
. sge. 3 Net-load
Control of Aggregate Air-Conditioning Load TTE
using Packetized Energy Concepts DER Yes/No et Pdem
Coordinator B . > =
Oluwagbemileke Oyefeso, Gregory S. Ledva, Mads Almassalkhi, Ian A. Hiskens, and Johanna L. Mathieu (VPP) a
Abs”:c:&gf papt:;l e)srtten::s m:o packslmed ene.rg’t,i m; tE%fw gompressor tum—o; llocli:(-out time [s]. Stochastic
agemen con rategy to enable coordination o t ompressor turn-off lock-out time [s].
compressor-based thermostatically -controlled loads (TCLs), g ‘ o s access requests
such as air conditioners. This establishes a new method of 'mn  Energy packet minimum epoch length [s].
harnessing the flexibility of this ubiquitous resource, enabling Energy packet maximum epoch length [s].
a variety of grid services, such as frequency regulation. In .
the original PEM scheme, resources request energy packets feomp ~ Compressor lock-out timer [s].
;nd Lum o:::{h their req:::t i: ali)prrc‘)):'led';i Thatth PEM schemi tn Elapsed epoch time for AC n [s]. Wt h I ts to t ON
as been er exten y introducing the concept o : o 1 only requests to turn
turn-off requests. We find that this increases flexibility and % dodoorar Jemperatis [ €. 1800 : yreq |
nnpn;v‘;:a trackinﬁ:lerformanoe. TI:l'ongh 1;‘ case :ftudy involvi;lg T Inner Mass Temperature [°C].
over air conditioners, we evaluate the performance of a 5 o =
population of TCLs providing frequency regulation under PEM, T Outdoor Air Temperature [°C]. E 1600 <]
highlighting both the capabilities and limitations. Simulations Tt Temperature set-point [°C]. =
indicate our controller extensions significantly increase resource i a — e
availability and tracking performance. We show that it is T,™  Lower dead-band temperature [*C]. g 1400 — Reference | -
possible to achiecve RMS tracking error below 2% when 7" Upper dead-band temperature [°C]. (o) Aggregate Power LS
providing more than 250 kW of frequency regulation. Us Conductance of building envelope [kW/°C]. e
1200 : :
30 35 Time (minutes) 40 45
With both requests to turn ON and turn OFF
1800 : |
Z 1600 1
o Reference
§ 1400 - ——— Aggregate Power
1200 ‘ :
30 35 40 45

Time (minutes)

0. Oyefeso, G. Ledva, I. Hiskens, M. Almassalkhi, and J. Mathieu, "Control of Aggregate Air-Conditioning Load using Packetized Energy Concepts,” IEEE CCTA 2022.



Augmenting device logic with local grid data

Local sensing augments device logic with live grid conditions + traffic-light device logic

Requests >
Ll
° % @etwork-Admissible i
PEM ° ° :
_!\G Request 2| PEM ch)rdinator S8 - 3% ; : °
Accept/Reject o - w
T Accept/Reject °"' ° °
> Constraint Coordinator >
Js Grid Measurements \_ y, 3
m NNy Acc_ept/ Request ) °~.,, %4
Accept/ Reject 2
Reject ‘
W ! ° v i
C [\
=3 ®
Grid Measurements
% Many open questions: measurement types, locations, update rates, data integrity, etc...

A. Khan, S. Paudyal, and M. Almassalkhi, "Performance Evaluation of Network-Admissible Demand Dispatch in Multi-Phase Distribution Grids,". IREP 2022



What active role should the grid operator play?

“... create open networks that increase value through the interaction of
intelligent devices on the grid and prosumerization of customers
Moreover, even greater value can be realized through the synergistic
effects of convergence of multiple networks” [1].

Telecom Electricity

1880s - " ﬁ@ﬁ
% 1980s

“Distribution will also need to become
more like transmission by evolving Today
from passive/reactive management to
active management” [2].

e ID: 3
a: 7182.04-0.2° V

b: 7178.3£239.9° V
_ L errir.2£119.8V

—

[1]: Taft/DOE, Grid Architecture 2, 2016 Source [2]: De Martini/EEI, Future of Distribution, 2012




Motivating example: aggregating flexible resources

Substation V; Iij

Primary Substation

Service level ____
transformer

| Secondary
| network

Bid flexibility

ISO market (MW) ' ¢

into whole-sale




Motivating example: disaggregating flexible resources

° ° ° - ® 7
Can we solve disaggregation in real-time? Sbatiion v
(/

I 1] Primary
network

» Solve grid optimization problem repeatedly

+ Guarantees grid reliability!

