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Dissertation defense (May 2013)

Personal reflections: old photos and first papers
Mads in Denmark (1993-ish)

First papers in grad school were on Energy Hubs

Optimization Framework for the Analysis of Large-scale Networks

Abstract - Through a reformulation of energy hubs, this
paper presents a novel format for dwmbmg general en-

of Energy Hubs

Mads Almassalkhi Ian Hiskens
hiskens@umich.edu
Department of Electrical Engineering and Computer Science

malmassa@umich.edu

University of Michigan
Ann Arbor, USA
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ergy hub model, we can take advantage of its structure to
construct a novel format that descnbes genera] large-sca]e

I L | o

ergy hub networks. This
of tools for analyzing la
networks. The tools are
lessly interface with CP!
low users to quickly imp
ing problems. Our appli
scription file as input,
for the entire system, and
CPLEX. The work prese
natural gas networks, wi
loads, and the main elem
energy storage). Additio
ments is straightforward.
Keywords - Energy hub
power system modeling,

Cascade Mitigation in Energy Hub Networks

Mads Almassalkhi

Abstract— The paper establishes a formulation for energy
hub networks that is consistent with mixed-integer quadratic
programming problems. Line outages and cascading failures
can be considered within this framework. Power flows across
transmission lines and pipelines are compared with flow bounds,
and tripped when violations occur. The outaging of lines is
achieved using a mixed-integer disjunctive model. A model
predictive control (MPC) strategy is developed to mitigate
cascading failures, and prevent propagation of outages from
one energy-carrier network to another. The MPC strategy
seeks to alleviate overloads by adjusting generation and storage
schedules, subject to ramp-rate limits and governor action. If
overloads cannot be eliminated by rescheduling alone, MPC
determines the minimum amount of load that must be shed to
restore system integrity. The MPC strategy is illustrated using a
small 12 hub network and a much larger network that includes
132 energy hubs.

il

Ian Hiskens

TABLE I
VARIABLES THAT ARISE IN THE ENERGY HUB MODEL.

Variable Type Variables

Decision s, fp, P, f
Dependent x,P,L,f, E.E
Constant Parameter C\ Mens Ndis

model is accomplished by employing a mixed-integer dis-
junctive model [12]. To mitigate the effects of a disturbance
and prevent cascading failures, we employ a model predictive
controller to minimize load shedding.

Our paper is organized as follows. In Section II, we
formulate the energy hub network and disjunctive line-outage
models. In Section III, we discuss our model predictive




Interdisciplinary group: energy & autonomous systems

Objective: sustain and strengthen UVM’s research impact in the area of understanding,
controlling, and optimizing sustainable, resilient, and autonomous systems and networks by
leveraging a group of diverse, interdisciplinary, and research-active faculty.

Broad expertise

* Power/energy

* Grid modeling

« Optimization

« Control theory

* Network science

* loT/Comms

« Data science

* Machine learning

« Energy equity/justice
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Impactful R&D with industry & research partners

Recent and ongoing industry-supported projects with
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Recent success with translational research

Packetized Plug-in Electric Vehicle Charge
Management

Pooya Rezaei, Student Member, IEEE, Jeff Frolik, Senior Member, IEEE and Paul Hines, Member,
IEEE

Packetized energy management: asynchronous and anonymous

Abstract— Because of their internal energy storage, elec-
trically powered, distributed thermostatically controlled loads
(TCLs) have the p ial to be dy ically ged to
match their aggregate load to the available supply. However,
in order to facilitate consumer acceptance of this type of load
management, TCLs need to be managed in a way that avoids
degrading perceived quality of service (QoS), autonomy, and
privacy. This paper presents a real-time, adaptable approach
to managing TCLs that both meets the requirements of the
grid and does not require explicit knowledge of a specific
TCL’s state. The method leverages a packetized, probabilistic
approach to energy delivery that draws inspiration from digital

icati We d ate the packetized approach
using a case-study of 1000 simulated water heaters and show
that the method can closely track a time-varying reference
signal without noticeably degrading the QoS. In addition, we
illustrate how placing a simple ramp-rate limit on the aggregate
response overcomes synchronization effects that arise under
prolonged peak curtail scenarios.

| MW N A O Te e R arenn s BOOD®

Mads Almassalkhi, Member, IEEE Jeff Frolik, Senior Member, IEEE

“fairness™ properties with regard to providing statistically
identical grid access to each load.

With the proposed PEM architecture, the grid operator
or aggregator only requires a two dimensional measure-
ment from the collection of loads: aggregate power con-
sumption and an aggregate request process. This repre-
sents a significant advantage over aggregate model-estimator-
controller state-space approaches in [4], which requires an
entire histogram of states from the collection of loads to
update a state bin transition model. In [4], this is addressed
through an observer design to estimate the histogram based
on aggregate power consumption; however, in some cases,
the model may not be observable [S]. Recent work has
extended [4] to include higher order dynamic models and
end-user and compressor delay constraints [6] and stochastic
dynamical performance bounds 7). Similar to the mean-field

Paul Hines, Senior Member, IEEE
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Numerous academic papers+ research
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Accessing scale with tech: 700 devices - 900,000
® CANARY MEDIA

EnergyHub buys Packetized
Energy to get millions of
thermostats and EVs to help
balance the grid

Utilities need to orchestrate energy-smart devices at
a massive scale. This startup’s radically distributed
approach could help.
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Why does it matter? Green economies are rising....

/ Green economy := environmental, low carbon and renewable energy activities

Georgeson, L., Maslin, M. “Estimating the scale of the US green economy within the global context.” Palgrave Communications 5, 121 (2019)



...but so are climate challenges

The road ahead saster Event Count (CPI-Adjusted)
At 9PM on Thursday night, over 600,000 DTE customers in Southeastern Michigan reported experiencing power outages. 7 — 2020 = Average
25
00k without per Peak of almost 2,000,000 people
550K without power in Michigan
N “50 year storm”... 20
400K
) About
200,000 SE-
- people g
o without -
power for ‘ 10 3
L ~5 days.
100K ... 9 days later
50 - -5
: T T 1,024 without
232, 25.2. 27.2. 13. 33, 53. 73; 9.3 113. 133, power
Read about the accuracy of the numbers provided by DTE. T - A T 0
Chart: Eric Lau * Source: DTE Energy * Created with Datawrapper Aug Sep Oct Nov Dec
ar Weather and Climate Disasters (2020)




Solutions? If they work, they will matter!

GHG emissions (GtCO,e/year)

80 - | Gross positive GHG emissions

e e b Lo S amissions  Examples of associated technologes Requires massive
70 || CHa, N2O and F-Gases
60 S TW-scale
%0 % abatement technologies renewa b le
- integration

30

20

A massive

power systems
challenge!

Gross negative
CO; emissions

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Key: power systems is climate change mitigation engineering with a global impact!

UN Environmental Program, Emission Gap Report 2017 (Chapter 7)



Annual Global Total Greenhouse Gas Emissions (GtCO,e) Sectoral emission reduction potentials in 2030
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Flexibility can help: intelligent electrification

Energy, transportation, and building sectors are key!

