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Professor Göran Andersson, ETH Zürich
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ABSTRACT

Optimization and Model-predictive Control for Overload Mitigation in Resilient
Power Systems

by
Mads R. Almassalkhi

Chair: Ian A. Hiskens

The National Academy of Engineering named the electric power grid the greatest
engineering achievement of the 20th century. However, as recent large-scale power
grid failures illustrate, the (electro-mechanical) electric grid is being operated closer
and closer to its limits. Specifically, the electric grid of the 20th century is aging
and congested. Due to the protracted and cost-intensive nature of upgrading energy
infrastructures, major research initiatives are now underway to improve the utility
of the existing infrastructure. One important topic is contingency management. Ac-
cordingly, this dissertation comprises of practical, yet rigorously justified, feedback
control algorithms that are suitable for power system contingency management. The
main goals of the algorithms are to prevent or mitigate overloads on network elements
(e.g. lines and transformers).

In this dissertation, a coupling of energy infrastructures is examined as a method
for improving system reliability and a simple cascade mitigation approach highlights
the role of model-predictive control and energy storage in improving system response
to severe disturbances (e.g. line outages). The ideas of balancing economic and safety
criteria are developed and implemented with a receding-horizon model-predictive con-
troller (RHMPC) for electric transmission systems with energy storage and renew-
ables. The novel RHMPC scheme employs a lossy “DC” power flow model and is
proven to alleviate conductor temperature overloads and returns the system to an
economically optimal state. Finally, an incentive-based distributed predictive-control
algorithm is developed to prevent overloads in the distribution network caused by
overnight charging of PEVs. In addition, Matlab-based simulations are included to
illustrate the performance and behavior of all proposed overload mitigation schemes.
The automatic schemes presented in this dissertation are, essentially, “closing the
loop” in contingency management, and will help bring the electric power grid into
the 21st century.

xv



CHAPTER I

Introduction

1.1 Motivation & Overview

“In the 20th century, widespread electrification gave us power for our
cities, factories, farms, and homes - and forever changed our lives. Thou-
sands of engineers made it happen, with innovative work in fuel sources,
power generating techniques, and transmission grids. From street lights to
supercomputers, electric power makes our lives safer, healthier, and more
convenient.”

The National Academy of Engineering (quoted above) named the electric power
grid the greatest engineering achievement of the 20th century [3]. However, as recent
large-scale power grid failures illustrate, the (electro-mechanical) electric grid is be-
ing operated closer and closer to its limits. Specifically, the electric grid of the 20th
century is aging and congested. Furthermore, it will not be able to meet future de-
mands without operational changes and significant capital investments over the next
decades [4]. Thus, the electric grid of the 21st century represents an open problem
for the research community and industry. With the development of new technolo-
gies, such as, flexible AC transmission devices (FACTS), phasor measurement units
(PMUs), renewable and distributed generation, flexible loads, and energy storage so-
lutions, the tools are available to enable a paradigm shift for the electric grid (and
general energy delivery systems).

To overcome the limitations of today’s power grid, two main approaches are con-
sidered by engineers and scientists. The first approach investigates improvements to
energy-delivery systems subject to boundary conditions given by today’s grid struc-
tures. The second approach seeks to develop and design a new paradigm for optimal
future energy delivery systems, which takes into account novel emerging technolo-
gies. By treating the second approach (i.e. the greenfield approach) as the forecasted
optimal ‘target’ system, the first approach can be considered a coordinated effort to
bridge today’s aging and congested system with the optimal future target system, as
Figure 1.1 illustrates.

The design and development of the greenfield approach can be considered the long-
term goal of power systems engineers and scientists, while the bridging approach can

1



Figure 1.1: Designing a future greenfield approach allows us to move from today’s
aging and congested power system to the future optimal system. Figure is borrowed
from [1]

be considered a series of short-term projects. It is within this framework that we focus
our research. Namely, we build upon the ETH Zürich project “Vision for Future
Energy Networks,” which focused on a synergistic interconnected energy systems
model as their greenfield approach. To accomplish the interconnection of energy
systems, the ETH project developed tools such as the ‘energy hub’ and multi-energy
carriers and analyzed many scenarios under the new multi-energy context, see [1, 5, 6].

This dissertation expands upon the ETH project by designing a standardized for-
mat to describe general energy hub systems and developing optimization tools to
automatically and quickly analyze the performance of interconnected energy deliv-
ery systems (i.e. the greenfield systems). These tools enable formulation of a novel
model-predictive control scheme that ensures efficient operation of energy systems and
mitigates the effects of severe disturbances through automated control. In addition,
the research described herein extends beyond the long-term goals of the greenfield sys-
tems and also tackles short-term problems associated with the effects of uncoordinated
charging of plug-in electric vehicles (PEVs) on today’s distribution networks. The
coordinated charging scheme is achieved within a non-centralized model-predictive
control framework.

Our interdisciplinary research lies at the intersection of power systems, optimiza-
tion, and controls and the following sections discuss related work from literature on
the different topics.
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1.2 Background & Related Work

1.2.1 Energy Hubs

“An energy hub generally represents an interface between energy produc-
ers, consumers, and the transportation infrastructure. From a system
point of view, an energy hub provides the functions of input and output,
conversion, and storage of multiple-energy carriers.” [7]

The energy hub can be viewed as a generalization of a node in an electric net-
work and is modeled as a multi-input/multi-output black-box where energy enters,
is stored, and exits according to well-defined conversion and storage processes. As
illustrated by Figures 1.2a and 1.2b, it is straightforward to model physical energy
processes and storage devices with the energy hub formulation. For example, in
Figure 1.2a, natural gas and electricity are inputs to the hub. Electricity flows into
the (futuristic) heat-recovery enabled power transformer, which converts high-voltage
electricity to low-voltage electricity at some loss. In addition, a heat-recovery mecha-
nism can capture transformer heat and transport it to district heating loads or inject
into thermal energy storage. Natural gas is dispatched to a furnace or a combined
heat and power plant (CHP) to generate a mix of steam for district heating and elec-
tricity depending on available energy and customer demand. In Figure 1.2b, we model
a wind-generating turbine with local hydrogen storage, where the turbine converts
wind energy to electric energy which can be converted to and stored as hydrogen.
The hydrogen storage device can be charged via electrolysis and discharged with fuel
cells, which allows an operator to mitigate the intermittency inherent to wind energy.
The energy hub modeling framework is a flexible and powerful tool that enables a
plethora of combinations of energy storage and conversion processes.

CHP

District Heating Electricity

ElectricityNatural Gas

F T

(a) Combined heat and power plant
with heat-recovery transformer

WGT

Electricity interface Wind
H2

(b) Wind turbine with hydrogen storage

Figure 1.2: Simple examples of energy hub models of physical systems.

The first example of a steady-state multi-input/multi-output energy process model
appeared in 1989, see [8], in the analysis and optimization of exergy in industrial
energy settings. Their work focused on calculating energy losses from steady-state
material flows by thermodynamic analysis. Then in 1995, the same authors applied
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data-flow network models to formalize their work within a model framework called
NEMESS (NEtwork Model of Energy-services Supply Systems) [9]. NEMESS aided
in the decision-making process for developing regional energy systems by allowing
for analysis and optimization of various combinations of energy objectives. Their
framework simplified the notion of power flows by considering all flows as simple net-
work flows with no physical dependencies between network elements (such as electric
voltage, phase angle, and natural gas pipeline pressure) and considered only losses
between energy interfaces. This simplification of power flows limited the ability to an-
alyze multiple energy carrier networks. To this effect, authors in [10, 11, 12] proposed
optimization schemes for multiple energy carrier networks including relevant physi-
cal network parameters. Independently, the authors developed a combined natural
gas and electric optimal power flow (GEOPF) to investigate the coupling of energy
systems through gas-powered electric generator costs. Their work illustrated that
coupling energy carriers may reveal minimum cost solutions, and also vulnerabilities,
that are not apparent when each energy system is treated separately. In [12], the
author included storage devices and renewable generation and eventually called his
energy-services systems planning framework “eTransport” [13].

The flexible and general framework proposed by NEMESS and the GEOPF tools
were combined and further improved by Andersson’s group project “Vision for Fu-
ture Energy Networks” at ETH Zürich, see [5, 14, 15], to explicitly model the cou-
plings and interactions between different energy infrastructures. This resulted in a
general modeling and optimization framework based on the concept of the “Energy
Hub.” The ETH group expanded the application-base of the energy hub via numer-
ous publications in the areas of power market economics [16], distributed predictive
control [17, 18, 19], and plug-in electric vehicles [20]. In addition, energy hub concepts
can be applied within the micro-grid and central energy plant context for planning
and optimization purposes as in [6]. Finally, the same group developed a new version
of the energy hub, the ‘Power Node,’ which is designed to emphasize the modeling of
storage devices within a power network context [21]. For a general overview of the
energy hub formulation, see [22].

The main short-coming in the energy hub literature has been the absence of im-
plementation and analysis of large-scale energy hub systems (i.e. 100’s to 1000’s of
energy hubs). In the literature, the systems of interest have largely represented 3-4
hub systems, as the focus of the work has been more on the hub formulation rather
than on large-scale network implications. Also, implementation of even a small net-
work of interconnected energy hubs has proven rather tedious due to the coding effort
needed to set up the energy hub system. Furthermore, once a system is implemented,
making relatively small changes to the network topology can involve time-consuming
revisions of the code. In fact, a genuine need was identified by [23] for developing
tools that implement and simulate large-scale coupled energy systems. The best tools
available for simulating multiple energy carrier systems focus on small-scale networks
where a drag-and-drop interface allows users to manually construct energy-hub net-
works using blocks and connector lines, such as “eTransport” [13] and Honeywell’s
“VERA” (Versatile Energy Resource Allocation) [24].

To that effect, this work has developed tools for automatically constructing and
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simulating optimal economic operation of arbitrarily large systems of general energy
hubs. To accomplish this, a succinct ASCII-based text format is developed, which con-
tains the information necessary to fully describe the energy hub system (i.e. elements
and interconnections) and then interfaces with Matlab and optimization libraries to
perform required simulations. This has allowed us to investigate systems with hun-
dreds of energy hubs and analyze the use of energy storage for cascade mitigation,
for example. Further details of our work with energy hubs is provided in Chapter III.

1.2.2 Combinatorial Optimization & Reliability in Power Systems

“Operating reliability is the ability of the electric system to withstand sud-
den disturbances such as electric short circuits or unanticipated loss of
system components.” - North American Electric Reliability Corporation

Mathematical optimization has held a significant role within the power systems
community. For example, the power systems community has utilized linear, non-
linear, and mixed-integer programming tools for analyzing various Optimal Power
Flow problems [25]. The objectives of the Optimal Power Flow problems generally
take one of these forms: minimize active power losses or minimize active power gen-
eration fuel cost. The Optimal Power Flow problem generally ensures some measure
of reliable and secure operation by taking into account the (AC or DC) power flow
equations and network element limits (e.g. voltages and transmission line flows stay
within some acceptable region), see [26, 27].

However, large blackouts are often the result of an unexpected exogenous distur-
bance (e.g. a storm), which initially disables only a small number of transmission lines
but develops into a system-wide collapse. In the canonical August 14, 2003, black-
out of the U.S. and Canada, it was merely three transmission lines, which tripped
within 40 minutes of one another that initiated the blackout process [28]. Thus, to
avoid severe blackouts, it is necessary to ensure that the system is in a secure state
even if a small set of elements undergo failure. This leads to the concept of N � k
security, which ensures that no element is overloaded in case of a k-element failure,
where N is the number of network elements (e.g. buses, lines, and/or generators).
Determining which k-combination failures of elements cause overloads in the network
is usually accomplished via exhaustive enumerations of all one-element (N-1) and, for
smaller networks, two-element (N-2) failures. However, for k ¡ 1 and a practicable
network, the combinatorial nature of this problem renders the enumeration approach
intractable. On the other hand, for k large enough, it becomes relatively simple to find
a combination of k-element failures which cause a system-wide blackout. Therefore,
the interesting failures are related to sets of elements with cardinality k P t2, 3, 4, 5u.
To this effect, [29] employed DC power flows and a bilevel optimization framework
(via a Global Bender’s Decomposition) with mixed-integer programming (MIP) to
solve an electric power grid interdiction problem. In their work, an adversary is
essentially given the means to disable k lines that would maximize long-term post-
contingency costs to operators. The method scales well but only allows large networks
to be investigated for the worst-case attacks. In [30, 31], a similar but more general
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adversarial approach is formulated as a linear mixed-integer program that explicitly
models a ‘game’ between a fictional attacker seeking to disable the network, and a
controller who tries to prevent a collapse by selecting which generators to operate
and adjusting generator outputs and demand levels. In addition, their work proposes
a continuous nonlinear programming formulation which compactly captures the in-
teraction between the underlying physics and the network structure. The nonlinear
formulation models an adversary who can modify reactances on transmission lines
to approximate the effect of the N � k problem and cause overloaded lines. Within
their optimization framework, the authors can handle models an order of magnitude
larger than those previously. Taking advantage of network structure and power flow
physics is also highlighted by authors in [32], who apply structural properties of fea-
sible solutions to a nonlinear mixed-integer N � k flow problem to develop a simple
mixed-integer linear programming (MILP) problem. This simplified problem finds the
minimal number of lines to disable (i.e. k) to partition a network into generation-rich
and load-rich regions, which are interconnected via insufficient capacity (i.e. inter-
dicts the load-rich region). While this method employs powerful mathematical tools
and can handle larger problems than generic MIP techniques, it only approximates
the N � k problem, which results in successful attacks on the network that are larger
than necessary.

While the above works focus on vulnerability detection, there is also a body of
literature on network reinforcement problem (i.e. vulnerability prevention). In these
problems there is a fixed set of fault scenarios and in each scenario a subset of edges
is deleted. The objective is to selectively add to the capacity of existing power lines,
so that in every possible fault scenario the resulting failure cascade is immediately
arrested (i.e. no further outages). In [33], the authors propose a DC power flow
reinforcement problem that sustains a given set of scenarios via minimum-cost re-
inforcement of the network. Their work constitutes a conservative model, but with
the advantage that it can be tackled using standard MILP optimization techniques.
Furthermore, [33] extends and adapts a dynamic transmission blackout model devel-
oped by [34], but do not require that each potential cascade be immediately stopped.
Instead, the authors in [33] allow rounds of cascading failures to occur and require
only that the network eventually becomes stabilized without incurring a large loss of
demand. That is, they assume no control action is taken during cascade and seek a
reinforcement plan that can passively ride out cascades produced by a given set of
scenarios.

The above description of literature highlights the difficulty of solving the N � k
problem. There is an astronomically large number of contingencies that could theo-
retically arise, but only a very small fraction of those are both realistic and capable of
causing a catastrophic cascade. In fact, the above methodologies either find a salient
subset of critical outages, the smallest interdiction that leads to a large loss of load, or
the worst-case performance of the grid given a fixed number of lines to disable. In the
vernacular sense, these methods are searching for a needle in a haystack. That is, the
computation of a non-conservative a-priori robust control algorithm that can respond
well to all potentially damaging faults becomes non-trivial (intractable). However, if
we now assume the initial fault has already taken place, the uncertainty surrounding
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the initial fault and its immediate consequence has been revealed. One can, thus,
devise a meaningful control algorithm - ‘on the fly’ - that takes advantage of the par-
ticular nature of the fault contingency. In our work, we employ a post-disturbance
model-predictive controller to mitigate effects of disturbances in the electric grid and
prevent cascading failures.

