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Abstract— The paper establishes a formulation for energy
hub networks that is consistent with mixed-integer quadratic
programming problems. Line outages and cascading failures
can be considered within this framework. Power flows across
transmission lines and pipelines are compared with flow bounds,
and tripped when violations occur. The outaging of lines is
achieved using a mixed-integer disjunctive model. A model
predictive control (MPC) strategy is developed to mitigate
cascading failures, and prevent propagation of outages from
one energy-carrier network to another. The MPC strategy
seeks to alleviate overloads by adjusting generation and storage
schedules, subject to ramp-rate limits and governor action. If
overloads cannot be eliminated by rescheduling alone, MPC
determines the minimum amount of load that must be shed to
restore system integrity. The MPC strategy is illustrated using a
small 12 hub network and a much larger network that includes
132 energy hubs.

I. INTRODUCTION

Recent large-scale power grid failures have placed a
renewed focus on the reliability and optimality of energy
supply systems [1]. Such systems extend beyond electrical
power to include many different energy carriers, such as
natural gas, hydro, and wind energy. In fact, coupling energy
carriers may reveal vulnerabilities and minimum cost solu-
tions that are not apparent when each energy system is treated
separately [2]. We employ energy hubs and move beyond
the traditional view to consider large-scale coupled energy
systems. An energy hub represents a relatively new and
general concept in power systems, which explicitly models
couplings between multiple energy networks [3], [4].

In this paper, we are specifically interested in large-scale
cascading failures,which have been studied extensively in
decoupled electrical networks [5], [6], [7]. However, research
on cascading failures in large coupled systems generally does
not consider the concept of energy hubs [8].

Employing the optimization framework developed in [9],
we construct large energy hub systems and investigate these
systems under multi-line outages. Power flows across trans-
mission lines and pipelines will be compared against proper
flow bounds, and when violations occur, the lines will be
taken out of service (tripped). There exists a myriad of
approaches to determine when an overloaded line should
be tripped, ranging from deterministic hard constraints with
memory, as in [10], to soft-constrained probabilistic setups
described in [11]. Incorporation of line-tripping into our
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TABLE I
VARIABLES THAT ARISE IN THE ENERGY HUB MODEL.

Variable Type Variables

Decision s, fD, P̂, fG
Dependent x,P,L, f , ,E, Ė
Constant Parameter C, ηch, ηdis

model is accomplished by employing a mixed-integer dis-
junctive model [12]. To mitigate the effects of a disturbance
and prevent cascading failures, we employ a model predictive
controller to minimize load shedding.

Our paper is organized as follows. In Section II, we
formulate the energy hub network and disjunctive line-outage
models. In Section III, we discuss our model predictive
control (MPC) scheme for cascade mitigation. The model
predictive controller is employed in Section IV to mitigate
the effect of a cascade failure in two different energy hub
networks. Section V presents the simulation results, while
section VI concludes the paper with remarks on future work.

II. MODEL

Multi-carrier energy networks can be formulated in many
ways. This paper will focus the discussion on the “hybrid
energy hub” model developed in [4] and [13]. Table I
categorizes the variables that arise in the model and they
are described in the following subsections. The decision
variables are those quantities that a system controller could
directly manipulate. In our model, we can control line-
switching, load-shedding and converter, generator, and en-
ergy storage utilization. For more details on the models in
sections II-A and II-B, we refer the reader to [9].

A. Energy Hub Model

Most common energy hubs can be constructed from in-
terconnections of five simple building blocks: input sources,
input storage, converters, output storage, and output sources.
In describing the flow of power from hub input to hub output,
we need to consider the flow between each of the five blocks
of the hub. Let h ∈ H be a hub from the set of available
hubs, where h has input sources i ∈ {1, 2, . . . , Nin} and
output sources n ∈ {1, 2, . . . , Nout}. Let Pi be the input flow
from source i at hub h. Referring to Fig. 1(a), to describe
the flow from input source i to a converter j, we have to
take into account any input storage devices and possible
dispatch factors. The dispatch factors νij ∈ [0, 1] determine
the dispatch flows P̂ij , which describe the amount of input
flow i that is directed to converter j.
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Fig. 1. Decomposing the energy hub model based on dispatch flows.