Energy
sector

Emission

reduction

pOtenﬁaI Q - Transport
(2030)

- basic

Buildings \

Combine renewable and efficiency with
electrification of end use. [1]

Flexible demand enables significantly
more renewable generation and reduces
duck-curve ramping effects [2]

o 59GW of DR today will become 200GW
o - of flexible demand by 2030 [3
& Ry

_J

[1] UN Environmental Program, Emission Gap Report 2019 (source for figure, too)
[2] Goldenberg, et al, “Demand Flexibility: The Key To Enabling A Low-cost, Low-carbon Grid,” Tech. Rep., Rocky Mountain Institute, 2018.
[3] Hledik et al, “The National Potential for Load Flexibility: Value And Market Potential Through 2030,” Tech. Rep., The Brattle Group, 2019.
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Simple idea: turn connected loads into flexible demand

Demand-side DERs + communication + control . .
Every device, home, neighborhood,

N % town, and state can become a
% N O OJ\\\ i

dispatchable resource
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Value-stacking can be significant for flexibility

GRID BALANCING,

y ™
ANCILLARY SERVICES Virtual power plant

Virtual battery™
Prosumer™

LMP ENERGY ARBITRAGE,
RENEWABLE SMOOTHING

$100 to $1000

per kW per year*

AVOIDED T&D CAPEX,
NON-WIRES ALTERNATIVES,
DIST. GRID MANAGEMENT

T=5Lnm

sunrun

*Values from representative 2019 ISO New England market prices and services and from RMI/Brattle.

AVOIDED GEN CAPACITY




Technical challenges for intelligent electrification

Comfort & convenience (human constraints) Grid condltlons & rellab1llty (network constraints)
- ' "'%,.‘ ' /.‘Y/ J




Coordination must respect the human in the loop

Almost all flexible demand today = static DR programs:
« ComEd Smart HVAC program pays bill credit for $5-10/mo
« “Fenway frank problem” and “Two-pint problem”

NAVIGANT

Naflansl Crd Crart Enarau Crlitlane D
National Grid Smart Ener gy o01utions

Final Evaluation Report

Prepared for:

National Grid

nationalgrid

swncss. * 107% OF participants are
s overriding 3hr events.
- 25% are overriding 8hr

events.

303.728.2500
navigant.com

May 5, 2017
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It’s also about quality
of service (QoS)!

Data-driven Identification of Occupant
Thermostat-Behavior Dynamics

Michael Kane™?, Kunind Sharma®

* Department of Civil and Environmental Engineering, Northeastern University, Boston, 02151, MA, USA

ABSTRACT

Building occupant behavior drives significant differences in building energy use, even in automated
buildings. Users’ distrust in the automation causes them to override settings. This results in responses
that fail to satisfy both the occupants’ and/or the building automation’s objectives. The transition toward
grid-interactive efficient buildings will make this evermore important as complex building control systems
optimize not only for comfort, but also changing electricity costs. This paper presents a data-driven
approach to study thermal comfort behavior dynamics which are not captured by standard steady-state

comfort models such as predicted mean vote.

The proposed model captures the time it takes for a user to override a thermostat setpoint change as a
function of the manual setpoint change magnitude. The model was trained with the ecobee Donate Your
Data dataset of 5 min. resolution data from 27,764 smart thermostats and occupancy sensors. The

resulting population-level model shows that, on average, a 2°F override will occur after ~30 mins. and an

" 50% of 27,000 Ecobee smart
thermostat users override a

setpoint change of 2 °F within
j 30 minutes [1]

[1] Michael B Kane and Kunind Sharma, “Data-driven Identification of Occupant Thermostat-Behavior Dynamics,” arXiv preprint:1912.06705, 2019.




Respecting humans too much: California in 1982

Demand subscription service (DSS): radio-controlled fuse limits demand to subscribed level

-

Human becomes the
actuator in-the-loop

_imitar - J
Thanks to Shmuel Oren for sharing this story from SCE in 1982

Today, some utilities use SMS




Quality of service (QoS): a device’s need for energy

Example: An electric water heater Example: An electric vehicle
kWh needed now
Turn OFF NFE = max % —
Th Need for energy is low! np X nours remalning
~ Need for energy 1
8 0.9
= NFE increases with
&8 ~71/Temperature i
@ 0.7
g' @ 0.6
() = 0.5
T =
Turn ON 03

Need for energy is desperate!

Hours available

Key: coordination schemes can embed NFE to dynamically prioritize responses



Foundational work in demand-side flexibility

1979: Electric power load management (techno-eco-social-regulatory issues; Morgan/Talukdar)

1980: Frequency Adaptive Power and Energy Reschedulers (FAPER, Schweppe/Kirtley)
Change temperature dead-band based on measured grid frequency = devices switch ON or OFF
Meant to provide 5-minute demand services. But had challenges with synchronization and satisfying QoS

They were well ahead of their time: sensors were not quite economical

(Brokish 2009) revisited and added probabilistic FAPER to reduce synchronization effects
Topic picked up in 2009-ish with Hiskens/Callaway work on load control, then field exploded...
1980 3 2009

Temperature

60.2

Frequency




Some recent work since 2009

Top-down control / broadcast

>
>
>

Lu/Chassin (TCLs; bin-based)
Hiskens/Callaway (TCLs; deadband control)
Mathieu (TCLs; randomization)

» State bin transition models for control

» Assumes aggregate demand can be estimated
Wei Zhang (higher order/lock-out)

» State bin transition models; control
Majidian/Dahleh (energy/power bounds)

» Characterize deferrable demand limits

» Assumes perfect information/full control
Busic/Meyn (randomization)

» Mean field; QoS guarantee; opt-out

» Assumes aggregate demand is known
Bravlavsky/Perfumo (system ID for TCLs)

» ODEs; heterogeneity in some parameters

Bottom-up / device-driven

>
>

>

>

>

Brokish (TCLs): probabilistic FAPER
Zhang/Bailieul (TCLs)

» Binary information packet requests

» Analyze avg. performance under static limit

» Stores packet request in queue
Turitsyn/Chertkov (Diverse loads)

» Modeling with MDPs, price-based mechanism
Stiidli/Middleton (EVs)

» AIMD regulates EV charging; no QoS guarantee
Almassalkhi et al

» Packetized energy management (PEM)

» Randomization, control, QoS guarantee

» State bin transition models for analysis




Industry example of direct load control (or TOU
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Architecture #1: Broadcast-based/top-down coordinatio

Measured
Uncontrollable
Net-load

¥ ref e(t) DER u(t) ik T Pdem
ﬂ?—» Coordinator ———» —P

(VPP)
DER N

Balancin
sianal g Time to turn ON
g may be random

Broadcast control signal to all devices synchronously.