- Can DisAgg problem be solved fast [W, X, Y, Z]?

- Can we provide admissibility guarantees? :—
I
I
|

Feeder Disaggregate
Requested
flexibility from
ISO (MW)

P1,P2,P3

[W] Almassalkhi, et al, “Hierarchical, Grid-Aware, and Economically Optimal Coordination of Distributed Energy Resources in Realistic Distribution Systems,” Energies, 2020.

[X] Nawaf Nazir, Pavan Racherla, and Mads Almassalkhi, “Optimal multi-period dispatch of distributed energy resources in unbalanced distribution feeders”, IEEE Trans. on Power Systems, 2020
[Y] Nawaf Nazir and M. Almassalkhi, “Voltage positioning using co-optimization of controllable grid assets,” IEEE Trans. on Power Systems, 2021.

[Z] S. Brahma, Nawaf Nazir, et al, “Optimal and resilient coordination of virtual batteries in distribution feeders,” IEEE Trans. on Power Systems, 2021




Past experiences with "utility-centric” approaches

Utility-centric = utility does it all: network ops, DER coordination/dispatch, markets

Grid Market Layer
(1000 feeders & 1,000,000 DERs) <&

YA o
‘What are - limits on DER dispatch? Ry

| What 1S hostmg capacity of feeder?
Can 3rd party Aggregators & utilities co-exist?

flexibility

/
N /
AN ’ .
T y 2 UNIVERSITY
iiend Bk Pacific Northwest of VERMONT JC ok l\ l l( P l\l\s Ng

[W] Almassalkhi, et al, “Hierarchical, Grid-Aware, and Economically Optimal Coordination of Distributed Energy Resources in Realistic Distribution Systems,” Energies, 2020.
[X] Nawaf Nazir, Pavan Racherla, and Mads Almassalkhi, “Optimal multi-period dispatch of distributed energy resources in unbalanced distribution feeders”, IEEE Trans. on Power Systems, 2020
[Y] Nawaf Nazir and M. Almassalkhi, “Voltage positioning using co-optimization of controllable grid assets,” IEEE Trans. on Power Systems, 2020.

[Z] S. Brahma, Nawaf Nazir, et al, “Optimal and resilient coordination of virtual batteries in distribution feeders,” IEEE Trans. on Power Systems, 2020




Fundamental asymmetries in information & control

Utility (grid information+data)
Need to ensure grid reliability
Need to protect grid data
Lack access to devices
Knows grid capacity

o (@

DER grou
‘ group

High capacity

N
[

Low cap

III-I
1 2 3 4 5 6

DER Group

=
- o

Flexibility bound (MW)
n

et
123

o

A

< Let’s try something different!

Need to ensure device QoS

Lacks access to grid data
Knows device flexibility

Aggregators (device access, market

Prices to devices? DLMPs? i

Need to provide market services

| “Flexibility Bandwidth”




ldea: think like an internet service provider (ISP)

| -
Energy Time Shifting
(Day-ahead Market)
[
. Energy Time Shifling
Flexible

(Real-ime Market)

R

resources Grid constraints Markets - —
N S R
ﬁ\ e
Regulation
Aggregators: Utility: Decompose feeder HC at each node

flexibility from
coordinated devices

" [ lAge 1
B Agg. 2
Il Agg. 3
Bl Age. 4

Flexible node




Finding set of admissible (active) injections

» Simple 3-node balanced distribution feeder example with 2
controllable p, nodes modeled by DistFlow:
V; ‘= |‘/z|2 and l,,;j = |I,,;j|2
v; =v;+2ri; Py + 2245 Qij — | 255 °Lij
P =p;+ Z (Pin—Tjnlin)

h:h—j
Q'ij =q;+ Z (th_wjhljh)
h:h—j
’L 7 . .
lij (PzJ,Qz] ,vJ) —_Y ” 3 The only nonlinear relation

Network limits: v; € [v;,;],1;; € [Lijalij]




Finding set of admissible (active) injections

Simple 3-node balanced distribution feeder example:

= | Admissible E 1.08 peesmas iﬁ&- > giaa ELOS
151 injection g Z \ %
o Inadmissible = e T g 5
= 10+ injection £ 1 // N\ g 1
= . :
e B o g
) R e et = 0.95 . |
Q0 = 0 10 20 ~ 0 10 20
=0 pg2 + pg3 (MW) pg2 + g3 (MW)
O =
5 0 5 10 15 20 The two controllable active power resources are
Pg.2 (MW) limited in aggregate by the network -

i.e., their individual limits are coupled

Network limits: v; € [v;, U;],1i; € [lz-j,l_ij]