From Fig. 1(a), we see that

Pi = Qin
i +

ki∑

j=1

P̂ij , (1)

where Qin
i is the flow going into input storage device i and

P̂ij is one of the ki flows determined by the dispatch factors,
νij , such that

P̂ij = νij(Pi −Qin
i ) (2)

and
ki∑

j=1

νij = 1, 0 ≤ νij ≤ 1. (3)

Note that (3) ensures conservation of flow between input
storage and converter blocks. Employing (2) and (3), we can
eliminate dispatch factors νij to obtain

0 ≤ P̂ij ≤ Pi −Qin
i . (4)

Referring to Fig. 1(b), output flows Ln are obtained by
converting dispatch flows P̂ij . Converter Cijn converts the
j-th dispatch flow of input source i into output source n.
The output flows Ln must also take into account any output
storage device flow, Qout

n . Thus, modeling hub output flows
gives, ∑

i

∑

j∈D(i,n)

CijnP̂ij = Qout
n + Ln, (5)

where D(i, n) is the set of dispatch flows from input i that
can be converted to output n, and |D(i, n)| ≤ ki.

With regard to input and output energy storage devices,
we must consider multiple time periods since energy source
p, stored at time t ∈ {1, 2, . . . , T}, depends on the power
available in the previous time step. If we assume steady-state
storage power values, a constant slope for Ėp = dEp/dt, and
treat storage interface as a converter device with charging
and discharging efficiencies ηch and ηdis, the relationship
between storage flows Q and the change in energy levels is

Ėp =
dEp

dt
≈ epQp, (6)

where

ep =

{
ηch, if Qp ≥ 0 (charge/standby)

1/ηdis, if Qp < 0 (discharge) (7)

which yields for the energy storage level,

Et
p = Et−1

p + Ėt
p. (8)

Since a storage device has two distinct states of operation,
charging and discharging, that achieve different efficiencies,

energy storage devices introduce switches in the energy hub
formulation. To avoid this nonlinearity, we make use of
binary variables to distinguish between the two states. Let
the steady-state storage power flow be defined by the sum
of a positive (charging) and a negative (discharging) power
flow, such that

Qp = Qp,ch +Qp,dis, (9)

with

−(1− xp)Qp
≤ Qp,dis ≤ 0 (10)

0 ≤ Qp,ch ≤ xpQp, (11)

where xp ∈ {0, 1}, and Qp and Q
p

are limits on the flow into
and out of device p. Thus, when xp = 0, storage device p is
in discharging mode (as Qp,ch ≡ 0), while xp = 1 implies
p is in charging mode (with Qp,dis ≡ 0). We can now write
Ėp in terms of Qp,ch and Qp,dis as,

Ėp = ηchQp,ch +
1

ηdis
Qp,dis. (12)

Notice that (6) is nonlinear because it involves the product
of two state variables, ep and Qp. Equation (12) is an equiv-
alent linear description. Therefore, by introducing additional
binary variables xp, we have removed a nonlinearity. We can
now rewrite (8) in terms of the charging and discharging
variables, giving

Et
p = Et−1

p + ηchQ
t
p,ch +

1

ηdis
Qt

p,dis. (13)

Note that because we explicitly take dispatch flows into
account and employ binary variables to descripe energy
storage, we employ a strictly linear formulation of hub
h. Furthermore, since no two hubs share components or
dispatch flows, each hub is decoupled and the description
of H is straightforward.

B. Interconnection of Energy Hubs

Energy hubs are interconnected via various energy supply
networks. In the previous section, we defined how power
flowed through an energy hub from input to output. To
describe the flow of power between hubs, we need to
include power networks. A power network is a simple graph
with additional physical constraints corresponding to the
specific nature of the network, e.g. electrical or natural gas.
Let G = (N ,A ) be a simple graph with nodes N =
{1, 2, . . . , N} and arcs A = {1, 2, . . . , E}. Define the sets
of generator and load nodes as C , D ⊂ N , respectively,
where generator nodes inject power into the network while
load nodes consume power from the network. The remaining
nodes are called throughput nodes and neither inject nor
consume power. Every graph must satisfy flow balance. That
is, the sum of flows into and out of node i must equal the
flow injected fGi

, or consumed −fDi
, at node i. Thus, for

each node i of each network we have,

∑

j∈C(i)

fij = bi =





fGi i ∈ C
−fDi

i ∈ D
0 otherwise

(14)



where C(i) is the set of nodes connected to node i, and fij
is positive (negative) for flow out of (into) node i.