Local device Control signal is explicit incentive (transactive) or pdf.
logic can
guarantee QoS

Requires feedback from actual/estimated demand and/o
having devices stream back data/status. Else is open-loop

But challenging to get feedback, hard to distinguish
individual device constraints or grid locations (i.e., DER
cycling and local grid conditions).

Transition probability

] fpr energy (N T High




QrpPG-@
Architecture #2: Device-driven/bottom-up coordination

. Measured
-in/out
¢ TS| Uncontrollable

Net-load

¥ ref e(t) DER Yes/No ik T Pdem
Coordinator ———» : —P
\ + (VPP) ;

Balancing T DERN @'

signal Stochastic (0 ("'
access requests @'@'

(

T Leverage asynchronous device-to-cloud comms to have

Local device devices request temporary access to grid

logic can
guarantee QoS

Controller accepts or denies all packet request, so can
estimate total demand of fleet (feedback)

Request probability

Request logic can include device constraints to manage

. device health and Requests can embed network location
. gy (NF High to enable network-aware coordination




Device-driven coordination inspired by The Internet
Packetization of data XA}

on Internet

.~
*
§§§§§
vy

"
iiiii

.-
....
1 L

a 9 ‘' “\ .
i Random access
i protocols

Method is called packetized energy management (PEM)




PEM example load: guaranteeing QoS

Device’s need for energy (NFE) drives its mean time to request (MTTR) - stochastic requests

R .

Packetizing bulky consumption = many smaller energy packets

B e e A

When temperature is low, heating elements turns ON
and consumes energy > bulky demand

-] ‘
-~ . ELCLTe
b h; - s - = Is r“’/
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M. Almassalkhi, et al, “Packetized energy management: asynchronous and anonymous coordination of thermostatically Cbn:[rolled loads,” ACC, 2017
M. Almassalkhi, et al, "Asynchronous Coordination of Distributed Energy Resources with Packetized Energy Management," 20th In: Meyn S., Samad T., Hiskens I., Stoustrup J. (eds)
Energy Markets and Responsive Grids. The IMA Volumes in Mathematics and its Applications,, pp 333-361, vol 162. Springer, 2018.




PEM example load: guaranteeing QoS

Stochastic request process is based on NFE and defines MTTR
NFE dynamically prioritizes devices while MTTR reduces synchronization

100 . . T . 40
Low NFE o | Optout Y pEM I -
- ~ 80 High NFE o 2
~ > ' \ mode | | El
8 g | j| ! *é
3 g 60r : TiE Z,
© = | U 20 %
o e | [ S
Q. Q 1 1 &
- z 40 ! I’ : =
O o : ! Low NFE =z
. Sy 39}
High NFE ; 20 Stop <
o i || requesting
~ o - - =417 0

42 44 46 48 50 52 54 56 58
Water temperature of water heater

M. Almassalkhi, et al, “Packetized energy management: asynchronous and anonymous coordination of thermostatically controlled loads,” ACC, 2017
M. Almassalkhi, et al, "Asynchronous Coordination of Distributed Energy Resources with Packetized Energy Management," 20th In: Meyn S., Samad T., Hiskens I., Stoustrup J. (eds)

Energy Markets and Responsive Grids. The IMA Volumes in Mathematics and its Applications,, pp 333-361, vol 162. Springer, 2018.




Power

PEM for a fleet: coordination & flexibility

 Inspired by how the Internet works: PEM is a scalable concept
« Bottom-up approach: local intelligence enables devices to learn their need for energy (comfort)

« Randomization of requests: device stochastically request a packet based on need for energy
» Packetization of device demand: all devices interact with coordinator the same way (requests)

Supply Flexible load

Time

BEFORE PACKETIZATION AFTER PACKETIZATION AFTER RANDOMIZATION

TLDR: PEM effectively solves a hard scheduling problem in real-time



Closing the loop with PEM’s packet requests

« Coordinator accepts/denies request based on tracking error
« Simple: If error(t) < 0, then coordinator accepts incoming request; else deny request.

» Key: Modulating acceptance rate for packet requests regulates aggregate demand

i Measured
Opt-in/out rates »| Uncontrollable
Net-load
DER 1
iy I & dem
. 2 >
DER N

Bal?nd?g Stochastic
signa \
\@ access requests
(

Incoming request rates are based on devices’ NFE and leads to light event-based comm overhead!




Milestone 1: built real-time, scalable DER platform

5000 real-time, emulated PEM water heaters

Devices request pacﬁe_t.s of energy g 8 B
5 ::---._~~ .f ~s~~‘~~‘ gﬁ‘~s, g é 6
. S ! - =
\\.\‘ \gu 'gn 'a_",'“ - 0
PP LR OS
VPP accepisirejects depending K- $P AL (2l
upon grid conditions ‘,/ﬁ ‘t.' %B, Oh 4 B
...E --------- o ,"':—"g - : | | | | | |
TeSmmEIIIITdm T et vs bt 0 20 40 60 80 100 120
measurements Tlme (minS)
Emulated on a high performance PC
1200 T T
1000 u
M OPAL-RT
—asm@l TECHNOLOGIES o 800F .
=}
600 - =
O
O 4ot -
0
120 125 130 135

Temperature (F)

M. Amini, et al. “A Model-Predictive Control Method for Coordinating Virtual Power Plants and Packetized Resources, with Hardware-in-the-Loop Validation”.
In: IEEE PES General Meeting. Atlanta, Georgia, 2019

A. Khurram, M. Amini, L. Duffaut Espinosa, P. H. Hines, and M. Almassalkhi, "Real-Time Grid and DER Co-Simulation Platform for Testing Large-Scale DER
Coordination Schemes," IEEE Transactions on Smart Grid, 2022




Milestone 2: field trial with 150+ loads in 2019

The
UNIVERSITY

of VERMONT
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POWER
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o
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vermont electric power company
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The dynamics of the Aggregation is a function of PEM parameters
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Milestone 3: field trial with 200+ loads in 2021 Bl

. arpa-@
PEM demonstrates frequency regulation! ™ "™~
ARPA-E FastTracker Demo Power Data

100 A
75
=
=< 50 -
29 -
0 - Tests were conducted over 120 minutes (on 4 different days) .
 LALLALLALALALLALALLLLALALLALE (RALLLLLLLLLLLLLLLLLLLELLALLAL LALLALALAALALAALALALALLALLLL LLLALLALALLLLLALLLLLLLLLLLLLY LRLLLLELLLLLALL LA LLLLLLLLLAL LLALALELLALELLALLLALLLLLLELL RALLLLLLLLLALLLLLLLLLLLLLLALY | LALLLLALLLLRALALLLLLLLALL
avg 10sec power avg 10sec setpoint actual MW setpoint ===- actual kWh
baseline kWh
Pay-for-performance:
PJM Performance score accuracy delay precision Jcomposite | Better than PJM’s avg system
performance (80-90%) and outperforms
0.9509 0.9948 0.8281 all assets but MW-scale energy storage
S. Brahma, A. Khurram, H. Ossareh, and M. Almassalkhi, "Optimal Frequency Regulation using Packetized Energy Management," IEEE Transactions on Smart Grid, 2023
M. Almassalkhi, J. Frolik, and P. Hines, "How To Prevent Blackouts By Packetizing The Power Grid" IEEE Spectrum, February, 2022.