1.2.3 Model-predictive control in Power Systems

Currently, abnormal conditions are handled either through operator intervention
or protectionoperation, depending onthe severity ofthe abnormality. In the former
case, where conditions do not immediately threaten the integrity of plant or loads,
operators institute corrective procedures that may include altering generation sched-
ules, adjusting transformer tap positions, and switching capacitors/reactors. For
more extreme abnormalities, the protection associated with vulnerable components
will operate to ensure they do not suffer damage. This myopic response may, however,
weaken the network, exacerbating the conditions experienced by other components.
They may subsequently trip, initiating an uncontrolled cascade of outages. This
pattern was exhibited during the blackout of the U.S. and Canada in August 2003.

As the amount, type and distribution of controllable resources increases, operators
will find it even more difficult to determine an appropriate response to unanticipated
events. At a minimum, operators will require new tools to guide their decision-
making. Given the increased complexity of response actions, a closed-loop feedback
process will become indispensable. Model predictive control (MPC) schemes can be
particularly useful within this context. MPC was originally developed by the chemical
process industry as a tool to optimize the operation of multivariable processes. The
following steps describe the basic notion behind MPC:

1. Determine a control schedule that optimizes a cost criterion over a prediction
window.

2. Apply this profile until new process measurements become available.

3. When new measurements are available, repeat step (1).

For a technical treatment and overview of MPC, we refer the reader to [2, 35, 36, 37,
38]. Within the context of power systems, model-predictive control can be traced back
to static linear programming and sensitivity techniques for voltage control [39, 40].
In [41], the authors employed sensitivity techniques to determine a clustering algo-
rithm to implement local control of active and reactive power injections, voltage, and
load-shedding to alleviate overloads. A dynamic multi-period open-loop optimization
problem with a model of thermal overload capacity is developed in [42] to compute the
necessary rescheduling of active power generation (against ramp-rate limits) and load-
shedding to alleviate thermal line overloads. In [43], the authors propose a heuristic
feedback algorithm that is a compromise between the static and dynamic optimization
mentioned above. The instantaneous control is determined by a static optimization
and updated by feedback which continuously varies the performance index in order
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to take into account the dynamic constraints. The real-time controller dynamically
allocates generation ramping to alleviate line overloads, and the solution retains the
basic features of the computationally taxing multi-period open-loop problem above.

The first application of standard MPC to emergency control of power systems can
be found in [44], where voltage stability was achieved through optimal coordination of
load shedding, capacitator switching, and tap-changer operation. A tree-based search
method is employed to obtain optimal control actions from discrete switching events.
To circumvent tree-based search methods, authors in [45, 46, 47] employ trajectory
sensitivities to develop MPC for voltage stability. However, these methods focus on
voltage stability and do not take into account thermal overloads of transmission lines.

The authors in [48, 49] propose electrothermal coordination in power systems
and develop predictive temperature-based iterative algorithms that are amenable to
day-ahead markets and employ temperature-dependent resistance values in the power
flow. Recent work, see [50, 51], on model-predictive contingency operation of elec-
trical energy systems includes an explicit thermal conductor model. Specifically, the
authors in [51] extend the ideas of [50] to include a linearized current-based ther-
mal model of conductors and a auto-regressive model of the weather conditions near
transmission lines (i.e. wind speed and ambient temperature). This allows [51] to set
a hard upper limit on conductor temperature to ensure control objectives and allows
the controller to operate the system closer to actual physical limits than if using stan-
dard (worst-case weather-based) conductor flow limits. However, under modeling and
measurement uncertainties, the hard limit constraint on temperature can cause infea-
sibility and subsequent instabilities in the cascade mitigation scheme, which can lower
performance of the controller significantly. Furthermore, the highlighted works utilize
a linearization of I2R-based losses, which underestimates losses and may not capture
temperature-current relationship properly. Of course, due to the absence of a truly
centralized operator in large-scale power networks and the natural nonlinearities of
actual power systems, distributed MPC is likely required for tractable computational
and realistic communication purposes, see [52, 53, 54].

The work presented herein differentiates itself from literature by developing a novel
linear DC-based MPC-based contingency management scheme that combines and bal-
ances economical and security objectives via a bilevel hierarchical control framework
that considers energy storage and renewables. Specifically, a convex relaxation is ap-
plied to the AC power flow to develop a piece-wise linear formulation for line losses,
which is proven to be sufficient to enable MPC to drive line temperatures below
limits. The work herein is shown to alleviate temperature overloads with minimal
load shedding by taking advantage of the temporal nature of conductor temperatures
and energy storage devices. In addition, the formulation enables utilization of energy
storage for overcoming generation ramp-rate limiting constraints. Further details of
the model-predictive cascade mitigation scheme is provided in Chapter IV.

1.2.4 Distributed Optimization and Control in Power Systems

The previous discussions have centered on optimization and control techniques
for large-scale transmission systems, where an operator can utilize generator ramp-
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ing, load control, and other grid-controlled elements to achieve various security or eco-
nomical objectives. However, with the emergence and installment of new technologies,
such as advanced metering infrastructure (AMI) and programmable communicating
thermostats (PCTs), operators will have the ability to control energy-intensive con-
sumer loads, such as plug-in electric vehicles (PEVs) and thermostatically controlled
loads (TCLs), by manipulating local set points rather than directly interrupting power
(i.e. direct load control and load shedding). Therefore, this dissertation also develops
a model-predictive load-control scheme that is amenable to distribution networks for
overload prevention of transformers. This is particularly pertinent as an increased
market-penetration of PEVs and uncoordinated overnight-charging can significantly
overload distribution-level transformers and cause local blackouts.

For a general background on load control, we refer the reader to [55, 56]. Some
of the first PEV load control schemes provided by the literature rely on centralized
open-loop scheduling and direct manipulation of PEV charging rates by the network
utilities, see [57, 58]. Such approaches typically suffer from a significant need for com-
munication, excessive computational burdens, and robustness issues, however. Other
work on PEV scheduling focuses on hierarchical control as a possible means of decreas-
ing complexity [59]. Therein, the distribution-level transformers are treated as static
network elements with a given power rating (i.e., a fixed capacity) and the dynamical
relationship between transformer loading and winding temperature is ignored. How-
ever, perhaps even more problematic than the associated computational complexity,
utility-controlled charging may be impractical as PEV owners could be reluctant to
relinquish the control of their vehicles to some centralized operator, and they might be
unwilling to cooperate with each other if this could affect their own charging perfor-
mance. Therefore, distributed optimization and control schemes should be pursued.
To this effect, PEV owners in [60] and [61] are considered autonomous entities whose
actions can only be influenced by providing them with incentives (i.e., a time-varying
electricity price) for a certain behavior. A key assumption in [60] is that the PEVs are
price takers: individually, their strategies have no significant effect on the aggregate
power demand and price. The so-obtained coordinated scheduling scheme lets each
vehicle effectively react to the average charging strategy of the total (infinitely large)
PEV population and establishes a Nash-optimal, valley-filling net charging profile
by encouraging additional charging whenever background demand is low. While [61]
achieves the valley-filling effect with any number of PEVs, both [61] and [60] employ
utility-centric objectives that essentially sacrifice PEV-owner convenience and access
to grid to ensure that the network capacity is minimally utilized over the charging
period. Recent work by the authors in [62] employs the internet congestion regulating
algorithm AIMD (Additive Increase / Multiplicative Decrease) to design a distributed
charging algorithm for arbitrary PEV populations. Rather than utilizing price signals
to induce behavioral changes, as in the case of [60, 61], they utilize a PEV-centric
objective to enhance owner experience.

Our interests align with the PEV-centric objective of [62], however, in contrast
to the above methods, we explicitly account for the substation transformer’s thermal
limits and dynamics in computing our control actions. Moreover, because prediction
errors and fluctuations in background demand can be severe due to a low extent of
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aggregation in the distribution network, we introduce feedback to disturbances by
solving the charging problem in a receding horizon fashion. The resulting central-
ized linear MPC scheme is then decomposed into a set of local control laws, which
determine the charging strategy of each individual electric vehicle, and which are
coordinated via a common (pseudo-)price for electrical energy. This price is gener-
ated by a centralized agent in such a way that aggregated power demand is kept
within operational limits while PEVs are allowed to charge as quickly as possible (i.e.
PEV-centric objective). Further details of our distributed PEV load control scheme
is provided in Chapter V.

1.3 Original Contributions

The main contributions of this dissertation are:

• A linear formulation of the energy hub model is developed that is amenable
to linearly constrained optimization. One such formulation employs binary
integers to explicitly enforce non-simultaneous charging and discharging from
energy storage. A second formulation represents a strictly (continuous) relax-
ation without integers, which permits simultaneous charging and discharging,
but is also shown to accurately represent energy storage devices under economic
objectives.

• “Hubert” is the nickname for a concise ASCII-based format developed herein
to describe general energy hubs and enables quick construction, simulation,
optimization, and analysis of large energy hub networks.

• A piece-wise linear convex relaxation of AC line losses is described that, together
with a receding horizon MPC cascade mitigation scheme, is proven to be locally
tight and enables the linear MPC scheme to alleviate overloaded transmission
lines.

• A stable bilevel receding-horizon cascade mitigation scheme is developed which
optimally balances economic and security (i.e. overload) objectives of power
systems to alleviate overloads.

• Simulations of the IEEE Reliability Test System are carried out to demonstrate
the performance of the receding horizon cascade mitigation scheme. The simu-
lations highlight the role of energy storage in cascade mitigation.

• A distributed predictive control algorithm is developed to prevent distribution-
level transformers from becoming overloaded by coordinating PEV charging.

1.4 Statement of Impact

The developed predictive control algorithms for overload mitigation and preven-
tion in power systems are practical, yet rigorously justified and have real-world im-
plications. The methods developed in this dissertation provide local utilities, ISOs,
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and power engineers with a proof-of-concept that further automation of transmission
and distribution contingency management can become useful in the near future. In
addition, the vital role that energy storage plays in optimally balancing economic and
security objectives serves to establish an “energy positioning” operating paradigm
and opens the way to a radically different approach to operating power systems that
could simultaneously facilitate the integration of massive amounts of renewable gen-
eration, reduce the operating cost, improve reliability and decrease the need to build
new transmission lines.

1.5 Dissertation Outline

The overarching goal of this work lies with mitigation and prevention of overloads
in power and energy systems. Specifically, employment of MPC-based schemes with
simple, but sufficient, power system models provide practical, yet rigorously justi-
fied, solutions to overload mitigation problems. The chapters of this dissertation are
outlined as follows:

Chapter II introduces the basic power system models that make up the basis
of this dissertation. Namely, the unified branch model, PWL relaxation of
losses, and IEEE Standard conductor temperature models are presented in this
chapter.

Chapter III presents the energy hub model and develops a consistent linear
model that is amenable to optimization. Then, the concise format “Hubert” is
introduced and economic optimization of multi-energy system provides a con-
textual example.

Chapter IV is a large chapter which fully develops the receding horizon cas-
cade mitigation scheme in detail. First, a multi-energy framework with energy
storage is employed to alleviate line overloads, which motivates the notion of
optimal balance of economic and security objectives, as well as the role of stor-
age in cascade mitigation. Then, a stabilizing receding horizon MPC scheme is
formulated for cascade mitigation in electric transmission systems with energy
storage and renewables. It is proven that this scheme can utilize the convex
relaxation of losses to alleviate overloads and a case-study of the IEEE RTS-96
system is carried out to highlight cascade mitigation potential.

Chapter V presents a non-centralized MPC-based overload prevention scheme
in a distribution system setting. The dual-ascent method is employed with a
finite iteration limit to provide control, in a distributed framework, of PEV
charging and prevent a distribution-level transformer from being overloaded. A
case-study of overnight charging is provided to highlight near-optimal perfor-
mance.

Chapter VI concludes the dissertation and gives suggestions for future work.
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CHAPTER II

Power System Models

2.1 Introduction

This chapter provides a comprehensive system-based description of the power
system models employed in the dissertation. The models enable a description of the
relationships between power flow, generators, energy storage, and loads. In particular,
a unified approach to power flow modeling is described, including a lossy (piece-wise
linear) DC power flow model. The lossy DC power flow model is achieved via a
convex relaxation of line losses. The flow model is then combined with generators and
loads to form the power balance equation. The IEEE Standard 738 for the current-
temperature relationship of a transmission line conductor is described in Section 2.5.
The models presented here constitute systems-level models that are amenable to
linear optimization. Based on the models in this chapter, Chapters III, IV, and V
can formulate optimization frameworks for the operation of power systems.

2.2 Basic notation and definitions

2.2.1 Power network as a graph

An electric power network is made up of transmission lines, generators, loads,
energy storage, and other network elements (e.g. transformers). In this work, a
power network is treated as a graph G, which consists of a set of nodes (e.g. buses)
N and a set of edges (also called feeders, lines, and arcs) E . That is, a network graph
is denoted G � pN , Eq, for edges e � pi, jq P E and nodes i, j P N . The cardinality of
E and N are m and n, respectively. A node j is adjacent to i if pi, jq P E (i.e. i and
j are neighbors). The sets of generators, loads, adjacent nodes, and energy storage
devices at node i are defined:

• ΩG
i - set of generators at node i.

• ΩD
i - set of loads at node i.

• ΩN
i - set of adjacent nodes at node i.

• ΩE
i - set of energy storage devices at node i.
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The mapping of nodes to lines is accomplished with the adjacency matrix, A P
Rn�m, where the ith row represents node i and eth column represents the eth arc.
Matrix A is defined as:

Api, eq �
$&%

1, if e � pi, jq P E
�1, if e � pj, iq P E

0, else
. (2.1)

For a thorough discussion of network flows and theory, please see [63].

2.2.1.1 Laplacian of a graph

From the adjacency matrix, the Laplacian of graph G is defined by

LpGq � AAJ P Rn�n. (2.2)

The Laplacian exhibits many fascinating properties, which are detailed in [64]. In
this dissertation, the property of interest captures the relationship between L and
connectivity of the graph (i.e. the number of islands in the power system). A graph
is connected if for every node i, there exists a path of edges to any node j. It can be
shown that L is symmetric positive-semidefinite, which implies that the eigenvalues
of L, λi ¥ 0, @i P N . For a connected graph (i.e. a one-island network) exactly
one eigenvalue is equal to zero. From the definition of A, it is easy to see that
AJ1 � 0, where 1 � colp1, . . . , 1q P Rn, which implies that 1 is an eigenvector of
L associated with eigenvalue λ1 � 0. In fact, given a power network formed by
W islands the Laplacian has eigenvalues λ1 � λ2 � . . . � λW � 0. Since L is
symmetric, the associated eigenvectors are orthogonal and describe the nodal sets:
Nw � ti P N | i is in island wu, @w � t1, . . . ,W u.

Thus, if given power network topology (i.e. adjacency matrix A), computation of
the eigenvalues of graph Laplacian L enables detection of islanding and the associated
eigenvectors of L allows identification of the nodes in each island. This is particularly
useful in automatic control since island-detection provides a method for automatically
selecting slack buses for the AC power flow. That is, the AC power flow simulations in
this dissertation automatically selects slack buses if islanding occurs via the methods
described above.

2.2.2 Per unit system

Regardless of base voltage or phases, the per-unit system allows for uniform rep-
resentation of power systems. From basic circuit analysis, the single-phase system
has the following relationship between power (S1φ), current (I), and (line-to-neutral)
voltage (V ln):

S1φ � IV ln. (2.3)
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Now, consider a three-phase system with a chosen power base, S3φ
b , and nominal

line-to-line base voltage, V ll
b . From definitions,

V ll
b �

?
3V ln

b and S3φ
b � 3S1φ

b , (2.4)

one can describe base current and impedance in a three-phase system as follows:

S3φ
b �

?
3V ll

b Ib (2.5)

ñ Ib � S3φ
b?