Finding set of admissible (active) injections

Goal: find largest hyper-rectange to determine p, limts (decoupled)

20
157

mm Admissible
injection 9
Inadmissible v =i +2ri5 Pij 4225 Qij —|2ij "L
How to find injection R’,j =pi4 Z (Pjh—’l“jhljh)

this
hyper-rect?

h:h—j

Idea: replace non-convex
constraint with a

convex inner
approximation (CIA)

-5 0 5 10 15 20




Convexity, optimality, and admissibility

Feasible set contains all dispatch solutions that are
admissible (i.e., satisfy all NLP constraints)

a\ CORVERIrEIEREEBNl contains feasible set + some solutions

may not be not admissible at optimality.

o Hyper- |
| rectangle N

CA)

-easnble\

——— Set ,/
Convex

Relaxatlon

Original Image source: D. Lee, H. D. Nguyen, K. Dvijotham and K. Turitsyn,
"Convex Restriction of Power Flow Feasibility Sets," in IEEE Transactions on
Control of Network Systems, vol. 6, no. 3, pp. 1235-1245, Sept. 2019.

Convex inner approximation (CIA) contains a convex
subset of the admissible solutions (but is suboptimal).

Goal: find largest hypercube to determine HC

Approach: eliminate non-convexity via convex bounds

Shown to be Shown to be conve

For mathematical details, please see:
Nawaf Nazir and Mads Almassalkhi. "Grid-aware aggregation and real-time disaggregation of distributed energy resources in radial networks,” IEEE TPWRS, 2021.




Convex inner approximation and roxy variables

2
(]

If we can find envelope llb,ij < Ui (B s i ) =

Then, we can create proxy variables that upper (+) and lower (-) bound the physical (P, Q, V)
Given a nhominal operating point, 33?,- = ( ”,QW, )

1
Pt :=Cp— Dgrly, lij Rl +d50i5+ §5z'j H i;0i;

= s Ay
P .—Cp_DRlub Pij — P9 GPU Y5
0ij = y Jij =
o | I IR

QT :=Cq—Dx, ly—Dx_lLy

Q™ =Cq—Dx_ lyw—Dx_lp : £ -
V't i=vol,+Myp+Myg—Hy ly— H_lyy _— e
V™ i=vly+Mpp+Maq—Hy by —H Iy o '(f(fiz 2%

and from this model, we can explicitly define upper and
lower bounds on /; that yield a convex inner approximation.

o u.egl N
o

Nawaf Nazir and Mads Almassalkhi. "Grid-aware aggregation and real-time disaggregation of distributed energy resources in radial networks,” IEEE TPWRS, 2021.
N. Nazir and M. Almassalkhi, "Voltage Positioning Using Co-Optimization of Controllable Grid Assets in Radial Networks," in IEEE TPWRS, 2021.




Convex inner approximation via proxy variables

No-load conditions

—l1
- -T.S. approx

2000 0O 2000 2000 O 2000
pgo (kW) pg2 (kW)

For mathematical details, please see:
Nawaf Nazir and Mads Almassalkhi. "Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks,” IEEE TPWRS, 2021.




Determining admissible injection limits

p:_ maximum active power injection at each node: Theorem: If p; € [p; ,p]|Vi=V <V~ (p) <V(p) <V*(p) <V
Proof is conditioned upon: dV*/dp, dV'/dp >
= ) .
£:1.05
: -
= =
— . 3 _ R e i i
.« . . . . . ' 0 10 20 0 10 20
pi minimum active power injection at each node,l pga + pgs (MW) piga -+ pgs (MW)
! o« o g o
— /0 \\ Monotonicity conditions:
p~(z”) = arg RN More load = higher voltage
L Less load - lower voltage

s.t. p € X(z°
p (z°) ~= Bonus: objective is feeder’s hosting capacity!




What about conservativeness of CIA?

Comparing grid flexibility bounds

System CIAMW) NLPMW) CRMW)

Convex inner 13-node [-1.5, 9.1] [-1.5, 9.7] [-1.5, 12]
approximation 37-node [-2.7, 53] [—2.7, 53] [—2.7, 16]
123-node [-4.5, 13.9] [-4.5, 14] [-4.5, 24]

Convex relaxation (CR) over-estimates maximum reactive
power capability
Relaxation

Nonlinear (NLP) has no optimality guarantees AND does not
e Restchon o Power Elow Pensiti Sets I IEEE Tanssctions on guarantee that entire range is admissible (i.e., no holes)
Control of Network Systems, vol. 6, no. 3, pp. 1235-1245, Sept. 2019.