Follow up collaboration with colleagues at UMICH

Control of Aggregate Air-Conditioning Load
using Packetized Energy Concepts
Oluwagbemileke Oyefeso, Gregory S. Ledva, Mads Almassalkhi, Ian A. Hiskens, and Johanna L. Mathieu
» Thanks to Leke, Johanna, lan, et al Absiraci—The paper extends the packetised cnergy man.  itica  Compressor tum-on lock-out tme ).
) ) ) agement (PEM) control strategy to enable coordination of ’;cﬁh: o Compressor turn-off lock-out time [s].
compremorbased thermostatically controlled loads (TCLs), A 83
A d t d PE M t A C l d such as air conditioners. This establishes a new method of !min  Energy packet minimum epoch length [s}.

harnessing the flexibility of this ubiqui toax  Energy packet maximum epoch length [s].

» ap e O Oa S ° :h:‘or::gn:: g;:{ sel:mes, Such a5 f"mmy reguhtwn. n teomp ~ Compressor lock-out timer [s].
Ialnd gnm o;:u!trh their fequesl I: appmved. Thn:hel’BM schmo: I Elapsed epoch time for AC n [s].

» Augmented PEM with new request type to turnoff requests. We find hat, this ncreass fleubiliy nd T Indoor Air Temperaurs C].
improves tracking performance. Through a case study mvolvrfng T Inner Mass Temperature [°C].

M M . 1000 condif al he performanc . o
turn OFF when ON (similar to batteries) opelation of TCLS proviln Tsquencsreguation andes PEM, 1o Oudoor Ar Temperaure [C].
hlghllghﬁng both the capabilities and limitations. Simulations T Temperature set-point [°C].
t ions significantly incre; min °
o . . availnbil;'tl;'r and tracking perfomancemwz showmd::o;:m i; . Lower dead-band temperature [*C].
» Accepting request to turn OFF active drives possible o achieve RMS tracking error below 2% when T Upper dead-band temperature [°C].
providing more than' 250 kW of frequency regulation. U, Conductance of building envelope [kW/°C].
”» dl ’ a
down demand (”discharges”)

Without new requests

ops 1800
» Increases ability to track down ramps g — M\/ﬁ/ \
< - ; N § /A |
» Improves ability to track frequency S w0l \ / | Reference \ TN A
o o o .
regulation signal R A aiiad \ -
30 ki3 - 10 45
With new requests
1800
X 1600 - 7]
by ; Reference
§- 1400 - ——— Aggregate Power 7
N iy
1200 ' '
30 35 40 45

Time (minutes)




Research directions with PEM

Stochastic end-use Uncertain resource

control horizon

Markov renewal process Power consumption
y(t) (measured)

v = a = v
v : - +17 ™1 1 ¢ T *110 H '
) * B — ’ ' 7 =
- -y ! >
gorrr 5 *
Y Vet-poy variable
m(t)
k k+1 k+M
Tl . Y Time
, V.P.P. 05— ] control time step
Q< Controller|i— e ,"I \
- & L
[LE . Py 5l » A
M 1 3 off 4 l“ 3 V‘ N \
M4 1y / o

; (t) ' ARG
A q N Ly
End-use process s g@@
(unobservable)
ox A
Timer

(1) A. Khurram, Luis Duffaut Espinosa, Roland Malhamé, Mads Almassalkhi, “Identification of Hot Water End-use Process of EWHs from Energy Measurements,” EPSR, 2020

(2a) L. Duffaut and M. Almassalkhi, “A packetized energy management macromodel with QoS guarantees for demand-side resources,” IEEE Trans. on Power Systems, 2021

(2b) L. Duffaut, A. Khurram, and M. Almassalkhi “Reference-Tracking Control Policies for Packetized Coordination of Diverse DER Populations,” IEEE Trans. on Control Systems Tech., 2021
(2c) L. Duffaut Espinosa, A. Khurram, and M. Almassalkhi, “A Virtual Battery Model for Packetized Energy Management,” in JEEE Conference on Decision and Control (CDC), 2020

(3a) M.
(3b) N.
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Amini and M. Almassalkhi, “Corrective optimal dispatch of uncertain virtual energy resources,” IEEE Transactions on Smart Grid, 2020
Qi, P. Pinson, M. Almassalkhi, et al, "Chance Constrained Economic Dispatch of Generic Energy Storage under Decision-Dependent Uncertainty,” IEEE TSE (under review)




6 Modeling PEM system to aid analysis and control

Coordinator controls rate of o Faem a Pres
accepting charging and el . Virtual Power Plant , Discharge
. . ’ Charge Do Pd  anee i
discharging requests (Bg, Bc)!  ccoprance s | R e X
s T e Pt/ y Charge & discharge reques
N sTEEEEEEE s E e e e e emes = O (0,0, 9) arrive stochasticall
, .: from aggregated Standby bi
il - ' D + ‘E
. e 1 o)
Transitions can || A o o\
occur fromany || = 53 b | = |t
Standby mode 1l &l = = !
based on request 1| =z = O | & ;
. 1\ RO B2 BN RO
probability | ' G :
! - = b
| 5
:
| [
! 30 o2 | B; i Timers capture how long
! Charge @ @ i i energy packets take to
: expiration expiration -
; FALE e e rate E Complete (B C/d)
Opt-out control : . o | oot |
guarantees E\\ (‘l'lill-gr opt-out i Discharge opt-out ,/ E
$ L. e IR rate _ :
comfort/QoS . R L e e F e T T T T e o R L B FL P T DT T AT T T R R SR S S Te Te e ann :




A nonlinear macro-model for PEM for c/sb/d DERs:

Consider a state bin transition model with hybrid c/sb/d dynamics and N bins per mode dc [k 4+ 1]

Input: (8., 84) € [0,1]° States: ¢[k + 1] := | gsp[k + 1]

Dynamics: gk + 1| = M Mgaq|k] qalk + 1]
Transitions from c>sb Transitions from sb>c

Some packets completing Packets commencmg each bin

(1 o 5c_ [k])I IBC[k] req 0
gk +1] =M Be [EIT I — Belk]Tr, ﬁd[k] req  Ba [k qlk]

0 Bd[k] req (1 o ﬁd_ [k])l
Transitions from sb->d Transitions from d->sb
Agg. power (c minus d)
P15 0, —Pj1), Piem %]
Output: ylk] = 0 1y Neq O glk] = |  nglk]
0 15T, 0 nd (k]

What happens in model, if all requests are rejected (i.e., beta, = 0 = beta,)? Agg. requests ~ c/d
g =>» Devices accumulate in lowest sb-bin for EWHs/EVs = QoS suffers = Fix: augment opt-out mechanism

L. Duffaut and M. Almassalkhi, “A packetized energy management macromodel with QoS guarantees for demand-side resources,” IEEE Trans. on Power Systems, 2021