3V ll
b

(2.6)

ñ Zb � pV ll
b q2
S3φ
b

. (2.7)

where Ib and Zb are the base current (A) and base impedance (Ohm). For example,
for three-phase base apparent power S3φ

b � 100MVA and base voltage of V ll
b � 138

kV, the base current is Ib � 418.4 A and the base impedance of Zb � 190.4Ω. In
addition, if the per-unit bus voltage of 1.05 p.u., the actual voltage is 1.05V ll

b � 144.9
kV. Finally, if current and line-to-line voltage is expressed in p.u. (i.e. xpu � x{Zb),
the following natural relationships hold:

S3φ
pu � IpuV

ll
pu and Slosspu � RpuI

2
pu, (2.8)

which highlights the intuitive nature of the per-unit system. That is, power is the
product of voltage and current and losses are expressed as the product of the square
of the current and resistance.

To represent per-unit values, the abbreviation “pu” is used throughout this disser-
tation and it should be clear from the context whether pu refers to voltage, current,
impedance, or admittance.

2.3 Unified Branch Model

The physical laws that explicitly couple the nodes and the edges of the network
must be considered. In any network, the power flowing between two connected nodes
(i.e. across a line) in G depends on the physics of the power flow, which is different
for different energy types. For example, the physical laws that describe natural gas
flowing through pipelines is different from water flowing downstream to/from a hydro-
electric dam. In the case of electrical energy, the telegraphers partial differential
equations can be reduced to the standard lumped algebraic π-model [65].

A large power system may consist of multiple interconnected power system areas at
different base voltages. This dissertation considers overhead transmission lines and
in-phase (IPT) and phase-shifting transformers (PST) models, which are modeled
separately in Figure 2.1. However, a special case of the “Unified Branch Model”
developed in [66] and illustrated in Figure 2.2 is employed in this dissertation to
allow for a single modeling framework. The series impedance, zij, defines the series
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ji

zij

(a) Standard lumped transmission line π-model

Vi Vj

Iij Iji

Vi�
tij : 1

zij

(b) Standard transformer model

Figure 2.1: Standard branch models.

Vi Vjtij : 1

Iij Ijiysh
ij ysh

ji

Vi� zij

Figure 2.2: The unified branch model (π-model) with complex voltages, currents,
taps, admittance, and shunts.

admittance, yij, as follows:

zij � rij � ıxij ùñ yij � 1

zij
� gij � ıbij (2.9)

gij � rij
x2
ij � r2

ij

and bij � � xij
x2
ij � r2

ij

(2.10)

where rij, xij, gij, and bij are line resistance [Ω], reactance [Ω], conductance [S], and
susceptance [S], respectively. The shunt admittance term is defined by

ysh
ij � gsh

ij � ıbsh
ij � ıbsh

ij , (2.11)

since the shunt conductance value gsh
ij � Op10�8q    bsh

ij .

2.3.1 AC power flow

Represent the complex voltage at node i by phasor Vi � Ui θi � Uie
ıθi , the

complex current across branch pi, jq by Iij, and denote the complex transformer tap-
ratio tij � aij ψij. Note that the tap-ratio phase-angle represents the phase-shift
provided by a PST and the tap-ratio magnitude defines the relationship between
voltage magnitudes at nodes i and fictitious (non-physical) node i1. Essentially, a
tap-changing transformer enables regulation of voltage and power flow.

The relationship between voltage at node i and fictitious (internal) node i1 is
determined by the complex tap-ratio and described as follows:

Ui � aijUi1
θi � θi1 � ψij

*
ñ Vi � tijVi1 . (2.12)

Next, consider the currents entering (Iij) and leaving (Ii1j) the ideal transformer.
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From (2.12), the following relates the two currents:

ViI
�
ij � tijVi1I

�
ij (2.13)

ñViI
�
ijI

�
i1j � tijVi1I

�
ijI

�
i1j (2.14)

ñpViI�ijqI�i1j � tijpVi1I�i1jqI�ij (2.15)

ñSiI
�
i1j � tijSi1I

�
ij (2.16)

ñI�i1j � tijI
�
ij (2.17)

ñIi1j � t�ijIij (2.18)

where p�q� denotes phasor conjugate and the apparent power Si � Si1 since there are
no active or reactive power losses in an ideal transformer. From Figure 2.2, it is now
straightforward to derive the unified relationships between currents and voltages.

Iij � Ii1j
t�ij

� Vi1y
sh
ij � pVi1 � Vjqyij

t�ij
(2.19)

�
1
tij
Viy

sh
ij � p 1

tij
Vi � Vjqyij

t�ij
(2.20)

� 1

t�ijtij
Viy

sh
ij � p 1

t�ijtij
Vi � 1

t�ij
Vjqyij (2.21)

� 1

a2
ij

Viy
sh
ij � p 1

a2
ij

Vi � 1

t�ij
Vjqyij. (2.22)

Similarly for current Iji:

Iji � Vjy
sh
ji � pVj � Vi1qyij (2.23)

� Vjy
sh
ji � pVj � 1

tij
Viqyij. (2.24)

In matrix form, the relationship between voltages and currents becomes:�
Iij
Iji

�
�
�

1
a2ij
pysh
ij � yijq � 1

t�ij
yij

� 1
tij
yij pysh

ji � yijq

��
Vi
Vj

�
. (2.25)

Remark II.1. The matrix in (2.25) highlights the utility of the unified branch model.
Namely, different branch types are captured within a single (unifying) formulation.
For example, to model

• a transmission line: set tij � 1 0.

• an in-phase transformer (IPT): set ysh
ij � 0 � ysh

ji ; tij � aij 0.

• a phase-shifting transformer (PST): set ysh
ij � 0 � ysh

ji ; tij � 1 ψij.

Note that for transmission lines and IPTs, the matrix is symmetric. However, for a
PST, the presence of the tap-ratio tij yields an asymmetric matrix.
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The complex power Sij � fij � ıqij is derived as follows:

Sij � ViI
�
ij � Vi

�
1

a2
ij

V �
i y

sh
ij

� � p 1

a2
ij

V �
i �

1

tij
V �
j qy�ij



(2.26)

� �ıbsh
ij

U2
i

a2
ij

� U2
i

a2
ij

pgij � ıbijq � UiUje
ıpθij�ψijq

aij
pgij � ıbijq (2.27)

� �ıbsh
ij

U2
i

a2
ij

� U2
i

a2
ij

pgij � ıbijq � UiUj
aij

pcos θ̂ij � ı sin θ̂ijqpgij � ıbijq, (2.28)

where voltage phase angles θ̂ij :� θij � ψij and θij :� θi � θj. Re-arranging and sepa-
rating real (active) and imaginary (reactive) terms, the following define the unified
AC power flow equations:

fij � U2
i

a2
ij

gij � UiUj
aij

rgij cospθ̂ijq � bij sinpθ̂ijqs, (2.29)

qij � �U
2
i

a2
ij

pbij � bsh
ij q �

UiUj
aij

rgij sinpθ̂ijq � bij cospθ̂ijqs, (2.30)

where fij and qij represents the active and reactive power of transmission line pi, jq,
respectively.

Remark II.2. The standard notation for the active AC power flow is pij (for “power”);
however, this dissertation considers general energy flows and, therefore, employs fij
(for “flow”) instead.

The AC model is nonlinear and non-convex and relates voltage magnitude and
voltage phase angles at connected nodes to the active and reactive power flowing
across the connecting arc. The AC power flow is widely accepted as a valid represen-
tation of an electrical physical power system.

2.3.2 DC flow model

A linear approximation of the AC power flow is feasible under reasonable simpli-
fying assumptions, which yields the so-called DC power flow model. The DC model
allows for good approximation of active power flows. The modeling simplifications
are:

• Voltage magnitudes are generally between [0.95, 1.05] p.u. (even closer to 1 pu,
if sufficient var resources are available). Therefore, it is reasonable to set Ui � 1
p.u.

• Phase angle differences between adjacent nodes are generally less than π{4.
Therefore, a Taylor expansion of sinpθ̂ijq � θ̂ij�Opθ̂3q � θ̂ij reveals a reasonable
approximation.
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• In transmission systems, reactance values are generally much greater than the
resistance values (i.e. xij ¡ 4rij), which allows approximations bij � �1{xij
and gij � 0.

• Ignore reactive power, qij.

Together, these simplifications reduce the AC power flow equations into the unified
DC power flow equation:

fij � � bij
aij

sinpθ̂ijq � θ̂ij
aijxij

, (2.31)

where xij is the constant reactance and fij and θij represent the power flow and phase
angle difference across arc pi, jq, respectively. The term “DC power flow” originates
from the resemblance between Ohm’s law (I � V {R) and (2.31).

Remark II.3. The unified DC power flow model in (2.31) is, in fact, not linear due to
the presence of the variable transformer tap ratio aij. However, under standard oper-
ating conditions an on-load tap-changing transformer varies with the load and aij can,
therefore, be considered constant over a fixed time-interval (e.g. �10-30 minutes). In
addition, aij � 1 p.u. is generally a valid assumption.

Considering a constant tap ratio aij, a linear expression for the DC power flow
can be derived:

fij � θij � ψij
aijxij

� θ̂ij
x̂ij
, (2.32)

where x̂ij :� aijxij is the lumped tap reactance. For different branch types, the DC
power flowing across line pi, jq yields:

• a transmission line (aij � 1; ψij � 0): fij � θij
xij

.

• an in-phase transformer (ψij � 0): fij � θij
x̂ij

.

• a phase-shifting transformer (aij � 1): fij � θ̂ij
xij

.

Note that the unified DC power flow as presented in (2.32) is similar to the standard
DC power flow model [67]. In addition, the unified branch model captures the phase-
shift from the PST and is, therefore, amenable to active power flow control schemes,
which are discussed in Chapter IV.

2.3.3 Errors in unified DC Approximation

While the standard DC power flow is accepted as a reasonable approximation
for (active) AC power flow on transmission lines, the approximation of transformers
(IPT and PST) with the (linear) unified DC formulation is less explored in literature.
This section provides an informal investigation of the errors resulting from a linear
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Table 2.1: Parameters for unified AC/DC error analysis

Parameter Value Unit

Bus voltage, Vi 1.00 p.u.
Line reactances, xij 0.084 p.u.
Ratio of reactance-resistance, xij{rij 10 -
Voltage phase angle difference, θij r�1, 1s rads
Transformer tap ratio, aij r0.90, 1.10s p.u.
Transformer tap phase shift, ψij r�10, 10s degrees

approximations of the unified AC branch model in (2.29). Of interest is the approxi-
mation error for specific cases of tap ratio tij � aij ψij. Therefore, two test scenarios
are considered, one with aij � 1 to explore approximation over variable ψij, and the
other scenario considers ψij � 0 and explores variation in aij. Approximation errors
for both flow directions are similar, so, without loss of generality, only the errors
associated with unified power flows iÑ j (i.e. fij) are considered here.

The active power flow characteristics of the unified AC and DC models are com-
pared. It is assumed in this section that sufficient reactive var resources are available
to maintain a flat voltage profile. That is, Ui � Uj � 1 p.u., which yields the following
unified AC and DC models:

AC model :
gij
a2
ij

� 1

aij
rgij cospθij � ψijq � bij sinpθij � ψijqs (2.33)

DC model:
θij � ψij
aijxij

(2.34)

The salient parameter values are displayed in Table 2.1, where the bracket notation
ra, bs denotes the parameter interval. The reactance value is based on standard per-
unit values as given in the IEEE RTS-96 network [68]. Note that in this network, the
ratio of reactance and resistance for the transformer xij{rij � 40, however, in this
section, a ratio of 10 is utilized, which yields slightly exaggerated errors.

The unified AC and DC flow models are simulated in Matlab according to Table 2.1
and associated comparison and approximation errors of the unified DC power flow
model are illustrated in Figure 2.3. As displayed in Figures 2.3a and 2.3b, for voltage
phase angle differences |θ̂ij|   30�, the AC and DC unified branch models are difficult
to separate. The unified DC model captures the presence of PSTs (|ψij| ¡ 0, aij � 1)
as shown in Figure 2.3c with errors that are within standard DC flow approximations
(�10%). In fact, if one ignores the presence of ψij in the unified branch model and,
instead, employs a standard DC power flow model (i.e. θij{xij), then significant
approximation errors can be expected for |ψij| ¡ 0.

For the case of aij � 1, the unified DC branch model yields approximation errors
that increase as |1 � aij| increases. Consider ψij � 0, then the absolute error εA
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between unified AC and DC formulations is given by:

εA �
����gija2
ij

� 1

aij
pgij cos θij � bij sin θijq � θij

aijxij

���� (2.35)

�
����gija2
ij

� gij
aij

�
cos θij � xij

rij
sin θij � θij

gijxij


���� (2.36)

�
����gija2
ij

� gij
aij

�
1� θ2

ij

2
� xij
rij
θij � xij

rij

θ3
ij

6
� θij
gijxij


���� (2.37)

� gij
aij

���� 1

aij
�
�

1� rij
xij
θij �

θ2
ij

2
� xij
rij

θ3
ij

6


���� (2.38)

� gij
aij

����� 1

aij
� 1



� rij
xij
θij �

θ2
ij

2
� xij
rij

θ3
ij

6

���� (2.39)

� gij
aij

����� 1

aij
� 1



� rij
xij
θij

���� , (2.40)

where the approximation in (2.37) is achieved by a 2nd-order Taylor expansion of
sin and cos while approximation (2.40) utilizes a small-angle approximation. The
derivation highlights that for sufficiently small angles, the error is a function of fixed
physical ratio xij{rij and tap variable aij. This is displayed in Figure 2.3d, where
absolute approximation errors for aij � 0.9, 1.10 and θij � 0 yield εA � 0.1 p.u., which
presents a tube-like error bias for tap-changing transformer, which can be relatively
significant for |θij| ¡ 0. Unlike the DC model, with the conductance term and even
function cospθijq, the unified AC power flow model is not symmetric with respect to
θij � 0. This means that errors are asymmetric, which is evident by the “twist”
in the error-tube at θij � 1, which is shown in Figure 2.3d. However, for standard
transformer xij{rij ratios and aij-values, it generally holds that aij P r0.95, 1.05s
and |θij|   30�, which implies that the DC unified branch flow provides a good
approximation of actual (AC) line flows.

To summarize error analysis, if |θij � ψij|    1 and aij � 1, then the unified
DC model provides a valuable representation of transformers and trans-
mission lines.

2.3.4 Unified Branch Losses

The unified DC formulation presented in (2.32) ignores active line losses. Defining
θ̂ij :� θij � ψij, losses on branch pi, jq can be modeled via the unified AC power flow
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Figure 2.3: Comparing unified AC and DC active power models for different ψij and
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standard power flow across a transmission line with gsh
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ji � 0.

21



equations, as follows:

f lossij � fij � fji (2.41)

� gij

�
U2
i

a2
ij

� U2
j � 2

Ui
aij
Uj cos

�
θ̂ij

	

(2.42)

� gij

�
1

a2
ij

� 1� 2

aij
cospθ̂ijq



(2.43)

� gij

��
1

aij
� 1


2

� θ̂2
ij

aij

�
(2.44)

f lossij � gij
θ̂2
ij

aij
� rij
r2
ij � x2

ij

θ̂2
ij

aij
. (2.45)

The approximation in (2.43) comes from the 1 p.u. voltage magnitude assumption,
while the approximation in (2.44) is due to a 2nd-order Taylor expansion of cospθ̂ijq �
1� θ̂2ij

2!
�Opθ̂4

ijq � 1� θ̂2ij
2!