Conclusion: proposed (CIA) method is not overly
conservative and entire range is admissible

Nawaf Nazir and Mads Almassalkhi. "Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks." (IEEE TPWRS, 2021)




CIA enables real-time, grid-aware disaggregation

Nodal hosting capacities [p;,p;'] enable an open-loop, distributed, and grid-aware DER control policy

+
Py,

Zip;i

Yes
@112 >

*——e 11

Peilk+1] =

Pref [k]

a4 : 13 p,zk—l_]-
:_;;Tz § 7 g[ ]

ﬁ*" 10 Pref[k:]—’ Is -Pld[k] > 07 »
w1 [ Bl e+ 1] = 5P ’

19 »—I—o-—me 9 s NoO T
20
021 .
—— Reference = ‘ [ . |
26 24 22 g 10 - -Real-time admissible dispatch ) - AquSSlble f:ilspfatch | ! |
@ —+——ex Z — — Admissible range . i- - = = Grid-agnostic dispatch ! 19
3o 2 = § 105 - P T ]
0| —g 27 Y 2 §essssaaaaas —————= -7 B s 4/1 Vi goe e B
e o L
[ = B 4 e &
35 - > ] O < 1 \ 11
28 29 30 31 g E ] i g
— 0 . \j - - '
IEEE 37-node network o ) it e
(from Baker/Dall’Anese) Q_:" ------ s S St SiaE e %) 0.95 |SEaa I L T S|
= :
-5 : : o o |
20 40 60 80 »~ 20 40 60 80

Time steps (sec) Time steps (sec)

N. Nazir and M. Almassalkhi, “Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks”, IEEE Transactions on Power Systems, 2021




Summary: DHC overcomes data/control asymmetry

Utility (grid information+data)

- Dynamic hosting capacities
capture grid conditions and
limits

D:3 .
71820402V

b 7178.3£239.9"V
A EnTraciion v

-—

s High capacity
é 3
5 25
g Low cap
51.5
L os .
; 1
1 2 3 4 5 6

DER Group

Available hosting capacity

Future work: find optimal
control/price signals

Aggregators (device access, market

- Flexibility captures device
availability and comfort limits

| “Flexibility Bandwidth”




From virtual batteries to physical batteries




What is a hybrid energy system?

Hybrid energy systems = Coupling Heat + PV + Storage + Hydrogen + Power = Lots of Data = Learning

] - Hybrid Solar Test Center (HSTC) @ McNeil — Field dep loyment and
. Hybrid Solar PV Test Center (HSTC) T S e 5 [—— (Rain, snow, shade) validation of R&D
H STC — Hyb r'l d @ McNeil Generating Facility (Particulates, humidity) th l l t o
: T —— ° ermat-etecturic
What is the Data ‘ . 4> PV Monitoring .
Solar Tgst Center ot | [t Ty modeling, control,
(1 mile from e || oname | Metiloayisstaray | 05 optimization,
lectric
campus) Accelerated 1y 7 operations, planning
I::t::gtory Feedback } Hegting b gr]d se rVi ces
(ATL) @ UVM oVUERT O Hydrogen Fuel Cells | - Lithium-based . iabili
gn e e r.el1a.b1 lity .
\\ : ; Flecic ] Thermal-electric optimization and control . l'lf etime an alys] S
\‘ frapTme” ond Hybrid PV+Storage Plant (Thrust 3)
A
A Y




Main objectives of DOE project (2023-2027)

: National impact
Long-term planning Short-term operations P

Hybrid energy system Optimize and control the Develop nationally
degradation and lifetime hybrid energy system’s competitive energy
economics and performance across research infrastructure in
performance. Develop weather/climate conditions Vermont that supports
quasi-accelerated and demonstrate national priorities around
degradation models of advanced grid services combating climate change
solar PV in northern that support reliability and & clean energy workforce

climates. resilience across seasons. development.
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Hybrid Energy Systems:

Opportunities for
Coordinated Research

is looking for answers, too!