Validating the macro-model (for EWHSs)

Incorporating opt-out dynamics and hot water usage pulse process statistics into dynamics

4000 .
| — Start denying all
3000 d
B 2000 - Accepting all o |
—q . I . .
Chargin i Dischargin — Agent based
1000 ( g g) E ( g g) - = Macro-model
0 1 | : | | | | | | | | | |
50 100 150 200 250 300 350 400 450 500 550 600
Average temperature L00 Accepting all - sb Denying all - sb
~Temperature n [ Agent based 7p) [ Agent based
- = Tset 8 e Macro-model 8 e Macro-model|
— = Deadband ":; ‘;
4~ - PEM Boundaryl{ 5, 50 B Snap-shot
_______________ e = of distribution
_____________________ SIS I
: : , : ; 0
100 200 300 400 500 50 52 54 56 58 48 50 52 54
min SoC (°C) SoC (°C)

Results from L. Duffaut and M. Almassalkhi, “A packetized energy management macromodel with QoS guarantees for demand-side resources,” IEEE Trans. on Power Systems, 2020.




System properties of PEM macromodel

I T
Reference ||

Result on packet completion rates, B el Tl
« At steady state, we have an upper bound on B T /\’\/A\/A\//WA\/\/\/\/WA%’/:
- Upper bound is tight without packet interruptions. T B TRCE PR et [T N TR |

------

« Tracking around nominal keeps B close to constant
**1 Packet completion rate is almost constant

Be 0.2 | 83 0.2
1 0.1 | 0.1
Analytical estimate ~ — i
np gOLO 85;0 960 950 1000 gObO 850 960 950 1 0;)0

min min

Nominal response: minimum constant power that allows the fleet to satisfy pre-defined QoS target

° ° - 1500 -
Find nominal response: set 8 to 7/n,
n E 500 ——Total
Compute steady-state 8%, B5 =argmin E Ciq; 6 s
B that solves : Be,Ba i=1 50 100 150 200 250 369 350 400 450 500 550 600
* —\ ok
s.t.  q =M(B,67)q; e I O 100 F===== s —
iNT % i e . o OBl flomire soousis s s e
. , €T - >z 7| D I =
i = DER class i ( V> Ui = Zset £ oo Tomparad s °° e
i = ; ; Wemewmmmml 1 ™ 40 i NN
XV parameter Wlth b’n Values /807 /Bd E [07 1] e R e - QE]\;'Bouludmy o] A | — - QEI\}]Dm:ndary |
T : - oY ¢ Y| S R e e e
100 200 300 400 500 600 100 200 300 400 500 600

min min

L. Duffaut and M. Almassalkhi, “A packetized energy management macromodel with QoS guarantees for demand-side resources,” IEEE Trans. on Power Systems, 2021




Low-order predictive VB model

» Low-order virtual battery model is developed that captures aggregate power dynamics.

» Consists of four states (3+n,) and one input

1. Average SoC (1)

2. ON(T2)
3. Opt-out (T3) Virtual battery
4. Timers (2) X1 Opt-out rates
L2
5. Reference (U)
3 l DER1
u + e(t) PEM Yes / No . Pdem
: > ' >
coordinator _
) Z
DER N
T Stochastic access requests

Closed loop feedback system for PEM.




° : P f+ () P:E'M o )
Low-order predictive VB model ﬁ)‘ ) et
Stochastic re quests l
. d- energy gain due to
» Average SoC: Standing losses Zp\f{ssquzz(; ON and Opt-out

z1[k + 1] = z1[k] + a(zamp — z1[K]) —7Q + ;\a}te (z2[k] + z3[K])
» Number of ON devices

ON devices Opt-outs Packet completion rate

Tonlk] = w2 [k] + z3[k] — 25, K]
» Number of requests and accepted packets:

2 (k] = Preq(21[K])(N — @on[k]) Tacc k] = Blk]a, [k] Aceried eavests rom
» Total number of consuming (charging) loads:

Tolk + 1] = zo[k| — 2, [k] + Blk]z,[K] Blk] =
» Timer states: [k]

U .

z1lk+ 1] = 5 Tonlk] AN zilk+1]=2z_1]k] Vi=2,...,mp

» Total number of ODt-OUtSIZ‘alte Total number of denied requests

z3(k + 1] = (1 — az)zs[k] + a1 [Preq(21[k]) (N — Zonk]) — 21[K]] omumear

» Constraints still bound the input

g Down ramp-limited input: Pratexon [k] < U[k] < Prate (CUon [k] + X, [k])

S. Brahma, A. Khurram, H. Ossareh, and M. Almassalkhi, "Optimal Frequency Regulation using Packetized Energy Management," IEEE Transactions on Smart Grid, 2023
L. Duffaut Espinosa, A. Khurram, and M. Almassalkhi, “A Virtual Battery Model for Packetized Energy Management,” in IEEE Conference on Decision and Control (CDC), 2020

Pref[k] — PrateTon [k] Internal PEM control
PrateTr [k'] policy




Low-order predictive VB model: results

SoC
]
|
1
|
|
|
]

» Case #1: Optimize fleet’s economic dispatch

l— Avg. SoC of the fleet, x;

G (c) R

_| final '

distribytion / © . \ initial
A0 ' > distributior]

» Enforce energy limits from s-s operation pt

<
'

e
w
[

» Energy limits eliminate opt-out state

<
o
[

» NLP, so Julia + IPOPT + 7secs solves:

i P, [k],glk)x[k
Prefllgll,lgl[lllc],m[kIX( et [k].g[k],2[K])

st. z[k+1]= f(z[k],Pret[K]) and (12),
-Pref [k] Z F rate-'EZ[k]a
Pref[k] SPra.te(Preq(ml[k])(N_$2[k])+$2[k]),
P [k] =APgev [k]+g [k]a
z<zlk]<zVk=1,. . K+1,

Distribution

S
!

L

z[0)=x0,z1[K +1] =[10]z0, PEM Simulation
48 RMAE: 5.84% to 4.95%
» Case #2: MPC-based pre-compensator for freq regulati{
o 95 34
» Energy-neutral regulation g . ?g;a.z
= —Observed & —AGC .
» SoC is approximately constant = linearization works! " s i 8 . re oupa NP
» Freg regulation signal is fairly predictable 20-30 seconds out | = o w0k *% 25 LB m @
minimize [Yo+dY —R|? .
over dz,du rlk] - RIK] ulk] ylk]
subjectto:  dY —M,dU=G, Predictor PEM >

MudU j Gul —'Gu2




Leveraging timer states to estimate synthetic damping

T [K]

In PEM, TCLs consuming a packet

B are defined by their temperature
o states (not directly observable) and
B timer state (known)

E 51

Adapt PEM to leverage frequency
measurements with a local control
policy to inform a TCL when to
interrupt its packet

4]
[=]

£y
©

0 0 60 80 © 100® 120° 140 160 180
Local timer(seconds [ ]
) tnlk

FAPER (1980)