, which is reasonable for θ̂ij    π{2. Equation (2.45) stems
from application of the simplifying assumption that the nominal tap-ratio is close to
one (i.e. p1� aijq2 � 0) and the definition of conductance:

gij � rij
r2
ij � x2

ij

� rij
x2
ij

, (2.46)

which is valid since xij ¡ 4rij is a characteristic of most transmission systems and
allows for reasonable approximation of gij. Thus, the following describes the unified
“DC” line losses:

f lossij � rij θ̂
2
ij

aijx2
ij

� aij rijf
2
ij, (2.47)

with unified DC flow fij defined as in (2.32). Note that the loss term, f loss
ij , is quadratic

in θ̂ij and is not suitable for the strictly linear formulation. To include a meaningful
model of losses into an linear formulation, one can apply a standard (piece-wise) linear
relaxation of losses that circumvents the need for integer optimization, see [69, 70]. To
simplify notation in the development of the piecewise linear (PWL) approximation,
let aij � 1 and ψij � 0. Derivation with aij and ψij is straightforward but excluded
here.

2.3.4.1 PWL Approximation of Line Losses

The approximate line losses in (2.47) can be replaced by a PWL formulation
consisting of S linear segments of width ∆θijpsq, s P t1, . . . , Su. Denote the slopes of
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Figure 2.4: Piece-wise linear line losses for S � 3 linear identical segments.

each segment αijpsq and define variables θPW
ij psq, @s P t1, . . . , Su, such that:

f loss
ij pθijq � PWL

�
rij
x2
ij

θ2
ij

�
(2.48)

� PWL

�
rij
x2
ij

|θij|2
�
�

Ş

s�1

αijpsqθPW
ij psq, (2.49)

where PWLr.s is a piece-wise linear approximation. Figure 2.4 illustrates PWL[f loss
ij ]

for S � 3. Since the line loss function is symmetric with respect to θij, replacing θij
with |θij| means that one only has to consider S different θPW

ij psq variables for each
line pi, jq and not all 2S variables.

Implementation of PWLr.s within an optimization framework generally requires
binary integers to enforce adjacency conditions for PWL segments [71, page 7]. Ad-
jacency conditions ensure that θPW

ij psq ¡ 0 ñ θPW
ij ppq � ∆θijppq @p   s.

Remark II.4. While the PWL formulation presented herein does not depend on
segment width, there exists multiple techniques for choosing non-identical segment
widths ∆θijpsq, e.g. [72]. However, in this dissertation, for the sake of simplicity,
identical widths are assumed for all segments and for all lines. That is,

∆θijpsq :� ∆θ � θmax{S (2.50)

is the segment width @s � t1, . . . , Su, @pi, jq P A.

If one omits integers and relaxes adjacency conditions, it implies a strictly con-
tinuous linear approximation of line losses that is equivalent to a bounded convex
relaxation of PWLr.s. The linear relaxation is convex since f loss

ij is strictly locally
convex for θij P p�π{2, π{2q and gij ¡ 0, which is proven by the following.

Lemma II.5. The PWL relaxation is convex since f loss
ij pθijq is locally strictly convex.

23



Proof. Recall that f loss
ij is strictly convex if the Hessian is positive definite (i.e. ∇2f loss

ij ¡
0). Assuming the system is operating near standard conditions, then voltage magni-
tudes Ui, Uj � 1 and aij ¡ 0 and it follows:

f loss
ij pθijq � gij

�
1

a2
ij

� 1� 2

aij
cospθijq



(2.51)

ùñ∇2f loss
ij � d2

dθ2
ij

pf loss
ij q � 2gij

aij
cospθijq (2.52)

which is strictly positive for θij P p�π{2, π{2q and aij, gij ¡ 0.

Remark II.6 (Importance of convex optimization). Convex optimization guarantees
that any optimal (and feasible) solution is the globally optimal solution (i.e. local
optimality implies global optimality). Furthermore, the computational speed of solv-
ing a convex optimization problem is significantly reduced compared to non-convex
optimization.

Strict convexity ensures that the PWL approximation exhibits monotonically in-
creasing segment slopes as a function of s. The segment slopes are defined as

αijpsq �
f loss
ij ps∆θq � f loss

ij pps� 1q∆θq
s∆θ � ps� 1q∆θ (2.53)

� rij
x2
ij

p2s� 1q∆θ, (2.54)

which yields strict monotonicity of segment slopes with respect to s:

p2s� 1q rij
x2
ij

∆θ � αijpsq   αijps� 1q � 2s
rij
x2
ij

∆θ. (2.55)

The PWL approximation is a relaxation when adjacency conditions are not enforced,
as illustrated in Figure 2.5a for S � 3:

f loss
ij � PWLrf loss

ij s ¤
Ş

s�1

αijpsqθPW
ij psq (2.56)

� rij
x2
ij

∆θ
Ş

s�1

p2s� 1qθPW
ij psq, (2.57)

where segment variables θPW
ij psq are defined by

|θij| �
Ş

s�1

θPW
ij psq (2.58)

with θPW
ij psq P r0,∆θs for s � 1, ..., S representing the segments in the PWL approxi-

mation. To model the (non-convex) absolute value relation in equation (2.58) within
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a linear formulation, apply the following relaxation:

θij � θ�ij � θ�ij (2.59)

Ş

s�1

θPW
ij psq :� θ�ij � θ�ij (2.60)

where θ�ij , θ
�
ij ¥ 0. This is equivalent to a bounded convex relaxation of (2.58), as

demonstrated in Figure 2.5b and with the triangle-inequality:

|θij| � |θ�ij � θ�ij | ¤ |θ�ij | � |θ�ij | � θ�ij � θ�ij . (2.61)

Notice that in the absence of enforcing the complementarity condition: θ�ij θ
�
ij � 0,

the convex relaxation may overestimate |θij| and, hence, overestimate losses.

Remark II.7. The complimentarity condition can be explicitly described via use of
mixed-integer optimization:

θ�ij ¤ zijθ
max,

θ�ij ¤ p1� zijqθmax,

zij P t0, 1u.

However, integer implementation is not pursued in this dissertation as it prevents a
strictly linear formulation of line losses.

From henceforth, to simplify notation, denote unified branch losses by f loss
ij . To

summarize, the convex relaxation of active line losses is described by the
following:

f loss
ij � rij

aijx2
ij

∆θ
Ş

s�1

p2s� 1qθPW
ij psq (2.62a)

Ş

s�1

θPW
ij psq � θ�ij � θ�ij (2.62b)

θij � ψij � θ�ij � θ�ij (2.62c)

|θij � ψij| P r0, θmaxs (2.62d)

θ�ij , θ
�
ij ¥ 0, (2.62e)

θPW
ij psq P r0,∆θs. (2.62f)

The linear formulation presented in (2.62) is a convex relaxation of a lossy DC
power flow that is greater than or equal to PWLrf loss

ij s. Equality occurs only when
both absolute value complementarity (i.e. θ�ij θ

�
ij � 0) and PWL adjacency condi-

tions are satisfied. Under such conditions, the relaxation is considered “tight” and
the model is exact (with respect to PWLrf loss

ij s) and provides a superior method for
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Figure 2.5: Relaxing adjacency conditions and absolute value complementarity con-
dition (i.e. θ�ijθ

�
ij � 0) for PWL approximation with S � 3. Notice how the PWL

segment variables θPW
ij psq define the relationship between phase angles and line losses.

estimating line losses than standard linearization about an operating point. Further-
more, when the losses are relaxed (i.e. not tight), overestimated losses are denoted
“fictitious losses” as they exist only as a figment of the MPC controller model and
not in the actual system. Finally, if a specific line’s relaxation is tight, but other lines
are not, the term “locally tight” is used.

Remark II.8. To employ the PWL approximation of line losses within an optimiza-
tion framework, it is often necessary to ensure that, under conditions of interest,
the convex relaxation is tight. Otherwise, significant modeling errors result from the
relaxation. In [69], the authors prove (under implicit assumptions of non-negative
LMPs) that minimizing fuel costs in an economic dispatch setting provides suffi-
cient conditions to ensure a tight relaxation. As is presented in Chapter IV with
a model-predictive scheme, minimizing conductor temperature overloads subject to
mild simplifications provides another set of sufficient conditions for a locally tight
relaxation. The locally tight relaxation is sufficient for the model-predictive scheme
to stabilize temperature overloads.

2.3.5 Matrix notation for unified models

For network G � pN , Eq, denote arcs with e � pi, jq P E for nodes i, j P N and
set m � |E |, n � |N |, and define p as the number of PSTs in G. Then, let A P Rn�m

be the node-arc incidence matrix, let B P Rp�m be the PST-to-arc mapping, and
let X � diagpx̂1, . . . , x̂mq P Rm�m be the diagonal matrix of unified reactance values
x̂e :� aijxij. For example, given arc e, Api, eq � 1, Apj, eq � �1 and, for
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• a transmission line, tij � 1 0 and Xpe, eq � x̂e � xij.

• an IPT, tij � aij 0 and Xpe, eq � x̂e � aijxij

• PST k, Xpe, eq � x̂e � aijxij, and Bpk, eq � 1.

The unified DC branch model, as stated in equation (2.32), is then defined in
matrix form as:

Xf � AJθ �BJψ. (2.63)

where rf se � fij is the unified DC power flow of branch e. Similarly, θ � colpθ1, . . . , θnq
is the vector of nodal voltage phase angles and rψsk � ψij is the branch phase-shifts
of PST k.

With regards to the PWL approximation of active power losses in equation (2.62),
define ce � rij∆θ colp1, 3, . . . , 2S � 1q P RS, CS � diagpcJ1 , . . . , cJmq P Rm�pmSq is the
block-diagonal matrix of PWL slope weights, and let Xl � diag px̃1, . . . , x̃mq P Rm�m

be the diagonal matrix of unified loss-reactance values x̃e :� aijx
2
ij. Then, the active

losses for all lines can be described as

Xlf
loss � Clθ

PW (2.64)

where rf lossse � f loss
ij and rθPWse � θPW

ij with θPW
ij � colpθPW

ij p1q, . . . , θPW
ij pSqq P

RS @e P E are vectors of unified DC line losses and PWL segment variables, re-
spectively.

The relationship between line e’s PWL variables θPW
ij and nodal phase angles θi, θj

is defined through the intermediate variables θ�ij , θ
�
ij as given by (2.62c) and (2.62b).

Let DPW � diagp1JS , . . . ,1JS q P Rm�mS be a block-diagonal matrix of ones where
1S � colp1, . . . , 1q P RS, then

θ� � θ� � DPWθ
PW (2.65)

θ� � θ� � AJθ �BJψ, (2.66)

with θ� � colpθ�1 , . . . , θ�mq P Rm and θ� similarly defined.
Note that the scalar bounds defined in (2.62) are defined as 0   ∆θ, θPW P

r0,∆θsmL � RmL, and θ�, θ� ¥ 0.

Remark II.9 (PWL optimization and constraints). The (real) active power flow
in line e � pi, jq as measured at bus i is given by fij � 1

2
f loss
ij while the line flow

measured at bus j is given by �fij � 1
2
f loss
ij . Often, line flows are required to stay

within rated limits, which means that flow magnitude is important to model. The
line flow magnitude is given by the following:

|fij| � 1

2
f loss
ij �

����θij � ψij
aijxij

����� rij∆θ

2aijx2
ij

Ş

s�1

p2s� 1qθPW
ij psq (2.67)
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which, in matrix form, is expressed as:

|f | � 1

2
f loss � ��X�1pAJθ �BJψq��� 1

2
X�1
l Clθ

PW (2.68)

� X�1
��AJθ �BJψ

��� 1

2
X�1
l Clθ

PW ¤ uij (2.69)

� X�1
��θ� � θ�

��� 1

2
X�1
l Clθ

PW. (2.70)

Notice that the convex relaxation of the absolute value complimentarity condition al-
lows for a simple upper bound to be considered. Application of the triangle inequality
to |θ� � θ�| yields the following:

|f | � 1

2
f loss ¤ X�1pθ� � θ�q � 1

2
X�1
l Clθ

PW (2.71)

� X�1DPWθ
PW � 1

2
X�1
l Clθ

PW (2.72)

� pX�1DPW � 1

2
X�1
l ClqθPW (2.73)

ùñ |f | � 1

2
f loss ¤ Klθ

PW (2.74)

where Kl � diagpkJ1 , . . . ,kJmq P Rm�mS is block-diagonal with

ke � 1

aijxij
1S � rij∆θ

2aijx2
ij

c P RS. (2.75)

If the goal of modeling flow magnitude is to stay below a thermal rating uij then
2m constraints are necessary:

|f | � 1

2
f loss ¤ u ùñ

"
f � 1

2
f loss ¤ u

�f � 1
2
f loss ¤ u

. (2.76)

However, as mentioned in [69], formulating the flow magnitude in terms of θPW yields
only m constraints:

Klθ
PW ¤ u. (2.77)

Notice that the upper bound is tight (i.e. |f |� 1
2
f loss � Klθ

PW) only if the absolute-

value complimentarity conditions are satisfied (i.e. θ�Jθ� � 0). When the conditions
are not satisfied, employing Klθ

PW will overestimate line flow magnitudes, which can
result in fictitious congestion. That is, when the convex relaxation of line losses
is not tight, the system is operated conservatively below u and, as a consequence,
more expensively. Finding conditions which ensure a tight formulation is, therefore,
important. Discussion of such conditions is included in Chapter IV.
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2.4 Power generation and demand

The power injected into a node must equal the net flow leaving the node. In a
power system, generators inject power into the network while loads and line losses
consume power. Generation can represent conventional (i.e. natural gas and elec-
tric power plants) and renewable generation (i.e. wind, hydro, and solar), which
have different power generating costs based on energy types. Renewable generation
is often subject to high intermittency and is non-dispatchable, whereas, conventional
generation is simply controllable. In addition, conventional generators are often sub-
ject to well-defined ramp-rate limits, which constrain how quickly generation can be
increased and decreased. This section provides an overview of the models used in
describing transmission systems with generators and loads and describes the power
balance between supply and demand.

2.4.1 Generators

Let g P ΩG
i � C be a generator at node i, where C is the set of generators in the

system. Then, g injects power into the network at rate fGg to help supply the demand
and meet resulting losses. Generator g is described by its state fGg (i.e. how much
it produces) and by a reference f set

G , which is the desired set-point. The dynamics
associated with generator g are then given by

9fGgptq �
1

Tg

�
f ref
Gg
ptq � fGgptq

	
, (2.78)

where Tg is a generator time-constant. Discretization with sampling time Ts yields:

fGg rk � 1s � fGg rks �
Ts
Tg

�
f ref
Gg
rks � fGg rks

	
(2.79)

Defining generator excitation ∆fGg rks as

∆fGg rks :� Ts
Tg

�
f ref
Gg
rks � fGg rks

	
(2.80)

yields the following simple conventional generator model:

fGg rk � 1s � fGg rks �∆fGg rks. (2.81)

Furthermore, conventional generation is often subject to ramp-rate limits, which
constrain the rate at which power production can be increased or decreased. Let g
have ramp-up and ramp-down rate limits R̃up

g and R̃down
g [MW/s], respectively, then

�R̃down
g ¤ 9fGgptq ¤ R̃up

g , (2.82)
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which, upon discretization, becomes

�TsR̃down
g �: Rdown

g ¤ ∆fGg rks ¤ Rup
g :� TsR̃

up
g . (2.83)

Finally, each conventional generator has pre-specified generation limits, fmin
Gg

, fmax
Gg

.
Thus, the full conventional generator model is given by:

fGg rk � 1s � fGg rks �∆fGg rks (2.84)

fGg rks P rfmin
Gg

, fmax
Gg

s (2.85)

∆fGg rks P rRdown
g , Rup

g s. (2.86)

Now, consider power injections from non-dispatchable renewable generators fGg ,r.
Assume renewable generation responds instantaneously and is not subject to ramp-
rate conditions. Then, the following embodies a simple model of renewable gen-
eration (i.e. wind-generating turbines).

fGg ,rrks � fnom
Gg ,rrks � f spill

Gg ,r
rks (2.87)

f spill
Gg ,r

rks P r0, αspill
Gg ,r

s � r0, fnom
Gg ,rrkss (2.88)

where fGg ,r is the injected power from renewable generator g given available or pre-
dicted nominal wind power fnom

Gg ,r
. Furthermore, the (partial) reduction of nominal

power (i.e. spilled power) is denoted by the following relationships: f spill
Gg ,r

¤ αspill
Gg ,r

¤
fnom
Gg ,r

. That is, one cannot spill more renewable generation than what is nominally
available.