With the inclusion of energy hubs, we need to consider
flows between energy hubs and networks, and (14) becomes,

∑

j∈C(i)

fij = bi −
∑

l∈H(i)

Pl +
∑

m∈H(i)

Lm, (15)

where H(i) is the set of hubs connected to node i, Pl is the
power input to hub l, and Lm is the power output from hub
m. Note that the coupling between energy hubs and power
networks only takes place at hub inputs and outputs.

Besides being connected to energy hubs, the main differ-
ence between a graph and a power network lies in additional
constraints arising from the physical nature that underlies the
energy type of a network. For example, the added constraints
imposed on an electrical power network often come in the
form of the linear DC flow model,

fijxij − (θi − θj) = 0, (16)

where xij is the reactance of arc (i, j) and θi is the phase
angle at node i [14]. The physical constraints are generally
nonlinear, however. A common nonlinear physical constraint
is seen with natural gas networks, where the power flow
through pipelines depends in a nonlinear manner on the
pressure, pi, applied at the nodes,

fij =

{
kij
√
pi − pj , if pi ≥ pj

−kij
√
pj − pi, if pi < pj

(17)

where kij is a constant pertaining to the specific gas and
pipeline properties [15].

We will denote the physical constraints of any network n
by an equation of the form:

Γn(f , ξn,An) = 0, (18)

where ξn are the state variables associated with the physical
constraints, and An is the node-arc incidence matrix for
network n. Note that Γn is independent of the energy hubs.

In this paper, for simplicity, we assume no frictional
resistance between pipelines and gas, so compressors are not
considered and we linearize all nonlinear constraints about
nominal values.

C. Line-outages

If the power flow, fij , exceeds the recommended flow
limit, uij , it can permanently damage arc (i, j). Therefore,
sensors are often placed on arcs in a power grid to automat-
ically take lines out of service when they exceed their flow
limits. For example, in electric grids, transmission lines have
a flow limit that is based on the thermal limit of the conductor
to prevent excessive and dangerous sagging and permanent
damage. In this paper, it is assumed that lines can withstand
an overload for TF minutes before sustaining permanent
damage and being taken out of service. The process of taking
lines out of service is often called “line-tripping.”

To allow the controller of the system to trip lines, we
need to modify the formulation of arc flows to establish an
equivalent mixed-integer disjunctive formulation. When an

arc is removed, no power can flow across the arc, which
naturally lends itself to the utilization of binary integers on
flow bounds:

−(1− sij)uij ≤ fij ≤ (1− sij)uij , (19)

where sij ∈ {0, 1} for all (i, j) ∈ A and sij = 1 if arc (i, j)
is taken out of service (tripped). However, due to the physical
constraints (16), we need to perform additional modifications
so those constraints are inactive when corresponding arcs are
tripped. Applying the disjunctive formulation to the linear
DC flow constraint (16) gives:

|fijxij − (θi − θj)| ≤Msij , (20)

where M is a large number. Thus, for sij = 0, we get the
constraint in (16), but when the line is tripped and sij = 1,
we have fij = 0 from (19). It follows that (20) reduces to:

|θi − θj | ≤M. (21)

If M is sufficiently large, we have effectively made constraint
(16) inactive for arc (i, j), as the phase angle difference
between nodes i and j is approximately unbounded, which is
to be expected if there was no arc connecting the two nodes.
Using (18), we can easily extend the disjunctive formulation
to any general network n, and the following formulation is
employed when we consider line-tripping:

|f | ≤ u · (1− s), (22)
|Γn(f , ξn,An)| ≤Ms, (23)

for all networks n. Any additional constraints arising from
specific networks have similar disjunctive formulations. One
advantage of incorporating the line-outage model into the
existing formulation is that we can set up and solve for
the power flow, even when the system is split into multiple
islands.