Temperature distribution at time k

€ €
Timer state

Distribution of timer states at time k
(np = 10) |

uenc
H. Mavalizadeh, L. Duffaut Espinosa, and M. Almassalkhi, “Decentralized Frequency Control using Packet-based Energy Coordination,” IEEE SmartGridComm, f(fl%q y
-, “Improving frequency response with synthetic damping available from fleets of distributed energy resources,” IEEE TPWRS (under review)




Frequency-responsive PEM (fully decentralized)

60.01 i i i i i

» We adapt PEM scheme for fast frequency response.

nma;r - 1 (Estimated)
= = Mmax = 1 (ACtual)
— Doz = 0.667 (Estimated)

60

59.99

» Design local control law around packet interruption | = = e = 0.667 (Actual)
threshold mechanism that begets responsiveness to o Z fgggg Eii‘;‘l‘l":;‘;ed)
frequency. Tmaz = 0 (Estimated)

——

5997  |= = 7pge = 0 (Actual)

» Importantly, we show how DER coordinator can
estimate the equivalent damping on/ine from
previously accepted packets

Frequency (Hz
8

o
©
©
o
T

59.94 -

59.93 |-

Characterize tradeoff between available synthetic
damping vs. frequency regulation capacity

59.92

1 1 1 L 1
1 2 3 - 5 6 7 8 9 10

Time (seconds)

59.91 ! !
0

H. Mavalizadeh, L. Duffaut Espinosa, and M. Almassalkhi, “Decentralized Frequency Control using Packet-based Energy Coordination,” IEEE SmartGridComm, 2020
-, “Improving frequency response with synthetic damping available from fleets of distributed energy resources,” IEEE TPWRS (under review)




What active role should the grid operator play?

Q ID: 3
a: 7182.04-0.2° V

b: 7178.3£239.9° V
_ L errir.2£119.8V

g

“Distribution will also need to become
more like transmission by evolving
from passive/reactive management to
active management” [2].

[1]: Taft/DOE, Grid Architecture 2, 2016

“... create open networks that increase value through the interaction of

intelligent devices on the grid and prosumerization of customers

Moreover, even greater value can be realized through the synergistic
e effects of convergence of multiple networks” [1].

1880s

1980s

Telecom Electricity

o o

Source [2]: De Martini/EEI, Future of Distribution, 2012




Past experience with "utility-centric” approaches

Utility-centric = utility does it all: network ops, DER coordination/dispatch, markets

Grid Market Layer
(1000 feeders & 1,000,000 DERs) <&

Transmission

Local
flexibility

Substation
\

\

\
NLELN ]

Local
flexibility

. Ij 1 DI TNIQ
e ook Pacific Northwest E{ of VERMONT JO.I INS HOI KINS N H

[W] Almassalkhi, et al, “Hierarchical, Grid-Aware, and Economically Optimal Coordination of Distributed Energy Resources in Realistic Distribution Systems,” Energies, 2020.

[X] Nawaf Nazir, Pavan Racherla, and Mads Almassalkhi, “Optimal multi-period dispatch of distributed energy resources in unbalanced distribution feeders”, IEEE Trans. on Power Systems, 2020
[Y] Nawaf Nazir and M. Almassalkhi, “Voltage positioning using co-optimization of controllable grid assets,” IEEE Trans. on Power Systems, 2020.

[Z] S. Brahma, Nawaf Nazir, et al, “Optimal and resilient coordination of virtual batteries in distribution feeders,” IEEE Trans. on Power Systems, 2020




Past experience with network-aware PEM

Grid-aware PEM augments packet request mechanism with live grid conditions + traffic-light device logic

Requests
Ll
@etwork-Admissible 1
PEM
Request - :
—!\G ?| PEM Coordinator
" Accept/Reject
° - T Accept/Reject
= Constraint Coordinator
Grid Measurements \_ y,
m N cqep Request
Accept/ Reject
Reject 3 E ‘
° . A 4 !’
C 0
'3( Y ®

Grid Measurements

Open questions: measurement types, locations, update rates, data integrity, etc...

A. Khan, S. Paudyal, and M. Almassalkhi, "Performance Evaluation of Network-Admissible Demand Dispatch in Multi-Phase Distribution Grids,". IREP 2022




Performance of network-aware PEM (NA-PEM)
Vanilla PEM Network-Aware PEM

O
h7 time-scéep=1 315 7 time-step=1315

J :
=

NA-PEM significantly reduces the number of grid violations w/o performance (0ss




Fundamental asymmetries in information & control

Utility (grid information+data)
Need to ensure grid reliability
Need to protect grid data
Lack access to devices
Knows grid capacity

o (@

DER grou
‘ group

High capacity

N
o

Low cap

III-I
1 2 3 4 5 6

DER Group

Flexibility bound (MW)
o

et
123

-y

o

< Let’s try something different! >

Aggregators (device access, market

Prices to devices?

Need to ensure device QoS
Need to provide market services
Lacks access to grid data

Knows device flexibility

| “Flexibility Bandwidth”




|dea: think like an ISP

R

| r
Energy Time Shifting
(Day-ahead Market)

\_/ I' _ Energy Time Shifting ..
Flexible (Real-time Market)
resources Grid constraints Markets - _ ~
W[\r/ B Ramers
Frequency
Regulation
Aggregators: Utility: Find hosting capacity (HC) for each node

flexibility from

coordinated devices —~ T T A 1
= 1 ﬂ — I
= Nl Age. 3
~ B Age. 4
=
S
3
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Finding set of admissible (active) injections

» Simple 3-node balanced distribution feeder with 2 controllable
nodes modeled with DistFlow:
Vi ‘= |‘/z|2 and l,,;j = |I,,;j|2
v; =;+27;; Py +22: Qi — | 2151 °Li
Pij=p;+ Z (Pjn—7jnljn)

h:h—j
Q'ij =q;+ Z (th_wjhljh)
h:h—j
’L 7 . .
lij (PzJ,Qz] ,vJ) —_Y ” 3 The only nonlinear relation

Network limits: v; € [v;,;],1;; € [Lijalij]




Finding set of admissible (active) injections

Goal: find largest hyperrectangle to determine p, limts (decoupled)

20
157

mm Admissible
injection 9
Inadmissible v =i +2ri5 Pij 4225 Qij —|2ij "L
How to find injection R’,j =pi4 Z (Pjh—’l“jhljh)

this
hyper-cube?

h:h—j

Idea: replace non-convex
constraint with a

convex inner
approximation

-5 0 5 10 15 20




Convex inner approximation unlocks hosting capacity

Feasible set contains all dispatch solutions that are
admissible (i.e., satisfy all constraints)

CORVERIFEIRRaEBNlcontains feasible set + some solutions

that are not admissible (infeasible).

——
| Hypercube @ I\

CIA
Feasib}.

,,—--\__Set _//

| “Convex
. .
» Relaxation

Convex inner approximation (CIA) contains a convex
subset of admissible solutions (suboptimal).