2.4.2 Loads

Let d P ΩD
i � D be a load at node i, where D is the set of loads in the system.

Then, d consumes power from the network at rate fDd
. Load d is described by a its

state fDd
(i.e. how much it consumes). The goal of the operator is (partly) to satisfy

loads in the system, however, there are periods during which load cannot be fully
supplied and must be (partially) reduced. This can be due to a sudden unexpected
shortage of renewable energy coupled or increase in demand, stringent ramp-rate
limits on generators or due to multiple lines or generators going out of service. The
process of reducing load is termed “load shedding” and, herein, it is assumed that
loads can be shed instantaneously by the system operator. Therefore, given predicted
or actual nominal load fnom

Dd
, the total power consumed by load d at time k is

fDd
rks � fnom

Dd
rks � f shed

Dd
rks. (2.89)

f shed
Dd

rks P r0, αshed
Dd

s � r0, fnom
Dd

rkss (2.90)

where f shed
Dd

rks ¤ αshed
Dd

denotes the (partial) reduction in nominal load.

Remark II.10. Obviously, load-shedding requires a suitable cyber-infrastructure to
transmit load-shed commands to customers. More advanced demand response and
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load control techniques exist in literature, please see [73] and [74]. Such methods
would complement the work in this dissertation and underlie the simple load-shedding
commands proposed herein. That is, f shed

Dd
could act as a reference signal to a more

advanced load control scheme.

2.4.3 Energy Storage

Energy storage is available in many forms (e.g. hydrogen fuel cells, grid-scale
battery systems, hydro) and energy storage devices can be located at various nodes
throughout the network. Let q P ΩE

i � Q be an energy storage device at node i,
where Q is the set of storage devices in the system. Assume steady-state storage
power values, a constant slope for 9Epptq � dEpptq{dt, and treat storage interface as
a conversion process with charging and discharging efficiencies ηc,q and ηd,q, then the
relationship between storage state-of-charge (SOC) and power injected/consumed by
device q is

9Eqptq � dEqptq
dt

� eqpt, QqqQqptq. (2.91)

where the SOC switching mechanism eq is defined as

eqpt, Qqq �
"
ηc,q, if Qqptq ¥ 0 (charge/standby)

1
ηd,q

, if Qqptq   0 (discharge) . (2.92)

Since energy storage devices have two distinct states of operation, charging and
discharging, that achieve different efficiencies, energy storage devices introduce switches
in the SOC formulation. The following reformulation of the SOC makes this non-
convex nonlinearity more apparent:

9Eqptq � ηc,qQc,qptq � 1

ηd,q

Qd,qptq (2.93a)

Qqptq � Qc,qptq �Qc,qptq, (2.93b)

0 � Qc,qptqQc,qptq (2.93c)

where the rate-limited charging (c) and discharging variables (d), Qc,q P r0, Qcs and
Qd,q P r�Qd, 0s, model the switching mechanism explicitly as a complimentarity con-
dition in (2.93c). The nonlinear complimentarity condition ensures that q can either
charge or discharge, but not both simultaneously. To circumvent the nonlinearity, a
mixed-integer linear (MIL) formulation can be employed:

Qc,qptqQc,qptq � 0 ðñ
$&%

0 ¤ Qc,q ¤ Qcp1� zqq
�Qdzq ¤ Qd,q ¤ 0

zq P t0, 1u
. (2.94)

where zq is a binary integer. For example, if zqrks � 1, then Qc,qrks � 0 and device
q is consequently operating in discharging mode at time-step k. While the above
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linear formulation is equivalent to the nonlinear complimentarity condition, the use
of integers is generally not desired, as it greatly increases computational complexity.

To avoid utilizing integers in the linear model, one can remove the integer-restricted
charging/discharging. This implies that simultaneous charging and discharging is
now feasible and is equivalent to a convex relaxation of the original SOC model.
Replace (2.93) with the strictly linear and continuous formulation:

9Eqptq � ηc,qQc,qptq � 1

ηd,q

Qd,qptq, (2.95a)

Qqptq � Qc,qptq �Qc,qptq. (2.95b)

Employing a Forward Euler Discretization to (2.95) admits linear continuous first-
order discrete SOC dynamics that represents the full linear energy storage model:

Eqrk � 1s � Eqrks � Tsηch,qQc,qrks � Ts
ηdis, q

Qd,qrks, (2.96a)

Qqrks � Qc,qrks �Qd,qrks (2.96b)

Qc,qrks P r0, Qcs, Qd,qrks P r�Qd, 0s. (2.96c)

Remark II.11. The MIL formulation of (2.93) is implemented in Chapter III to
model non-simultaneous charging within the context of energy hubs. However, for
systems with a large number of storage devices, due to the complexity of integer
optimization in the MIL approach, the non-simultaneous charging model is aban-
doned in Chapter IV and replaced by the strictly continuous linear convex approxi-
mation (2.96). The effects of allowing simultaneous charging is discussed then.

2.4.4 Power balance

In addition to the physical properties of the power flow, any network must sat-
isfy Kirchoff’s First Law (also called the “power balance”). That is, the net flow
into a node must equal the net flow out of the node. Generally, a node may have
generators (fG) and/or loads (fD) available and, in a system with energy storage de-
vices, the charging (discharging) corresponds to additional demands (injections) (Qi).
Therefore, the power balance equation is formulated as:¸

dPΩD
i

fDd
rks �

¸
gPΩG

i

fGg rks �
¸
jPΩN

i

f total
ij rks �

¸
qPΩE

i

Qqrks � 0 @i P N (2.97)

where f total
ij is the total flow on line pi, jq and is defined by

f total
ij � fij � 1

2
f loss
ij . (2.98)

The power balance equation in (2.97) determines the net power generated or con-
sumed at each node. In matrix form, power balance employs the node-arc adjacency
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matrix A and corresponding load-, generator-, and storage-to-node mapping matrixes
of appropriate dimensions:

ADfDrks � AGfGrks � Af rks � 1

2
|A|f lossks � AEQrks � 0. (2.99)

Remark II.12 (Power balance and frequency). For a detailed study on frequency
control in power systems, please see [75]. Basically, when a generator injects electric
power into the network to supply an electric load, it is achieved by a turbine that
transfers mechanical power to the generator shaft. An imbalance between the me-
chanical and electrical power leads to a change in the generator’s rotating speed and,
therefore, begets deviations from nominal frequency. Due to the inertia of all rotating
elements in the system, an abrupt change in power balance, in fact, leads to a smooth
change in the system frequency. The role of frequency control is, therefore, to manage
the mechanical power of generators to return system frequency to nominal.

The power balance equation, as stated in (2.97), reflects the electrical balance in
the system but neglects mismatches between mechanical power and electrical demand.
Thus, the frequency of the system is not considered and this dissertation assumes that
frequency regulation is the concern of lower-level control, which operates on a scale
of seconds.

However, optimization with respect to constrained network flows can produce
infeasible scenarios (e.g. flow limited arcs separating demand and generation). To
enable persistent feasibility, a slack variable is added for each node to capture any
electrical mismatch:

ADfDrks � AGfGrks � Af rks � 1

2
|A|f lossks � AEQrks � ∆mrks. (2.100)

where mismatch ∆m � colp∆m1, . . . ,∆mnq. For example, if a large generator trips
or islanding occurs, mismatches are inevitable due to ramp-rate limits. These mis-
matches are considered in (2.100) and, therefore, the set of W island mismatches
t°iPNw

∆miuWw�1 represents a form of frequency perturbation with respect to each
island in the system.

2.5 Conductor temperature model

For a 3-phase overhead transmission line pi, jq each conductor can be considered
identical. Therefore, consider a conductor as a per-unit length thermal mass with
continuous-time temperature dynamics.

9T ptq � 1

mCp

�
qsptq � f loss

ij ptq � qcpt, T ptqq � qrpt, T ptqq
�
, (2.101)

where T and f loss
ij are the conductor temperature [C] and the active power loss per

unit length [W/m], respectively, for conductor pi, jq. The losses are calculated from
Section 2.3.4 and divided by conductor length Lij [m]. Alternatively, f loss

ij can be
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expressed in terms of conductor current as f loss
ij ptq � Iptq2RpT q, where the resistance

depends linearly on the temperature. However, since the temperature dynamics are
much slower than the instantaneous power flows, for all practical purposes, the resis-
tance RpT q is a fixed parameter in power flow calculations and can be updated offline
with the most recent temperature measurements. Per unit length values mCp, qs, qc,
and qr represent conductor heat capacity [J/m-C], solar heat gain rate [W/m], con-
ductive heat loss rate [W/m], and radiative heat loss rate [W/m], respectively. The
heat loss and gain rates are calculated based on IEEE Standard 738 [76], which pro-
vides a method for calculating the current-temperature relationship of bare overhead
transmission lines, given weather conditions. The model presented below is described
in further detail in [76]. Since the thermal model is with respect to a single line pi, jq,
for simplifying notation, the index pi, jq and �ij are excluded in this section.

The solar heat gain rate is given by position of sun with relationship to the trans-
mission line and time of day and is independent of temperature:

qsptq � α sinpbptqqLAlQSEptq (2.102)

where

α = solar absorptivity P r0.23, 0.91s.
b = angle of incidence of sun’s rays P r0, 1s
L = conductor length, m.

Al = area of conductor per unit length P r0.5, 5s � 10�2 m2/m.

QSE = total radiated solar flux, W/m2.

The conductive heat loss rate is strongly coupled to the conductor temperature
and depends on parameters associated with air near conductor and wind speed and
direction. The below equation describes the heat loss rate for low-wind conditions
and provides a conservative calculation of heat loss rate:

qcptq �
�

1.01� 0.0372

�
DρfVw
µf


0.52
�
LkfKanglepT ptq � Tambptqq (2.103)

where

D = conductor diameter P r5, 50s mm.

ρf = air density P r0.574, 1.293s kg/m3.

µf = dynamic viscosity of air P r1.72, 2.17s � 10�5 Pa-s.

Vw = wind speed P r0.2, 1.5s m/s.

kf = thermal conductivity of air P r2.42, 3.17s � 10�2 W/m-C.
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Kangle = wind direction correction factor P r0.4, 1s.
Temperature is coupled to the radiative heat loss rate:

qrptq � 1.78� 10�10LDe
�pT ptq � 273q4 � pTambptq � 273q4� (2.104)

where

e = emissivity P r0.23, 0.91s.
Finally, the per-unit length heat capacity is determined by the different materials

employed in the construction of the conductor. Traditional conductors are aluminum
conductor steel-reinforced (ACSR) cables and are specific types of stranded cables
made of aluminum and steel materials.

mCp �
Nmat¸
i�1

ml,iCp,i (2.105)

where

Nmat = number of materials used in constructing conductor.

ml,i = mass per unit length of material i, kg/m.

Cp,i = specific heat capacity of material i, J/C-kg.

By employing conservative values for the many exogenous and physical parameters
above, the thermal model simplifies to a function of conductor temperature (T ),
ambient temperature (Tamb) and sun exposure (qs), and active power loss (i.e. f loss

ij ).
The simplifying assumptions are:

• Wind-speed is low and fixed to 0.61 m/s perpendicular to line.

• Solar heat gain rate is constant and set to that of a sunny summer day.

• Ambient temperature is set to constant 25�C.

• Lines are aluminum conductor steel-reinforced (ACSR) cables:

– Standard conductor look-up tables yield m and Cp values for aluminum
and steel.

• Line and air constant parameters do not depend on conductor temperature.

– Exception: conductor resistance RpT q [Ω/m], which can be approximated
as a linear function of temperature [48]:

RpT q � R0r1� αRpT � T0qs (2.106)

where
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∗ R0 :� RpT0q is the reference resistance value at T0 [Ω/m]

∗ T0 is the reference temperature for R0 [C]

∗ αR � 0.0039 is the thermal resistivity coefficient [1/C]

By appropriately applying the above assumptions, the temperature dynamics are
described by:

9T ptq :�
1

mCp
F pqs, f

loss
ij , T, Tambq (2.107)

�
1

mCp

�
qsptq � f loss

ij ptq � ηcpT ptq � Tambptqq � ηrppT ptq � 273q4 � pTambptq � 273q4q
	

(2.108)

where mCp, ηc, and ηr are positive constants and reflect assumed heat capacitive and
solar, conductive, and radiative heat rate-related parameter values, respectively.

To allow for tractable implementation of the model-predictive control scheme, we
linearize equation (2.108) around equilibrium point T � � Tlim, where Tlim is computed
from steady-state conditions with line at maximum current rating (i.e. set f loss

ij
� �

RpT qI2
lim) with T �

amb, q
�
s . For details on how to calculate Tlim, please see Section 2.5.2.

Thus, a first-order Taylor approximation yields:

∆ 9T � 1

mCp

��∆qs
BF
Bqs

����
q�s

�∆f loss
ij

BF
Bf loss

ij

�����
f lossij

�

�∆T
BF
BT

����
Tlim

�∆Tamb
BF
BTamb

����
T�amb

�
(2.109)

where linear terms are defined as

∆qsptq � qsptq � q�s (2.110)

∆f loss
ij ptq � f loss

ij ptq � f loss
ij

�
(2.111)

∆T ptq � T ptq � Tlim (2.112)

∆Tambptq � Tambptq � T �
amb, (2.113)

with derivatives given by

BF
Bqs

���
q�s
� 1 BF

BT

��
Tlim

� �pηc � 4ηrpTlim � 273q3q
BF

Bf lossij

���
f lossij

�
� 1 BF

BTamb

���
T�amb

� ηc � 4ηrpT �
amb � 273q3 , (2.114)
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and the temperature dynamics take the form:

∆ 9T ptq � 1

mCp

�
∆qsptq �∆f loss

ij ptq � pηc � 4ηrpTlim � 273q3q∆T ptq (2.115)

�pηc � 4ηrpT �
amb � 273q3q∆Tambptq

�
� 1

mCp

�
∆qsptq �∆f loss

ij ptq � γ̄c∆T ptq � γ̄a∆Tambptq
�
. (2.116)

Coefficients γ̄c � ηc � 4ηrpTlim � 273q3 and γ̄a � ηc � 4ηrpT �
amb � 273q3. Employ-

ing standard Euler forward discretization with sampling-period Ts, the discrete-time
temperature dynamics are obtained:

∆T rk � 1s � ∆T rks � Ts
mCp

�
∆qsrks �∆f loss

ij rks � γ̄c∆T rks � γ̄a∆Tambrks
�

(2.117)

� τ∆T rks � ρ∆f loss
ij rks � ρ∆qsrks � γ∆Tambrks, (2.118)

where τ � 1� Tsγ̄c
mCp

, γ � Tsγ̄a
mCp

, and ρ � Ts
mCp

[m-C/W]. For stability, it is required that

τ P p�1, 1q, which implies the sampling time must satisfy Ts   2mCp

γ̄c
. Since each line

pi, jq is subject to its own temperature dynamics, the notation becomes:

∆Tijrk � 1s � τij∆Tijrks � ρij∆f
loss
ij rks � ρij∆qsrks � γij∆Tambrks (2.119)

� τij∆Tijrks � ρij∆f
loss
ij rks � �

ρij γij
� � ∆qsrks

∆Tambrks
�

(2.120)

� τij∆Tijrks � ρij∆f
loss
ij rks � ρ̂Jij∆drks (2.121)

where, without loss of generality, the ambient temperature and solar heat-gain rate
can be considered identical (exogenous inputs) for all lines in E .