£94) Markets, Policy, and Regulation Opportunities

The objectives of the markets, policy, and regulation research area are to evaluate regulations, policies,
ownership structures, and market products that are emerging or needed to ensure efficient operation of HES.
To relate the greater sense of urgency for the markets, policy, and regulation opportunities, they are presented

prior to those for valuation and technology development; in d
conventional approaches in markets, policy, and regulation.
better understanding of the evolving development status, rulf
responding to the potential impacts of higher penetrations of

@ Technology Development Opportunities

operations; improving the analysis of HES within interconnec]
providing analytical and technical support to state regulatory|

Controls Development
and Testing

Expand efforts to develop robust
and efficient control solutions for
additional technology combinations
and service types, and improve
coordination for related research
artivitiec neemce NOF nffirec

S

b0

Markets
Database

HES Integrat
Studies

Synthesize and disseminate current Analyze the impacts {

High-Level Findings: 2021 Was a Big Year for Hybrids in the US

Hybrid / co-located plants exist in many configurations

and are distributed broadly across the U.S.

* PV+Storage dominates in terms of number of plants (140),
storage capacity (2.2 GW), and storage energy (7 GWh)

* There is now more battery capacity operating within
PV+Battery hybrids than on a standalone basis

= Storage:generator ratios are higher and storage durations

are longer for PV+Storage plants than for other types of

generator+storage hybrids

Hybrids comprise a large and
growing share of proposed plants -
» 42% (285 GW) of all solar and 8%
(19 GW) of all wind in interconnection 3
queues are proposed as hybrids (up
from 34% and 6% in 2020)
= PV+storage dominates the hybrid "

B
| B
H
§
i
1
development pipeline (at >90%)
» Proposed plants are concentrated in

the West and CAISO o W G

.
==Y
G

Prices from a sample of 67 PV+Storage PPAs in 10 states totaling 8.0
GW,,; of PV and 4.5 GW,; / 18 GWh of batteries suggest that:
Loveflend PPA rice (2021 §/MWA-PV)
* Levelized PPA prices s . . ..
have declined overtime e | )0
= But “levelized storage s
adders” for PV+Battery se
plants on the mainland s
have recently increased o
s
o

@ Valuation Opportunities

The valuation research area focuses on tools, methods, and metrics for quantifying the value that different
HES can provide, given hybrid system configuration, energy system, and market characteristics. HES come in a
variety of types, are used in a variety of applications, and produce a variety of products. Comprehensive and
harmonized valuation methodologies that encapsulate these variations are essential for determining which
HES, if any, can best meet the needs of the electric and broader energy system. Opportunities are presented
and organized in terms of identifying sources of value, developing consistent metrics and methodologies, and
applying tools to estimate HES value over different scales and time horizons.

"
o @

Sources of Value Methodologies and
Enharnice information sharing across Metrics to Measure Value
Establish common methcds and
metrics for evaluating candidate

HES to enable an apples-to-appies
comparison of candldate HES.

Estimating Value

Estimate the value that HES can
provide through analyses that
expand and leverage past and

ongoing research for select
technology combinatfons,

recent and ongoing HES research
in different DOE offices to achieve
harmonized value definitions
and categories,

®

Plant-Level Design
Optimization
Improve coordination across efforts
to develop methods and toals for

evaluating the optimal sizing, linkages,
and operations of HES for a wide array

of technology combinations.

dvanced Computational

ethods for Design: Coordinate
bsearch activities related to the use
f advanced computational
I;ethods for optimizing the design of

e HES system and subsystems,
hcluding informing sizing, financial
erformance, technical
erformance, and lifetime
fstimations to maximize the value
roposition of the HES.

bynamic Models: Develop
Rduction techniques to accurately
hodel and simulate HES in dynamic
hodels.

o

Components Development
and Testing

Coordinate efforts to develop and
test power electronics, devices,

communications, heat exchangers, and

Intermediate loops for application at
various time steps, leveraging recent
and ongoing capabilities development
for independent technologies.

Hard D 1.

Coordinate activities to improve
the cost and performance of

electrical, thermal, and/or chemical
components that enable the efficient
integration of multiple technologies
to form HES.

Component Testing: Support
testing and simulation of HES
components across new and existing
facilities and software platforms,
including through emulation
focused on power electronics,
high-fidelity real-time simulations,
hardware-in-the-loop testing,
controller and power hardware,
and balance of plant systems.

DOE reports from 2022




Thank you! Questions? Comments?

malmassa@uvm.edu ’ @theEnergyMads www

Tradltlonal demand response Today’s flexibility: not your parent’s DR

QrpPQ-@



https://madsalma.github.io/