Goal: find largest hypercube to determine HC

Approach: eliminate non-convexity via convex bounds

Original Image source: D. Lee, H. D. Nguyen, K. Dvijotham and K. Turitsyn,
"Convex Restriction of Power Flow Feasibility Sets," in IEEE Transactions on

Control of Network Systems, vol. 6, no. 3, pp. 1235-1245, Sept. 2019. Shown tO be aff'i ne Shown tO be conveX

For mathematical details, please see:
Nawaf Nazir and Mads Almassalkhi. "Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks,” IEEE TPWRS, 2021.




Convex inner approximation via roxy variables

2
If we can find envelope llb,ij < i (P Qi 0i) = ij

Then, we can create proxy variables that upper (+) and lower (-) bound the actual (P, Q, V)
Given a nominal operating point); := (P, @3, v})

Pt :=Cp—Dglpy Ly I +J 565+ %QHC,U@-J-

P~ :=Cp—Dgly Py — P % - z_g‘f -

Q+ =Cq—Dx, hy—Dx_lu e [Q"jj _%’ij] e %%3] . i _(P?z-)g_?j(o?z-)z

Q" :=Cq—Dx lw—Dx_Ip -, J Ow” ' £ - )
V"‘ :=U01n+Mpp+qu—H_|_l1b—H_lub H,, = 18 _26 _EZC%Z t O
V— Z:’U()].n+Mpp+qu—H+lub—H_l1b _zf;;)’ _(jgz 2(—130)(2%)(?)?)—2_

and from this model, we can explicitly define upper and
lower bounds on /; that yield a convex inner approximation.

N. Nazir and M. Almassalkhi, "Voltage Positioning Using Co-Optimization of Controllable Grid Assets in Radial Networks," in IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 2761-2770, July
2021, doi: 10.1109/TPWRS.2020.3044206.




Convex inner approximation via proxy variables

No-load conditions

—l1
- -T.S. approx

2000 0O 2000 2000 O 2000
pgo (kW) pg2 (kW)

For mathematical details, please see:
Nawaf Nazir and Mads Almassalkhi. "Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks,” IEEE TPWRS, 2021.




What about existence of solution?

Leverage sufficient conditions from [*] in two ways:

» At each iteration, verify existence of (new) operating point xowith explicit test condition

» Augment CIA formulation with N linear inequalities and N SOC constraints (still convex)

N

Y ti<x Vi=1..,N

j=1
la}”j 2 ] [pg,j]
bl —ay| | e,
Added conservativeness from existence guarantees: small impact

Type  13-node 37-node 123-node

Without C3 MW)  [-1.5,9.1] [-2.7,5.3] [4.5,13.9]
With C3 MW)  [-15,88] [-2.7,53] [4.5,13.8]

[*] C.Wang, A.Bernstein, J.LeBoudec, and M.Paolone,“Explicit conditions on existence and uniqueness of load-flow solutions in distribution
networks,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 953-962, 2018.

(C3)

<t;; Vj=1,.,N.
2




CIA enables real-time, grid-aware disaggregation

Nodal hosting capacities [p;,p;'] enable an open-loop, distributed, and grid-aware DER control policy

+
Py,

Zip;i

Yes
@112 >

*——e 11

Peilk+1] =

Pref [k]

a4 : 13 p,zk—l_]-
:_;;Tz § 7 g[ ]

ﬁ*" 10 Pref[k:]—’ Is -Pld[k] > 07 »
w1 [ Bl e+ 1] = 5P ’

19 »—I—o-—me 9 s NoO T
20
021 .
—— Reference = ‘ [ . |
26 24 22 g 10 - -Real-time admissible dispatch ) - AquSSlble f:ilspfatch | ! |
@ —+——ex Z — — Admissible range . i- - = = Grid-agnostic dispatch ! 19
3o 2 = § 105 - P T ]
0| —g 27 Y 2 §essssaaaaas —————= -7 B s 4/1 Vi goe e B
e o L
[ = B 4 e &
35 - > ] O < 1 \ 11
28 29 30 31 g E ] i g
— 0 . \j - - '
IEEE 37-node network o ) it e
(from Baker/Dall’Anese) Q_:" ------ s S St SiaE e %) 0.95 |SEaa I L T S|
= :
-5 : : o o |
20 40 60 80 »~ 20 40 60 80

Time steps (sec) Time steps (sec)

N. Nazir and M. Almassalkhi, “Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks”, IEEE Transactions on Power Systems, 2021




What about conservativeness of CIA?

Comparing hosting capacity results*

System CIA (MW) NLP (IMW) CR (MW)

13-node  [-1.5,9.1]  [-1.5,9.7] [-1.5, 12]
P/ Convexinner 37-node  [-2.7,53]  [-2.7,5.3] [-2.7, 16]
=l approximation 123-node  [-4.5,139] [-4.5,14] [-4.5, 24]

(CIA)

Convex relaxation (CR) over-estimates maximum reactive
power capability

_—--\_ Set //

\ //Convex —————

a Relaxation . i ]
Nonlinear (NLP) has no optimality guarantees AND does not

e e o Eaaen o Dot 0 K oty guarantee that entire range is admissible (i.e., no holes)
Control of Network Systems, vol. 6, no. 3, pp. 1235-1245, Sept. 2019.
Conclusion: proposed (CIA) method is not overly
conservative and entire range is admissible

*Nawaf Nazir and Mads Almassalkhi. "Grid-aware aggregation and realtime disaggregation of distributed energy resources in radial networks." (IEEE TPWRS, 2021)




DHC overcomes data/control asymmetry

Utility (grid information+data)
Dynamic hosting capacities
capture grid conditions and
limits

High capacity

Low cap
III-I
1 2 3 4 5 6

DER Group

Flexibility bound (MW)
n

Available hosting capacity )

Future work: find optimal
control/price signals

Available flexibility

Aggregators (device access, market

Flexibility captures device
availability and comfort limits

| “Flexibility Bandwidth”




Hybrid Energy Systems

From virtual batteries to physical batteries




What is a hybrid energy system?

Hybrid energy systems = Coupling Heat + PV + Storage + Hydrogen + Power = Lots of Data = Learning

Hybrid Solar Test C HSTC) @ McNeil .
| st Center (HSTE) @ Mcllet — Field deployment and
S bl el | Exhaus i validation of R&D

(Particulates, humidity)
What is the Data * > PV Monitoring ® ]ntegrat]ng heat and
P et | [ Weather | o & electricity subsystems
—— orecas particle .
Electriciy engne | MeUORSVESAT | iiion | ||« thermal-electric
Accolarated . - modeling, control,
esting eedbac Heating . . .
Laboratory - Funsbost | * optimization,
(ATL) @ UVM VR R TO, Hydrogen Fuel Cells |  Lithium-based . .
Sso (H2FCo) Batterios operations, planning
LA A “—»| Thermal-electric optimization and control N . d .
Lyt Grid gria services

Hybrid PV+Storage Plant (Thrust 3)

+ reliability
» lifetime analysis

Accelerated Testing Laboratory (ATL) @ UVM

Aerosol Spectrometer, Particle Counter, Corona Charger, & SEM

Energy Systems
Simulation Lab
“Digital Twin of
Vermont’s Grid”

| —

[ —| g

|

N

| ! 3

P i | Accelerated
ermal-electric energy storage A

: and inverter characterization Test]ng Lab (ATL)

!