It should be cautioned, however, that optimizing with
respect to binary vector s for large M-values can greatly slow
down integer programming solvers and lead to numerical
round-off errors [5].

D. Economic Dispatch in Energy Hubs

Under normal operating conditions, we consider the en-
ergy hub system on the slow timescale, t, which consists
of one-hour time-steps. The system is operated according
to an economic dispatch schedule computed off-line from
the Multi-Period Optimal Dispatch Formulation described
in detail in [9]. In short, we satisfy forecasted nominal
demand and minimize the cost of generation by optimal
utilization of available hub storage and expected externally
injected power (for example wind power) from hour 1 to
hour T : MinGenCost(1:T ) in Fig. 2. The schedule acts
as our reference signal and informs the operator how to
employ generators (fG), hub dispatch flows (P̂), and hub
storage devices (Qin and Qout), whether lines should be
taken out of service (s), and how much demand to satisfy
(fD). These quantities represent our decision variables. The
main differences between the (Schedule) and (Real-time)
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Fig. 2. Flow diagram of the implementation of cascade mitigation model

MinGenCost blocks in Fig. 2 arise from the constraint
sets. In the (Schedule) block, we calculate the minimum
generation cost subject to arc flow limits over T periods;
however, for the (Real-time) block, we fix the decision
variables according to the schedule’s recommendations at
time t (single period), and compute the resulting power flows
with flow limit constraints inactive. If the (Schedule) has
a perfect model of the (Real-time) system, arc flows will
always be within their limits.

III. CASCADE MITIGATION

Cascade failures occur when an initial disturbance to the
system (i.e. unexpected line-outages) forces a redistribution
of flows that overloads additional lines, which leads more
lines to go out-of-service. If left uncontrolled, the cycle of
line-outages and redistribution of flows is referred to as a
cascade failure.

There are two general approaches to mitigating cascade
failures in power networks. The first method attempts to
predict the disturbance a priori and is based on off-line
computation of all possible failures in the network and
control policies to deal with each possible failure. A major
drawback of this approach is that it does not scale well with
the size of the network. Modified versions of this approach
attempt to compute only a small subset of the most likely
or most damaging failures, but since the space of possible
failures in a network is very large, such methods fall victim to

the colloquial saying about “finding a needle in a haystack.”
The second method is based on retroactive control, whereby
the uncertainty surrounding the disturbance has been revealed
and one can utilize the knowledge available about the distur-
bance to develop control algorithms in real-time to mitigate
the effects of the disturbance. This paper focuses on the latter
approach and considers a model predictive control (MPC)
scheme that operates as shown in Fig. 2.

Once a disturbance occurs and lines are taken out of
service, operation is switched to the fast timescale, tF , which
consists of one-minute time-steps. During the fast timescale
nominal load and intermittent power injections are fixed at
their most recent slow timescale values.

The MPC algorithm MinLoadShed(tF :TF ) undertakes a
multi-period optimization to determine a schedule for gener-
ation and storage that achieves minimal load shedding. The
optimization takes into account ramp rates [14] and governor
action [16], to ensure the proposed schedule is consistent
with the behavior of the real system. In Fig. 2, the real system
is modeled by MinLoadShed(tF ).

Following a disturbance, MPC establishes the optimal
response over the subsequent period of TF minutes. The
formulation assumes that lines can withstand an overload
for TF minutes, but if the overload persists beyond that time
then the line will trip. MPC seeks to remove all overloads
by adjusting generation and storage over the horizon up to
TF . If overloads remain at that time, however, then the final
MPC action is to shed minimum load.