2.5.1 Thermal model in matrix form

Since each transmission line pi, jq P E has its own temperature state and losses,
and exogenous conditions (ambient temperature and solar radiation) are considered
identical for each line (i.e. disturbance inputs), the thermal model is formulated with
the following matrix notation:

∆Trk � 1s � Aτ∆Trks �Bρ∆f lossrks � bρ∆qsrks � bγ∆Tarks, (2.122)
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where ∆Trks P Rm,∆f lossrks P Rm,∆qsrks P R,∆Tarks P R, and for all pi, jq P E and
m � |E |,

Aτ � diag
pi,jqPE

pτijq P Rm�m (2.123)

Bρ � diag
pi,jqPE

pρijq P Rm�m (2.124)

bρ � col
pi,jqPE

pρijq P Rm (2.125)

bγ � col
pi,jqPE

pγijq P Rm. (2.126)

2.5.2 Calculating conductor temperature limit (Tlim)

Given a three-phase transmission line’s steady-state (i.e. continuous) thermal
rating, umax [VA], and the base voltage, Vb [V], the ampacity (i.e. current capacity)
Ilim [A] is calculated as follows:

Ilim � umax?
3Vb

. (2.127)

Furthermore, given the per-unit-length series resistance RpT q and other physical
conductor parameters (e.g. diameter, mass) and conservative estimates of exogenous
parameters (e.g. solar and wind), one can describe the per-unit-length heat loss and
gain rates at steady state as a function of temperature T . This implies that the heat
loss and gain rates per unit length at steady state can be described as a function of
T . Since the nonlinear steady-state equation in (2.128) is quartic with respect to T ,
it has no straight-forward closed-form solution, so numerical methods are utilized to
calculate the temperature T that satisfies the steady-state heat balance equation:

0 � qs �RpT qI2
lim � ηcpT � Tambq � ηrppT � 273q4 � pTamb � 273q4q (2.128)

The resulting temperature represents the temperature limit of the conductor and
is denoted Tlim. With Tlim given, it is straightforward to can solve (2.128) for Ilim and
compute the resulting ampacity of the conductor.

2.5.3 Numerical example

The IEEE Standard transmission-line temperature model described above is sim-
ulated for an ACSR 26/7 Drake conductor. In particular, the simulation investigates
the conductor temperature response to step-changes in current Iij. Salient parameters
are included in Table 2.2 and Figure 2.6 illustrates the conductor response. While the
coupling between temperature and resistance is non-trivial, in this numerical example,
the resistance is fixed to a constant. That is, RpT q � R0.

The 3-phase transmission line rating is given as uij � 500 MVA and, from Sec-
tion 2.5.2, the conductor ampacity is calculated as Ilim � 1255 A (i.e. 5 pu at Vb � 230
kV) with an associated temperature limit of Tlim � 99�C. The nonlinear temperature
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Table 2.2: Simulation parameters used in numerical example.

Parameter Value Unit

Sampling Time, Ts 60 s
Specific heat capacity (steel), Cp,st 490 J/(kg-C)
Specific heat capacity (aluminum), Cp,alu 910 J/(kg-C)
Mass per unit length (Drake, steel), ml,st 0.512 kg /m
Mass per unit length (Drake, aluminum), ml,alu 1.115 kg /m
Diameter (Drake), D 28.12 mm
Resistance (Drake), R0 6.09� 10�5 Ω/m
Base voltage, Vb 230 kV
Air density, ρf 1 kg/m3

Air dynamic viscosity, µf 0.03, Pa-s
Air thermal conductivity, kf 2�10�5 W/m-C
Wind speed, Vw 0.61 m/s
Wind direction angle w.r.t. line, φw 90 degrees
Conductor elevation, He 61 m
Emissivity, ε 0.7 -
Ambient temperature, Tamb 35 C
Day of the year (for sun intensity), Nday 160 (6/10) -
Hour of the day (for sun position), hday 12 (Noon) -
Line latitude, Lat 40 degrees
Line azimuth, Zl 90 degrees
Solar absorptivity, α 0.9 -

model is then linearized around operating point (T �
lim � 99, I�lim � 1255, T �

amb �
35, q�s � 26.1 W/m). The conductor current undergoes step-changes between 0 to
2Ilim as shown in Figure 2.6a. Figure 2.6b illustrates that the linear and nonlinear
models are interchangeable for temperatures T rks P p80, 120q. Incorporating variable
resistance decreases this margin. Finally, Figure 2.6c displays the ohmic losses in the
conductor relative to active power on conductor. The losses are small for currents
close to or below Ilim.

Overall, this example illustrates that the linear model is a reasonable approxima-
tion for temperatures near Tlim.

2.6 Summary

This chapter describes the basic models used in power systems. These models
describe AC, DC, and lossy DC-based power flows, energy storage devices, loads,
and generators, as well as, transmission line conductors. Chapter III proposes an
optimization framework for modeling large-scale multi-energy systems and introduces
the “energy hub” concept. In Chapter IV, model-predictive control problems are
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formulated which employ most of the models presented herein to alleviate the effects
of cascading outages.
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CHAPTER III

Analysis of Energy Hub Networks

3.1 Introduction

Recent events have placed a renewed focus on the reliability and optimality of en-
ergy supply systems [28]. Such systems involve interconnections between the electrical
network and various energy carriers, such as natural gas, water, and wind energy. For
example, electricity produced from thermal generators involve large amounts of water
and, as was the case in Australia, a drought negatively affected the electric production
capabilities [77]. This interconnectedness of energy systems motivates the concept of
the energy hub. Energy hub concepts provide a modeling framework for extending
beyond specific energy carrier combinations, such as hydrothermal systems, allow-
ing analysis and optimization of an arbitrary array of energy carriers. Modeling the
coupling energy carriers may reveal minimum cost solutions, and also vulnerabilities,
that are not apparent when each energy system is treated separately.

While past literature has focused on the energy hub formulation and small cou-
pled energy carrier networks (2-6 hubs), this chapter is directed towards large-scale
coupled multi-energy networks (100s of hubs). Through a linear reformulation of
the energy hub model, this chapter takes advantage of its mathematical structure to
develop a concise format that fully describes general large-scale energy hub systems.
The format allows for simple automatic implementation and analysis of multi-energy
systems. This methodology is then explored in Chapter IV within a model-predictive
control setting to investigate resilience of large multi-energy systems under severe
disturbances.

The work presented in this chapter appears in the Proceedings of the 17th Power
Systems Computation Conference [78].

3.2 Multi-energy system example

As mentioned in Section 1.2.1, a multitude of approaches exists for formulating
multi-carrier energy networks. This chapter focuses discussions on the systems-based
“hybrid energy hub” model developed in [15]. Essentially, energy can enter an energy
hub from multiple attached networks, undergo various lossy conversion and/or storage
processes, and exit the hub to adjacent energy networks or loads. One can consider
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Figure 3.1: An example of a central utility plant with thermal storage modeled as an
energy hub.

energy hubs as being representative of cities, universities, hospitals, military bases,
or even personal homes where energy demands, generation, and transport are multi-
energy in nature. An illustrative example of an energy hub is given in Figure 3.1,
where a fictitious central utility plant (CUP) is modeled as an energy hub. The
hub is an interface between standard utilities (natural gas and electricity) and local
cooling, heating, and electric loads. The CUP utilizes a chiller sub-system (C), a boiler
sub-system (B), a cogeneration facility (Cogen), and distribution-level transformer
(T). The chiller sub-system converts electricity into cooling through a refrigeration
cycle. The boiler sub-system can convert natural gas into district heating (via boilers)
and/or cooling (via absorption chillers). The co-generator employs a furnace and
steam turbine to generate hot steam (for heating) and electricity, respectively. In
this example, a transformer has been retrofitted with a waste heat recovery unit that
captures ohmic transformer losses in the form of heat. Finally, the produced cooling
can be stored in a thermal energy storage (TES) device, such as ice storage. Losses
associated with each conversion and storage process may be variable depending on
efficiency parameters and input / output levels. The relationship between energy
input P and energy output L in the CUP example is defined by the following:

• Inputs:

Pnat gas � Pnat gas,B � Pnat gas,Cogen (3.1)

Pel � Pel,C � Pel,T (3.2)

• Outputs:

Lcool � CC,elÑcoolPel,C � CB,nat gasÑ coolPnat gas,B �QTES,cool (3.3)

Lheat � CC,elÑheatPel,T � CB,nat gasÑheatPnat gas,B (3.4)

� CCogen,nat gasÑheatPnat gas,Cogen

Lel � CCogen,nat gasÑelPnat gas,Cogen � CT,elÑelPel,T (3.5)
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Figure 3.2: A generalized energy hub model illustrating all possible energy-conversion
paths and the five major hub building blocks: input sources, input storage, converters,
output storage, and output sinks.

where Cx,yÑz is the conversion efficiency of converting y to z in converter x and
QTES,cool is the charging (  0) or discharging (¡ 0) of cooling from TES device.
Further details on modeling of energy hubs are included below and this example will
be revisited then.

3.3 Modeling the Energy Hub

In the example of Figure 3.1, a CUP operator may utilize the TES device for
peak-shaving to minimize electricity costs or employ the absorptions chillers in the
boiler sub-system to provide cheap cooling. Such scenarios can be tabulated based
on the control actions available for a CUP operator. The variables associated with
a general energy hub can be classified into independent (control/decision) variables,
dependent (state) variables, and constant hub parameters. The decision variables are
those quantities that a system or hub controller can directly manipulate.

3.3.1 Nomenclature

Most common energy hubs can be constructed from interconnections of five simple
building blocks: input energy sources, input energy storage, energy converters, output
energy storage, and output energy sinks. These five building blocks are illustrated in
Figure 3.2. In describing the flow of energy from hub input to hub output, there is a
need to consider the flow between each of the five blocks of the hub. Let h P H be a
hub from the set of available hubs, where h has input sources i P t1, 2, . . . , Ninu and
output sources n P t1, 2, . . . , Noutu.

The main mathematical symbols used in this chapter to describe the energy hub
model are classified below for quick reference.
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Table 3.1: Classification of variables in an energy hub

Variable Type Variables

Decision pPij, Qin
i , Q

out
n

Dependent Pi, E
in
i , E

out
n , Ln

Constant Parameter Cijn, η
in
c,i, η

in
d,i, η

out
c,n , η

out
d,n

Pi - hub energy flow input i.

Qin
i - hub input-side energy storage flow from input i.

Ein
i - hub input-side energy storage state-of-charge at input i.

ηin
c/d,i - hub storage interface charge (c) / discharge (d) efficiencies at input i.

pPij - hub dispatch energy flow from input i directed to converter j.

Cijn - efficiency of converting energy input i into output type n through converter j.

Qout
n - hub output-side energy storage flow to output n.

ηout
c/d,n - hub storage interface charge (c) / discharge (d) efficiencies at output n.

Eout
n - hub output-side energy storage state-of-charge at output n.

Ln - hub energy flow output n.

Table 3.1 categorizes the variables that arise in the energy hub model and are de-
scribed in detail in the following sections. Within the proposed modeling framework,
generation, conversion, and energy storage utilization processes can be controlled.
Efficiencies related to conversion and storage charging/discharging processes are, gen-
erally, variable based on flow rates. However, for the purposes of the work herein,
analysis assumes constant efficiencies. Therefore, the corresponding hub efficiencies
are considered as constant parameters. Note that due to the profusion of notation,
slight abuses of the notation presented in Chapter II are inevitable.

3.3.2 Formulating a linear model

Let Pi be the input flow from source i at hub h. Referring to Figure 3.3a, to
describe the flow from input source i to a converter j, we have to take into account any
input storage devices and possible dispatch factors. The dispatch factors νij P r0, 1s
determine the dispatch flows pPij, which describe the amount of input flow i that is
directed to converter j.

From Figure 3.3a, it is straightforward to see that

Pi � Qin
i �

ki̧

j�1

pPij (3.6)
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Figure 3.3: Decomposing the energy hub model based on dispatch flows.

where Qin
i is the flow into input storage device i and pPij is one of the ki flows deter-

mined by the dispatch factors, νij, such that

pPij � νijpPi �Qin
i q (3.7)

and
ki̧

j�1

νij � 1, 0 ¤ νij ¤ 1. (3.8)

Note that (3.8) ensures conservation of flow between input storage and converter
blocks. Employing (3.7) and (3.8), one can eliminate dispatch factors νij to obtain

0 ¤ pPij ¤ Pi �Qin
i . (3.9)

Referring to Figure 3.3b, output flows Ln are obtained by converting dispatch
flows pPij. Converter Cijn converts the j-th dispatch flow of input source i into output
source n. The output flows Ln must also take into account any output storage device
flow, Qout

n . Thus, modeling hub output flows gives,¸
i

¸
jPDpi,nq

Cijn pPij � Qout
n � Ln. (3.10)

where Dpi, nq is the set of dispatch flows from input i that can be converted to output
n, and |Dpi, nq| ¤ ki.

The previous analysis did not consider the effects of storage flows on state-of-
charge (SOC). With regard to input and output energy storage devices, one must
consider multiple time periods since, for energy source p, the SOC at time k � 1,
depends on the SOC in the previous time step k. To simplify notation, input and
output storage denotations, p.qin/out, are omitted here. For energy storage, assume:

• steady-state storage power values

• a constant slope for 9Epptq � dEpptq{dt, and

• treat storage interface as a converter device with charging and discharging effi-
ciencies ηc,p and ηd,p,
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then employing the mixed-integer linear storage model, based on (2.93) and (2.94),
yields the following linear relationship between storage flows Qp and the state-of-
charge Ep:

Eprk � 1s � Eprks � ηc,pQc,prks � 1

ηd,p

Qd,prks (3.11)

Qprks � Qc,prks �Qd,prks (3.12)

with

�p1� zprksqQp
¤ Qd,prks ¤ 0 (3.13)

0 ¤ Qc,prks ¤ zprks Qp (3.14)

where zprks P t0, 1u, and Qp and Q
p

are constant limits on the flow into and out of

device p. Thus, when zprks � 0, storage device p is in discharging mode at time k
(as Qc,prks � 0), while zprks � 1 implies p is in charging mode (with Qp,disrks � 0) at
time k.

3.3.3 Matrix notation for energy hub model

Consider discrete time-steps k. From (3.6) and (3.9), the relationship between
input sources and input storage can be written in matrix form as,

Phrks � Sinh Qin
h rks � Fh

pPhrks (3.15)

with

0 ¤ pPhrks ¤ FJ
h pPhrks � Sinh Qin

h rksq (3.16)

for all h P H where Sinh is the input storage coupling matrix and Fh is the dispatch
flow matrix.

From (3.10), the output flows for hub h can be written in matrix form as,

Lhrks � Ch
pPhrks � South Qout

h rks (3.17)

for all h P H where Ch is the converter coupling matrix and South is the output storage
coupling matrix.