I

|

|

|

|

|

(Tasks T2.3+T72.4)

PV temperature- Solar simulator

: " Hardware-enabled
humiduty test for baselining
... i chamber entire PV panel a Energy TeSt Bed
Advanced computational tools and a digital twin
Computational tools for HES, real-time HIL simulation, Accelerated solar panel degradation and Thermal subsystem
and a digital twin of HSTC (Thrust 1 & Tasks T2.6+T.7) particulate/moisture mitigation (Tasks T2.1+72.2) (Task T2.5)

HSTC = Hybrid Solar Test Center (1 mile from campus)




Accelerated Test Laboratory (ATL) @ UVM

|Accelerated Testing Laboratory (ATL) @ UVM p————
R&D&D < . _
State of the art facility 3 _, f . [
Hardware-enabled ’ & | .ﬁ
analysis -

Thermal-electric energy storage
and inverter characterization

) (Tasks T2.3+T2.4)
Solar simulator 7

for baselining
entire PV panel

PV temperature-
humiduty test
chamber

Accelerated solar panel degradation and
particulate/moisture mitigation (Tasks T2.1+T2.2)

Thermal subsystem

(Task T2.5)
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Hybrid Energy Systems:

Opportunities for
Coordinated Research

High-Level Findings: 2021 Was a Big Year for Hybrids in the US

Hybrid / co-located plants exist in many configurations

and are distributed broadly across the U.S.

= PV+Storage dominates in terms of number of plants (140),
storage capacity (2.2 GW), and storage energy (7 GWh)

= There is now more battery capacity operating within
PV+Battery hybrids than on a standalone basis

= Storage:generator ratios are higher and storage durations
are longer for PV+Storage plants than for other types of
generator+storage hybrids

' N
4
£
35 19 e enig01
ok 17 4
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SEACER,
£
.‘,(E )‘,.._s‘_ ¥y
"

Hybrids comprise a large and

growing share of proposed plants

= 42% (285 GW) of all solar and 8%
(19 GW) of all wind in interconnection
queues are proposed as hybrids (up
from 34% and 6% in 2020)

= PV+storage dominates the hybrid
development pipeline (at >90%)

* Proposed plants are concentrated in
the West and CAISO
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Prices from a sample of 67 PV+Storage PPAs in 10 states totaling 8.0
GW, of PV and 4.5 GW,; / 18 GWh of batteries suggest that:
Lawelnag SPA Price (2001 §/MIAN3V)

» Levelized PPA prices  swm . .
have declined over time s L/J —

* But "levelized storage  s»
adders” for PV+Battery s
plants on the mainland s
have recently increased su

s
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DOE is looking for answers, too. We can help!

£4) Markets, Policy, and Regulation Opportunities

The objectives of the markets, policy, and regulation research area are to evaluate regulations, policies,
ownership structures, and market products that are emerging or needed to ensure efficient operation of HES.
To relate the greater sense of urgency for the markets, policy, and regulation opportunities, they are presented
prior to those for valuation and technology development; in otf-== === *i= =oeddstae s fm HIFE s sbmtioe iz

conventional approaches in markets, policy, and regulation. Tt
better understanding of the evolving development status, rule
responding to the potential impacts of higher penetrations of |
operations; improving the analysis of HES within interconnect?
providing analytical and technical support to state regulatory
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@ Technology Development Opportunities

Controls Development
and Testing

Expand efforts to develop rabust
and efficient control solutions for
additional technology combinations
and service types, and Improve
coordination for related research
activities across DOE offices.

@ Valuation Opportunities

The valuation research area focuses on tools, methods, and metrics for quantifying the value that different
HES can provide, given hybrid system configuration, energy system, and market characteristics. HES come in a 2/ dvanced computational
variety of types, are used in a variety of applications, and produce a variety of products. Comprehensive and
harmonized valuation methodologies that encapsulate these variations are essential for determining which

HES, if any, can best meet the needs of the electric and broader energy system. Opportunities are presented

and organized in terms of identifying sources of value, developing consistent metrics and methodologies, and

applying tools to estimate HES value over different scales and time horizons.
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Sources of Value

Methodologies and
Metrics to Measure Value

Establish common methods and
metrics for evaluating candidate

Enhance information sharing acrass
recent and ongolng HES research
in different DOE offices to achleve

harmonized value definitions
and categories.

comparison of candidate HES.

Products and Services Taxonomy: Resource and Product
Pt o

HES to enable an apples-to-apples
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Estimating Value

Estimate the value that HES can
provide through analyses that
expand and levarage past and

ongoing research for select
technology combinations.

Plant-Level vs. System-Level

blish a har: d defin for
the services and products that HES
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Optimization: Evaluate how the

___________

Optimization

Improve coordination across efforts
to develop methods and toals for

evaluating the optimal sizing, linkages,

and operations of HES for a wide array
of technology combinations.

Advanced Computational
Methods for Design: Coordinate
'esearch activities related to the use

methods for optimizing the design of
the HES system and subsystems,
Including informing sizing, financial
serformance, technical

verformance, and lifetime
estimations to maximize the value
asroposition of the HES.

Dynamic Models: Develop
reduction techniques to accurately
nodel and simulate HES in dynamic
nodels.

o

Components Development
and Testing

Coordinate efforts to develop and
test power electronics, devices,
communications, heat exchangers, and
Intermediate loops for application at
various time steps, leveraging recent
and ongoing capabilities development
for independent technologies.

Hardware Development:
Coordinate activities to improve

the cost and performance of
electrical, thermal, and/or chemical
components that enable the efficient
integration of multiple technologies
to form HES.

Component Testing: Support
testing and simulation of HES
components across new and existing
facilities and software platforms,
including through emulation
focused on power electronics,
high-fidelity real-time simulations,
hardware-in-the-loop testing,
controller and power hardware,

and balance of plant systems.




Main objectives of project

Long-term planning Short-term operations National impact

Hybrid energy system Optimize and control the Develop nationally
degradation and lifetime hybrid energy system’s competitive energy
economics and performance and research infrastructure
performance. demonstrate advanced in Vermont that supports
grid services that national priorities
support reliability and around combating climate
resilience change & clean energy

workforce development.




Topics | didn’t talk about today

Optimal (physics-informed) network reduction

Optimization parameters
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Methodologies for characterizing energy transitions
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Mixed-Integer Linear
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formulation
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Collision-free trajectory optimization of swarms




Thank you! Questions? Comments?

malmassa@uvm.edu ’ @theEnergyMads www

Tradltlonal demand response Today’s flexibility: not your parent’s DR
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https://madsalma.github.io/