When MPC is first initiated by a detected disturbance (i.e.
line trip), it considers the entire horizon of TF minutes,
determines the optimal generation and storage schedules,
and communicates the first instance of that schedule to the
real system, MinLoadShed(tF ). One minute later, MPC re-
ceives measurements from the system, possibly from a state-
estimator, which become the starting point for determining a
new schedule over the remaining (TF − 1) minute horizon.
The first instance of that new schedule is again commu-
nicated to the real system, and the process repeats. The
horizon shrinks by one minute each iteration until time TF
is reached. If all line overloads have not been cleared at that
time, MPC determines the minimum load shedding required
to avert line tripping, and communicates those values to the
loads. If the MPC model perfectly matches the real system,
no overloads will remain, and the cascade will be halted.
On the other hand, if the MPC model is not perfect, some
overloads may remain. If so, those lines will trip, signaling
MPC to repeat the entire process. This continues until no
further line tripping occurs. At that point, the slow-timescale
economic dispatch schedule is updated with the latest values
for generation, storage, and load via MinGenCost(t:T ), and
the optimal schedule over the remainder of the 24 hour period
is determined. Without the look-ahead feature of MPC, a
closed-loop controller acting at time TF would shed more
load as it would not be able to properly allocate storage
utilization to overcome possible future generator ramping
limits.

For the open-loop case, shown in red in Fig. 2, the arc
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flows are given by the power flow solution with no regard
for flow limits. Thus, the open-loop problem may undergo
significant cascading failures.

IV. SIMULATION
The formulation of energy hubs described in [9] permits

the construction of arbitrarily large interconnected energy
hub networks and, together with CPLEX and MATLAB,
allows implementation of our model predictive cascade mit-
igation approach discussed in Section III and outlined in
Fig. 2.

In this paper, we investigate the effects of a disturbance on
small and large energy hub systems. Because current power
grid operating and planning standards ensure power systems
are in a reliable condition even if one contingency occurs
[1], our disturbance will consist of multiple simultaneous
outages. Each system consists of an electrical network, a
natural gas network, district heat loads, wind turbines, and
multiple energy hubs that couple the four different energy
types. The smaller system is useful in describing how our
model predictive approach mitigates a cascade failure, while
the large system allows us to better showcase the effects of
cascade mitigation.

To construct both energy hub networks, we employ the
technique proposed in [17] for building random grids. The
technique assumes uniform node location, exponential ex-
pected link length distribution, and Poisson distribution for
arc selection. The parameters used to construct the power
grids are in per unit (p.u.) and provided in Table II. The
small energy hub system is shown in Fig. 3. Due to the
size of electrical and natural gas networks and the random
interconnectivity with energy hubs, a meaningful visualiza-
tion of the large energy hub system is not straightforward
and is excluded. However, via application of graph drawing
software, such as Tulip [18], visualization is a possibility for
the future.

The topological characteristics of our systems are given in
Tables III and IV. The values N , E, G, and D represent the

TABLE II
PARAMETERS FOR CONSTRUCTION OF RANDOM GRIDS

Parameters Value/Bounds Units
Electric Generators [20,25] p.u.
Gas Generators [20,25] p.u.
Wind Generators [0, 6] p.u.
Electric Loads [0.5, 2] p.u.
Gas Loads [0.5, 2] p.u.
Heating Loads [1,2] p.u.
Arc Flow Limits [2, 4] p.u.
Generator Ramping Limits 40 p.u./hr
Storage Ramping Limits 40 p.u./hr

TABLE III
TOPOLOGICAL CHARACTERISTICS OF THE 12-HUB ENERGY NETWORK

Network 〈k〉 N E G D

Electrical 1.67 6 5 1 3
Gas 1.67 6 5 3 1
Wind 0 2 0 2 0
Heat 0 4 0 0 4

number of nodes, arcs, generators, and loads, respectively,
while 〈k〉 is the average nodal degree. The wind and heat
networks have no arcs and consist exclusively of generators
and loads, respectively. We employed 12 energy hubs in
the small system and 132 energy hubs in the large system
to couple the four power networks. The energy hubs are
used to connect from the electrical network to gas (via
electrolysis) and heat networks (via resistor heating), from
the gas network to electrical (via gas turbines and fuel cells)
and heat networks (via furnaces), and from the wind network
to the electrical network (via turbines). All other network
couplings, for example from gas to wind and from heat to
electric, are excluded in this simulation. Table V shows the
energy conversion efficiencies employed in our simulation.
Note that the efficiency between wind energy and electric
energy is set to 1.0, because we only consider injected power
from the wind generators and the lossy conversion between
wind speed and generator is assumed to have already taken
place. All hubs connecting the wind network to the electrical