The input-output agnostic energy storage equations as defined in (3.11) and (3.12),
yield matrix equations:

Ehrk � 1s � Ehrks �Nc,hQc,hrks �Nd,hQd,hrks (3.18)

Qhrks � Qc,hrks �Qd,hrks (3.19)

for all h P H where Nc,h � diagpηc,1, . . . , ηc,Nq and Nd,h � diagp1{ηd,1, . . . , 1{ηd,Nq
are diagonal matrices of charging and discharging efficiencies, respectively.

Furthermore, since each hub h is completely described by its local matrices Sinh ,
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Fh, Ch, and South , each hub is decoupled and one can describe the entire set of hubs
H by constructing block-matrices from the h-specific matrices. For example, the
converter coupling matrix for the entire set H is defined by:

C �

�����
C1 0 � � � 0

0 C2
. . .

...
...

. . . . . . 0
0 � � � 0 C|H |

����.
Thus, the following (mixed-integer) linear relations fully describe a general class of
energy hubs and hold for all time-steps k:

Prks � SinQ
inrks � FpPrks (3.20a)

Lrks � CpPrks � SoutQoutrks (3.20b)

Einrk � 1s � Einrks �Nin
c Qin

c rks �Nin
d Qin

d rks (3.20c)

Eoutrk � 1s � Eoutrks �Nout
c Qout

c rks �Nout
d Qout

d rks (3.20d)

Qinrks � Qin
c rks �Qin

d rks (3.20e)

Qoutrks � Qout
c rks �Qout

d rks (3.20f)

with

0 ¤ pPrks ¤ FJPrks � FJSinQ
inrks (3.20g)

0 ¤ Qin
c rks ¤ Q

in
zinrks (3.20h)

�Qinp1� zinrksq ¤ Qin
d rks ¤ 0 (3.20i)

0 ¤ Qout
c rks ¤ Q

out
zoutrks (3.20j)

�Qoutp1� zoutrksq ¤ Qout
d rks ¤ 0 (3.20k)

zini rks, zoutn rks P t0, 1u @i, n. (3.20l)

This formulation is mixed-integer because the elements of z � colpz1, . . . , zNq are
binary variables that determine charging or discharging behavior of energy storage
devices at each time-step k. Note that diagonal matrices Q � diagpQ1, . . . , QNq
and Q � diagpQ

1
, . . . , Q

N
q represent the energy storage charge and discharge power

limits, respectively.

Remark III.1 (Value of proposed (MI)LP hub formulation). The significant differ-
ence between the linear formulation of the energy hub model presented in equations
(3.20a) and (3.20b), and the common input-to-output hub equation developed in [14]
and repeated here:

Lh � ChPh � ShQh, (3.21)

is that the formulation developed in this chapter explicitly takes into account the
dispatch factor flows, and, therefore, the four matrices Sinh , Fh, Ch, and South are all
constant. In the case of (3.21), the matrices Ch and Sh depend on the dispatch fac-
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tor control variables νij, which introduces nonlinearities. Thus, along with a linear
reformulation of energy storage via the proposed mixed-integer charge/discharge for-
mulation, a strictly linear, yet, equivalent description for hub h has been constructed
in this chapter. The linear model is amenable to straightforward (mixed-integer)
linear optimization and guarantees that optimal solutions are globally optimal. In
addition, the mixed-integer formulation of the energy storage model can be relaxed
depending on the optimization problem and, therefore, the linear hub formulation
proposed in this chapter enables a strictly linear and continuous hub model. Hav-
ing a linear model permits large-scale simulations of multi-energy systems, which is
explored in Chapter IV.

3.3.3.1 Multi-energy system example revisited

To illustrate the matrix notation, apply the energy hub matrix formulation to the
multi-energy example discussed in Section 3.2. First, denote the input/output energy
sources, converters, and storage by the following indices:

Input sources: tnatural gas, elu :� t1, 2u (3.22)

Converters: tC, B, Cogen, Tu :� t1, 2, 3, 4u (3.23)

Output sources: tcooling, heating, elu :� t1, 2, 3u (3.24)

Storage: tTESu :� t1u. (3.25)

Then, the matrices that relate input P and output L are given by:

P �
�
P1

P2

�
�
�

1 1 0 0
0 0 1 1

������
pP12pP13pP21pP24

����� (3.26)

� FpP
L �

�� L1

L2

L3

�� �
�� C121 0 C211 0
C122 C132 0 C242

0 0 0 C243

��
�����

pP12pP13pP21pP24

������

����
�1

0
0
0

�����
Q1

�
(3.27)

� CpP� SoutQout.

Remark III.2. Notice how the dispatch flow matrix F is block-diagonal with each
block given by a row-vector of ones. This holds true in general as well, since the sum
of dispatch flows must equal the input source flow. That is, F � diagp1J1 , . . . ,1JNin

q
where 1i � colp1, . . . , 1q is a column vector of ones with length equal to the number of
dispatch factors for input source i P t1, . . . , Ninu. Furthermore, the converter coupling
matrix C exhibits a specific output energy source for each row and a unique converter
for each columns. Thus, entry pn, jq in C describes how much converter j participates
production of energy source n. Finally, the Sout matrix utilizes a �1 since discharging
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is a negative quantity that increases corresponding hub output.

3.4 Interconnection of Energy Hubs

Energy hubs are interconnected via adjacent energy supply networks. The previ-
ous section defined how power flowed through an energy hub from input to output.
To describe the flow of energy between hubs, it is generally necessary to include power
networks, which are described in detail in Section 2.4. A power network is a simple
graph with additional physical constraints corresponding to the specific nature of the
network, e.g. electrical or natural gas. Define the sets of generator and load nodes as
C, D � N where generator nodes inject power into the network while load nodes con-
sume power from the network. The remaining nodes are called throughput nodes and
neither inject nor consume power. Every network must satisfy flow balance. That is,
the sum of flows into and out of node i must equal the flow injected Gi, or consumed
�Di, at node i. Thus, for each node i in the network the following holds:

¸
jPΩN

i

fij � bi �
$&%

Gi i P C
�Di i P D
0 otherwise

(3.28)

However, with the inclusion of energy hubs, there is a need to consider flows
between energy hubs and networks at each node i, and (3.28) becomes,¸

jPΩN
i

fij �
¸
lPHpiq

Pl �
¸

mPHpiq

Lm � bi (3.29)

where Hpiq is the set of hubs connected to node i, Pl is the energy source (i.e. input)
of hub l, and Lm is the energy sink (i.e. output) of hub m. As before, bi contains
generator and demand variables and can be separated into injected generator flows
fG and consumed load flows fD. Thus, the flow balance equation in (2.99) can be
generalized to that of an interconnected system of energy hubs,

Af �HIP�HOL�GAfG �DAfD � 0 (3.30)

where P is the vector of all hub inputs, L is the vector of all hub outputs, fG is
the vector of all generator injections, fD is the vector of all consumer energy de-
mands, HI is the hub input flow matrix, HO is the hub output flow matrix, GA is the
generator-node matrix, and DA is the load-node matrix. For example, if hub input
Pl is connected to node i then HIpi, lq � 1, and if generator fGk

is at node i then
GApi, kq � �1. Otherwise the entries are all zeros. The other two matrices are de-
fined in a similar manner. Since no control over the network topology is assumed, the
matrices are constant parameters. Thus, we can restate (3.30) in terms of function
Λn for network n,

Λnpf , fG, fD,P,Lq � 0. (3.31)
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As shown in (3.31), the connection between energy hubs and power networks only
exists at hub inputs and outputs. In addition, energy hubs provide the opportunity
for coupling multiple energy networks. However, the energy type of each network is
subject to specific physical constraints arising from the nature of the power flow. For
example, the additional constraints imposed on an electrical power network can be
expressed in the form of the linear DC flow model1:

fij � θi � θj
xij

, (3.32)

where xij is the reactance of arc pi, jq and θi is the voltage phase-angle at node i.
As detailed in Section 2.3, the DC model approximates the nonlinear (and more
representative) AC power flow. However, such energy flow constraints can also be
highly nonlinear. A commonly cited nonlinear power flow constraint is exhibited in
natural gas networks, where the power flow through pipelines depends in a nonlinear
manner on the pressure pi applied at the nodes [79],

fij �
"

kij
?
pi � pj if pi ¥ pj

�kij?pj � pi if pi   pj
(3.33)

where kij is a constant pertaining to the specific gas and pipeline properties. In
addition, power is necessary to maintain pressure at the nodes, which introduces the
nonlinear compressor constraints,

fcom,ij � kcomfij ppi � pjq (3.34)

with kcom a constant describing the properties of the compressor. In general, however,
the physical constraints of any network n can be denoted by an equation of the form,

Γnpf , ξn, Anq � 0 (3.35)

where ξn are the state variables associated with the physical constraints, and An is
the node-arc incidence matrix for network n. Note that Γn is independent of the
energy hubs.

3.5 Multi-Period Optimal Dispatch Formulation

Combining the energy hub and network models discussed in the previous sec-
tions, one can form an appropriate optimization problem given an objective func-
tion. The optimization problem considers a prediction-horizon of NT time-steps,
k � t0, 2, . . . , NT � 1u. The objective function maps systems states and control vari-
ables to a scalar cost and the goal of optimization is to reduce the cost of operating
the multi-energy system (i.e. provide energy to satisfy demands at lowest cost possi-

1There exists limitations of the approximate DC flow model, however, since the work herein is
primarily within the context of energy exchanges between the multiple networks, this approximate
model is sufficient.
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ble). This is similar to the economic dispatch problem in electric power systems and,
thus, the multi-energy optimization problem is denoted the Multi-Period Optimal
Dispatch Formulation (MPODF).

Analyzing the optimal dispatch scenarios of power across interconnected energy
hub systems allows determination of how to best employ energy hubs, energy hub
storage, network generation, and energy resources. From (3.18) and the introduction
of binary integer variables, energy storage devices require optimization over multiple
periods with binary variables. In addition, the physical constraints in (3.35) are
often nonlinear, which means that the MPODF, generally, represents a multi-period
nonlinear mixed-integer programming problem:

min
pP,fG,Q

NŢ

t�1

F
�
Prks, pPrks,Lrks, fGrks, fDrks	 (3.36a)

subject to

Prks � SinQ
inrks � FpPrks @k (3.36b)

Lrks � CpPrks � SoutQ
outrks @k (3.36c)

Qinrks � Qin
c rks �Qin

d rks @k (3.36d)

Qoutrks � Qout
c rks �Qout

d rks @k (3.36e)

Einrk � 1s � Einrks �Nin
c Qin

c rks �Nin
d Qin

d rks @k (3.36f)

Eoutrk � 1s � Eoutrks �Nout
c Qout

c rks �Nout
d Qout

d rks @k (3.36g)

Λn pf rks, fGrks, fDrks,Prks,Lrksq � 0 @n, @k (3.36h)

Γn pf rks, ξrksn, Anq � 0 @n, @k (3.36i)

0 ¤ pPrks ¤ FJpPrks � SinQinrksq @k (3.36j)

0 ¤ Qin
c rks ¤ Q

in
zinrks @k (3.36k)

�Qinp1� zinrksq ¤ Qin
d rks ¤ 0 @k (3.36l)

0 ¤ Qout
c rks ¤ Q

out
zoutrks @k (3.36m)

�Qoutp1� zoutrksq ¤ Qout
d rks ¤ 0 @k (3.36n)

0 ¤ Einrks ¤ Emax
in @k (3.36o)

0 ¤ Eoutrks ¤ Emax
out @k (3.36p)pPmin ¤ pPrks ¤ pPmax @k (3.36q)

Lmin ¤ Lrks ¤ Lmax @k (3.36r)

fminG ¤ fGrks ¤ fmaxG @k (3.36s)

0 ¤ |fGrk � 1s � fGrks| ¤ R
ramp

G @k (3.36t)

fminD ¤ fDrks ¤ fmaxD @k (3.36u)

fmin ¤ f rks ¤ fmax @k (3.36v)

zini rks, zoutj rks P t0, 1u @i, @j, @k (3.36w)
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where k P t1, 2, . . . , T u and n P N with N as the set of all energy carrier networks in
the system. Of course, the dynamic SOC states Erks must be initialized at k � 0.

The objective function F in (3.36a) may take a variety of forms for different stud-
ies. It will, therefore, depend on a range of variables, including energy hub inputs,
outputs, and converter utilization, as well as network loads and generators. Equality
constraints (3.36b)-(3.36g) describe the energy hub flow equations from Section 3.3,
while inequality constraints (3.36j)-(3.36r) pertain to limits on dispatch flows, en-
ergy storage levels, charge/discharge flows, and hub input and output flows. The
flow balance and physical constraints from Section 3.4 are described by equality con-
straints (3.36h) and (3.36i). Finally, the inequality constraints (3.36s)-(3.36v) arise
from limits on network generators and loads, and flow capacities of network arcs.
Additional constraints could be added depending on the scenario. For example, en-
ergy SOC levels may be required to satisfy a terminal constraints to enable energy
conservation: Er0s ¤ ErNT s over interval r0, NT s.
Remark III.3. As has been discussed, there exists many ways to improve the
tractability of mixed-integer non-linear MPODF. For example, the convexification
of the SOC difference equations by omitting integers and linearizing power flows
about salient operating points would enable a strictly linear MPODF problem since
the energy hub model is linear.

3.6 Automated Analysis: Hubert

The energy hub network formulation presented in the previous section is employed
to develop a concise ASCII-based format for describing a general energy hub network.
Such a format allows one to take advantage of the inherent flexibility of the energy
hub model and easily interfaces with Matlab and other optimization solvers to model,
simulate, and analyze large multi-energy systems. The ASCII format together with
analysis and simulation tools is what is referred to as “Hubert,” in honor of the energy
hub. Figure 3.4 gives an overview of Hubert: given a physical multi-energy system
(modeled as an energy hub network), employ the ASCII format to succinctly describe
the system and use Matlab to perform optimization, analysis, and simulation.

3.6.1 Header Information

Before establishing the energy hub and network formats, one must initialize the
system with a system header that describes how many hubs and energy carrier net-
works the system employs. The header also allows users to specify the number of
time-intervals they desire for the optimal dispatch problem.

3.6.2 Hub Format

To characterize a general energy hub, one only needs to be able to describe the
four matrices: Sinh , Fh, Ch, and South from (3.15) and (3.17). Construction of these
four matrices takes advantage of the simple building blocks nature of any energy hub
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Figure 3.4: Overview of Hubert data flow.

and the knowledge that the flow of any hub input must enter input storage (Sinh ),
divide into dispatch flows (Fh), enter converters (Ch), and/or enter output storage
(South ) before reaching a hub output. Therefore, by describing each hub’s input flow
to a converter, possibly through an input storage device and dispatch factors, and
from converter to output, possibly through an output storage device, it is possible
to construct the four matrices that characterize that specific energy hub. This hub
description can be captured by the proposed ASCII-format description file.

An example energy hub is shown in Figure 3.5 with accompanying ASCII-format
description in Listing III.1. The first line of Listing III.1 (starting with “H”) identifies
the hub ID number (1), the number of total hub dispatch factors (3), the number
of hub inputs (2), and the number of hub outputs (2). Next, the format describes
how the power flows through the hub. Input 1 (P1) enters from node 3 in network 1,
p1, 3q, and has two dispatch factors that each enter a separate converter. The first
dispatch factor, df(1,2), enters converter CF , which has one output with efficiency
0.6, c(1,0.6). The output flow from this converter leaves the hub at L1 and is
injected into node 1 of network 3, p3, 1q. Line 2 represents the second dispatch factor
df(2,2) and is similar to line 1, except now we have two outputs from converter
CCHP into two different networks. The last line in Listing III.1 represents input P2.
This input utilizes input storage Ein with charge and discharge efficiencies 0.8 and
0.7, respectively, initial storage level 0 p.u., and maximum energy storage capacity of
6 p.u., s(0.8,0.7,0,6).