TABLE IV
TOPOLOGICAL CHARACTERISTICS OF THE 132-HUB ENERGY NETWORK

Network 〈k〉 N E G D

Electrical 4.36 100 218 28 37
Gas 4.30 100 214 20 41
Wind 0 30 0 30 0
Heat 0 40 0 0 40

TABLE V
CONVERSION EFFICIENCIES BETWEEN ENERGY TYPES

From \ To Electric Gas Wind Heat

Electric − 0.80 − 0.75
Gas 0.70 − − 0.90
Wind 1.0 − − −
Heat − − − −



network have limited output storage, while hub (input or
output) storage is added randomly to 75% of the remaining
hubs.

The system is assigned 24 one-hour time-intervals (T =
24), corresponding to one complete day of operation. For the
fast timescale, network arcs are allowed to be overloaded for
no more than 5 minutes before being tripped automatically
(TF = 5). The consumer demand (load) is set to peak near
midday, while wind power is available mostly in the early
and later parts of the day. The cost of generation (electric
and natural gas) is set to vary along with forecasted demand,
so generation near midday is more expensive than during the
earlier or later parts of the day. Electric generation is set to
be more expensive than natural gas.

The disturbance takes place at a random time between
hours 1 and 24, unknown to the system controller, and
consists of simultaneous outage of multiple lines. For the
small energy hub system, the disturbance takes out 3 lines,
while the larger network experiences a simultaneous outage
of 5 lines.

V. SIMULATION RESULTS

The small and large systems described in section IV were
simulated according to the flow diagram in Fig. 2.

A. Small 12-hub system

For the small system shown in Fig. 3, the disturbance takes
place at time t = 7 when three lines are taken out of service.
Prior to the disturbance, the optimal dispatch schedule is
computed off-line and is implemented as expected. Due
to the cost of generation peaking during midday, cheap
generation is employed to maximize storage utilization early
in the day, as shown in Fig. 4 (b and c). Then after 7 hours,
the disturbance causes the simultaneous outage of lines 2,
5, and 8. Within 5 minutes, our MPC approach reconfigures
generation and energy storage (taking account of ramping
limits) to satisfy nominal demand. However, in the fifth
minute, as we seek to enforce the flow limits, we are forced
to shed around 20% of total load - mainly from the electrical
load supplied by line 1 (∼ 70% shed), but the gas load
supplied by line 9 (∼ 25%) and the upper rightmost heating
loads (∼ 30% each) are affected as well. Line 9 is crucial
to the system, as it allows us to mitigate the effects of the
disturbance through hub connections.

Since the MPC halts further line outages, control returns
to the slow timescale and a new schedule is computed to
minimize generator costs over the remainder of the 24-hour
period. When wind power peaks towards the end of the
day, despite having three lines out of service, we are able
to restore loads as shown in Fig. 4(a) and, therefore, reject
the disturbance. Energy hubs play an important role in this
problem, because the storage devices and hub-couplings of
networks provide flexibility in the optimal scheduling of
power flows to limit line overloads.

For the open-loop case, without the fast timescale MPC,
we cannot reconfigure generation to enforce flow limits after
the disturbance. Thus, in the fifth minute, the important line 9

is overloaded (as no load has been shed) and it trips from
service. With the loss of line 9, we cannot supply the electric
load supplied by line 1 and the gas load supplied by line 9
(both 100% shed). The upper rightmost heating loads utilize
stored energy at maximal rates to avoid having to be shed.
At hour 8, around 40% of load is shed in the system and at
hour 9, when no stored energy remains to supply the upper-
right heating loads, they are shed completely, resulting in
∼ 50% of total load being shed. As seen in Fig. 4(a), the
load is not restored in the remaining time.

Since we were interested in control policies that shed
minimal load, load-shedding was heavily penalized in our
formulation. Therefore, when load-shedding occurred during
the “MPC” and “open-loop” problems, the costs shown in
Fig. 4(d) became less a measure of minimal generation costs
and more a measure of how much load was shed during each
problem.

B. Large 132-hub system

For the larger system, described in Table IV, the distur-
bance also takes place at time t = 7, when five lines are
removed from service. Prior to the disturbance, the schedule
computed off-line is employed to schedule generation and
storage. As was the case with the small system, the low
cost of generation during the early parts of the day leads to
maximal storage utilization. After 7 hours, the disturbance
causes the simultaneous outage of 5 randomly chosen lines.
Within 5 minutes, our MPC approach reconfigures generation
and energy storage (taking into account ramping limits) to
satisfy nominal demand across the new network. In the fifth
minute, arc flows are returned to within their limits without
having to shed any load. This is because a larger system
with more nodes, arcs, and generators has greater flexibility
in routing power flows to satisfy nominal demand.

With a larger network, however, the complexity increases
and it becomes more difficult to understand where weak-
nesses lie and how the system will respond to a disturbance.
For the open-loop problem, a cascading failure occurs as a
consequence of the initial loss of five lines. For the next
115 minutes, the system utilizes all available hub storage
to desperately avoid shedding load, as shown in Fig. 5(c).
But as lines are tripped due to overloads, more and more
load is shed. Fig. 5(a-b) provides a fast timescale view of
the cascading effect of outages and load shedding. The cas-
cade comes to an end when load-shedding has significantly
lowered generation output levels, such that arc flows are
within limits. In fact, the total load shed immediately after
the cascade, when wind is low, is around 40%, Later in the
day, when wind power has increased, some of the load is
restored (∼ 30% shed).

The generator levels in Fig. 5(d) show that our model
predictive controller rejects the disturbance by returning to
optimal pre-disturbance levels at time t = 17. At t = 24, the
small difference between generation levels of the “MPC” and
“No Disturbance” problems is due to excess available wind
energy, which allows flexibility in the optimal solution. That
is, in the final time-step, either excess (free) wind energy



5 10 15 20
0

0.2

0.4

0.6

0.8

1
T

o
ta

l
lo

a
d

sh
e
d

(%
)

(a) Load-shedding under different conditions

Open-Loop
MPC
No Disturbance

0 5 10 15 20 25
0

10

20

30

40

50
(b) Generator levels under different conditions

T
o
ta

l
g
e
n
e
ra

ti
o
n

(p
.u

.)

Time (hr)

0 5 10 15 20 25
0

5

10

15 x 107 (d) Costs under different conditions

C
o
st

(m
.u

.)

Time (hr)

0 5 10 15 20 25
0

20

40

60

80
(c) Storage utilization under different conditions

T
o
ta

l
en

er
g
y

st
o
re

d
(e

.u
.)

Fig. 4. Simulation results from small 12-hub system

can be stored or wind generation curbed. Both solutions are
optimal because stored energy has no future value. Thus, the
MPC approach presented in this paper minimizes load shed
and mitigates the effects of disturbances in general energy
hub systems.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed an MPC approach to
mitigate the effects of cascades in arbitrarily large energy
hub networks. We accomplished this by incorporating line
outages into the economic dispatch formulation and operate
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the system on a fast timescale to minimize load-shedding
after a disturbance.

Further studies will improve upon the line outage model to
include probabilistic outage rates determined by cumulative
line overloads. Taking into account the entire horizon in the
multi-period formulation can lead to very large optimization
problems. Therefore, future work will focus on applying
decomposition techniques to allow larger networks to be
solved more efficiently. Finally, with energy hub networks
in mind, we will pursue theoretical developments to analyze
the robustness and stability of large complex networks and
investigate distributed model predictive control strategies.

REFERENCES

[1] U.S.-Canada Power System Outage Task Force, “Final report on the
August 14, 2003 blackout in the United States and Canada: causes
and recommendations,” 2004.

[2] M. Geidl, G. Koeppel, P. Favre-Perrod, B. Klockl, G. Andersson,
and K. Frohlich, “Energy hubs for the future,” Power and Energy
Magazine, IEEE, vol. 5, no. 1, pp. 24 – 30, 2007.



[3] H. Groscurth, T. Bruckner, and R. Kümmel, “Modeling of energy-
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