H 1 3 2 2
(1 , 3 ) df ( 1 , 2 ) c ( 1 , 0 . 6 ) ( 3 , 1 )
( 1 , 3 ) df ( 2 , 2 ) c ( 2 , 0 . 3 , 0 . 3 5 ) (3 , 1 ) ( 2 , 1 )
( 2 , 5 ) s ( 0 . 8 , 0 . 7 , 0 , 6 ) df ( 1 , 1 ) c ( 1 , 0 . 8 ) ( 2 , 1 )

Listing III.1: Description of the energy hub in Figure 3.5.
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Figure 3.5: Example energy hub used to describe ASCII format.

With only one dispatch flow pP21, described by df(1,1), the flow enters converter
CTR, which has one output with efficiency 0.8, c(1,0.8). Finally, the flow is injected
into node 1 of network 2, p2, 1q.

To indicate output storage, the storage string block s(0.8,0.7,0,6) is moved
between the converter and output source. In the case of multiple output converters,
as in Figure 3.1, additional output storage flags can be used to denote which outputs
employ output storage devices.

3.6.3 Network Format

Fully describing the energy-carrier networks that interconnect energy hubs re-
quires one to consider power balance and power flow constraints, (3.30) and (3.35),
respectively. The matrices HI and HO from (3.30) can be constructed from the en-
ergy hub description of inputs and outputs in Section 3.6.2. Thus, for any network
n, one needs only describe matrices A, GA, and DA from (3.30) and Γn from (3.35).
To describe the first three matrices is relatively straightforward based on the network
topology and location of all generators and loads. However, describing Γn is more
difficult due to the potentially large variety of nonlinear physical networks and net-
work parameters. For example, electricity, natural gas, and district heating are all
different networks that require different physical constraints and parameters. Electri-
cal networks (DC model) require reactance values, while natural gas networks require
pipeline length and diameter, operating temperatures and pressures, and gas-specific
values to describe flows between nodes. Nonetheless, by assigning network types to
each network and making simplifying assumptions about the physics of each network,
it is possible to define concise network-specific formats that allow representation of
a simplified model of any network. For example, referring to (3.33), only a single
parameter kij is required to describe the nonlinear flow of natural gas. As of this
writing, the format in our libraries supports the following networks: electrical DC
flow model, linearized natural gas flow model with linearized compressor stations,
simplified district heating, and forecasted renewable (i.e. wind) power.

Figure 3.6 presents a simple (bidirectional) graph with four nodes and four edges,
which models a small electrical power network. A DC power flow representation of
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Figure 3.6: Example of a small electrical network (with nodal numbering).

the network is described by the network format in Listing III.2.

IC 1 2 4 4 1 1 0
1 2 0 .05 10
1 3 0 .05 10
2 3 0 .05 10
3 4 0 .05 10

Generators
1 l im (0 ,100) ( 9 , 0 . 0 9 )
Loads
3 l im (1)

Listing III.2: Format for describing the network in Figure 3.6.

The first line (starting with IC) describes the network ID (1), network type (2),
number of nodes (4), number of arcs (4), number of generators (1), number of loads
(1), and number of miscellaneous components (0). The network ID is used in the
description of energy hubs’ input and output sources, as discussed in Section 3.6.2.
Network type specifies the expected model (and format) used to represent the physical
power flow constraint parameters. The number of miscellaneous components provides
a way to describe network-specific components, such as natural gas compressor sta-
tions. Since no such components are needed to describe the electrical network, its
value is 0 in the example.

The next four lines are necessary to construct the node-arc-incidence matrix, and
follow the same format for each arc. For example, Line 2 in Listing III.2 states that
node 1 and node 2 in the network are connected with a parameter-value (reactance
xij) of 0.05 p.u. and a flow capacity of 10 p.u.

From the description of each edge (i.e. transmission line) in the network, it is
straightforward to determine node-arc incidence matrix A, however, to determine
generator and load mapping matrices GA and DA it is necessary to explicitly list
the generators and loads in the network. Thus, the format lists which nodes are
generators (node 1) and loads (node 3). In addition, the format allows the user to
specify per-unit limits on generation lim(0,100) and loads (fixed at 1 in example), as
well as associated linear and quadratic generator costs curves for use in the objective
function, (9,0.09). Furthermore, the limits on generators and loads do not have to
be numeric. In fact, an expression with variable generator or load limits is permitted
by the format. For example, to denote a variable (e.g. forecasted) nominal load,
replace lim(1) with lim(0,Pd el), where Pd el P RNT is a vector defined a-priori
(e.g. in MATLAB) with an entry for each time-step of the optimization. The format

56



Network xky N E G D

Electrical 4.36 100 218 12 22
Gas 4.88 100 244 8 8
Wind 0 20 0 20 0
Heat 0 30 0 0 30

Table 3.2: Topological characteristics of 102-hub energy network.

for other types of networks is similar, but may require different network-specific arc
parameters.

3.7 Simulation

The format described in Section 3.6 allows for the construction of arbitrarily large
interconnected energy hub networks and, together with MATLAB and a quadratic
programming (QP) solver, seamlessly enables a solution to the optimal power dispatch
problem formulated in (3.36).

3.7.1 System Construction

To explore the benefit and utility of the linear formulation and the proposed
ASCII format, a large example energy hub system is constructed which consists of an
electrical network, a natural gas network, district heat loads, and wind farms. Thus,
the energy hubs couple the four different energy types. To construct the large energy
hub system, the technique proposed in [80] for building random graphs that resemble
electric grids is employed. The technique randomly places nodes on a r0, 1s � r0, 1s
grid with uniform distribution. Then, based on a realistic average nodal degree and
a maximum normalized arc length, nodes are connected based on an exponential arc-
length distribution. Essentially, nodes that are close are more likely to be connected
by an arc than nodes that are far away. The parameters used to construct the grids
are in per unit (p.u.) and vary with uniform distribution within pre-specified ranges.
Due to the size and random construction of the large electrical and natural gas net-
works and random interconnectivity of energy hubs, a meaningful visualization of
the energy hub system is not straightforward and is, therefore, excluded here. How-
ever, via application of graph drawing software, such as GraphViz [81], meaningful
visualization is a possibility for the future.

The topological characteristics of the large energy hub system are given in Ta-
ble 3.2. The values N , E, G, and D represent the number of nodes, arcs, generators,
and loads, respectively, while xky is the average nodal degree. The wind and heat
networks have no arcs and consist of generators and demands, respectively. A total of
102 energy hubs are employed to couple the four energy-carrier networks via randomly
selected nodes. The energy hubs are used to connect from the electrical network to
gas and heat networks, from the gas network to electrical and heat networks, and from
the wind network to the electrical network. All other network couplings, i.e. from
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gas to wind, are excluded in this simulation. The energy hubs connecting the wind
network to the electrical network have output storage, while hub storage is added
randomly to 75% of the remaining hubs. The system is assigned 24 time-intervals,
corresponding to one complete day of operation. The consumer demand (load) and
generation costs are variable and are set to peak near midday, while wind power is
also variable and available mostly in the early and later parts of the day.

3.7.2 Simulation Results

The large hub system of Table 3.2 is represented using the ASCII format of Sec-
tion 3.6, which allows for automatic construction of all the matrices necessary for
solving the optimal dispatch problem in (3.36). The MPODF problem linearizes all
power flow constraints and employs quadratic generator costs, resulting in a multi-
period mixed-integer quadratic programming (MPMIQP) problem with 1942 (118
integer) variables per one-hour time-step. The MPMIQP problem was solved in 253
seconds within Matlab by interfacing with CPLEX 12.1 on a 2.8 GHz Intel Core 2
Duo MacBook Pro with 4 GB RAM. The results are shown in Figure 3.7.

The cost of wind power generation is assumed negligible (i.e. zero) and capital
costs associated with installation and maintenance of storage are also not considered
herein. In Figure 3.7a, the costs of electrical and natural gas generator injections are
given in normalized monetary units (m.u.) and vary with time, peaking at hour 13.
Consumer demand is also variable and peaks at that time, as depicted in Figure 3.7c-
(b), raising the cost of supply. The objective function seeks to minimize the overall
generator dispatch costs, which, as shown in Figure 3.7c-(a), begets an initial optimal
response that causes a large amount of relatively cheap power to be injected into the
system by the electrical and wind generators. This surplus injected power is utilized
by energy hub storage devices as depicted in Figure 3.7c-(c) to maximize storage SOC
levels before the generator costs and consumer demand reach their respective peaks
near hour 13. After building up the energy storage SOC levels, the available wind
power decreases during the middle of the day. Storage is utilized throughout the peak
demand period to minimize generation during the most costly intervals. After time
interval 18, the wind is strong enough to supply all electrical loads and most of the
gas and heating loads.

The impact of storage on the cumulative energy cost over the 24-hour interval is
shown Figure 3.7b. Building up the energy storage levels incurs a non-trivial initial
cost. However, due to the time-varying price of generation, an overall savings of 5%
is achieved when compared to the same system with no storage. In fact, as depicted
in Figure 3.7b, the system with no storage becomes more expensive to operate at
time-interval 13, which coincides with peak consumer demand. The ability to store
low-cost energy and inject it during more expensive periods provides overall savings.

It is worth keeping in mind that these studies were performed on a non-trivial
energy hub system that included 250 nodes in four different energy networks and
102 energy hubs.

58



1 4 8 12 16 20 24
0

5

10

15

Time Interval

C
o
st

(m
.u

.)
Cost of 1 p.u. Power for different Generators

Electric
Nat. Gas

(hr.)

(a) Variable generator fuel costs.

1 4 8 12 16 20 240

0.5

1

1.5

2

2.5x 104 Cumulative Cost of Supplying Demand

C
o
st

(m
.u

.)

Time Interval

With Storage
Without Storage

(hr.)

(b) Cost comparison for energy hub system
with and without storage.

1 4 8 12 16 20 24
0

50

100

150

P
o
w

er
(p

.u
.)

(a) Total Power Injected into System by Different Networks

1 4 8 12 16 20 24
0

50

100

150

P
o
w

er
(p

.u
.)

(b) Total Power Consumed from System by Different Networks

1 4 8 12 16 20 24
0

200

400

600
(c) Total Energy Stored in Energy Hubs

E
n
er

g
y

(e
.u

.)

Time Interval

Electric
Nat. Gas
Wind

Electric
Nat. Gas
Heat

(hr.)

(c) Optimal power dispatch results.

Figure 3.7: Simulation results of 24-hour MPODF for a multi-energy system with 250
nodes and 102 energy-hubs.
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3.8 Summary

This chapter motivates multi-energy systems and introduces the concept of the
energy hub. A strictly linear model of the energy hub is developed that is amenable
to a linear optimization formulation. Then, a concise ASCII-based text format is
described to enable a straightforward and flexible framework for solving a general
class of optimization problems that involve large-scale energy hub systems. The ideas
are brought together with a numerical simulation of an energy hub system of more
than 100 energy hubs.

In extending this work, it is of interest to include the study of large-scale cas-
cading failures, which have been studied extensively in decoupled electrical networks.
However, research on cascading failures in large multi-energy systems has generally
not considered the concept of energy storage or energy hubs. Simulating cascading
failures requires large networks and the tools developed in this chapter allows one to
establish and manipulate large energy-hub systems in an efficient manner. Extend-
ing the results from this chapter, energy hubs within a cascade mitigation setting is
explored in Chapter IV.
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CHAPTER IV

Model-predictive Cascade Mitigation

4.1 Introduction

A significant extension of the work presented in Chapter III underlies this chap-
ter. Employing the optimization framework and ASCII system format developed in
Chapter III, arbitrarily large energy hub systems can be constructed and simulated.
This allows for investigations of large-scale energy systems under severe disturbances
(i.e. line outages), which comprises the core of this chapter. Specifically, two model-
predictive control-based cascade mitigation approaches are analyzed herein. The first
approach represents our initial work in the area, which evolves into second practical,
yet rigorously justified, cascade mitigation scheme.

The chapter is organized as follows. First, basic relevant concepts are described,
including line-tripping models. Then, a bi-level cascade mitigation scheme that con-
siders economic and security objectives is discussed. Two cascade mitigation ap-
proaches utilizing model-predictive control (MPC) are detailed: shrinking horizon
and receding horizon. The former employs the multi-energy formulation from Chap-
ter III within a simplified shrinking-horizon MPC framework to highlight the role of
energy storage and represents a first attempt of large-scale employment of energy hubs
within a cascade mitigation framework. The second approach refines and improves
upon the shrinking-horizon MPC scheme and focuses on receding-horizon MPC of
electric power systems and a thorough analysis of the scheme is provided. The reced-
ing horizon MPC scheme is complemented with a case-study of an augmented version
of the IEEE RTS-96 test network to highlight the practical, yet rigorously justified,
cascade mitigation scheme.

The work presented in this chapter appears or is going to appear in the proceed-
ings of the the 50th and 52nd IEEE Conference on Decision and Control and the 2012
Power & Energy Society General Meeting, and two manuscripts are in preparation to
be submitted to the IEEE Transactions of Power Systems (see [82], [83], [84], [85], [86]).

4.2 Basic concepts and definitions

To ameliorate possible confusion with terminology, relevant definitions and con-
cepts are described in this section.
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Figure 4.1: From left to right, illustration of the general process of a cascade failure
in a network: initial disturbance, overloads and line tripping, and terminal blackout.

4.2.1 Cascade failures

From left to right, Figure 4.1 illustrates the three stages of a cascading failure:
initial disturbance (left side of figure), cycles of line outages and flow redistributions
(center), and a terminal blackout (right). Cascade failures are initiated when a distur-
bance occurs that forces a redistribution of flows. A line outage, generally, diminishes
the network capacity, which causes additional lines to become overloaded and, if over-
loads are not alleviated, more lines may go out of service. If left uncontrolled, the
cycle of line outages and redistribution of flows is referred to as a cascade failure. A
cascade failure generally terminates in a major blackout, with large areas of a network
unable to supply demand.

Furthermore, for electric power grids, a cascade is multi-scale in a somewhat un-
usual way. After the initial fault, the first stages of grid failure can proceed relatively
slowly, on a scale of hours or minutes. If a cascade develops, the pace of failures
can accelerate, with later waves happening on a scale of even seconds. This has im-
portant consequences for any control strategies. Since longer time scales allow for
significant computations to be performed, corrective control strategies may extend
the time between stages, can become an important method for mitigating a cascade.

Remark IV.1 (Braess Paradox). The Braess Paradox [87] states that adding capac-
ity to networks can, in some instance, actually increase congestion. Thus, an analogue
in power systems would be that removing capacity (or lines) may not always lead to
increased congestion, overloads, and a cascade failure, see [33] for such examples.

4.2.2 Line tripping

Definition IV.2 (Line Tripping). When lines exceed their limits, it is possible that
these lines trip. The term “tripping” refers to the event that causes a line to go from
being in-service (i.e. ON) to out-of-service (i.e. OFF). When a line pi, jq is tripped
(i.e. out of service) the following must hold:
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• no flow (or losses) across pi, jq: fij � 0.

• node i and j are decoupled in power flow equations. For example, for DC power
flow, the constraint xijfij � θi � θj does not have to hold.

In general, one of the main goals of a system operator is to ensure that line flows
stay within predefined flow limits, which represents a form of network reliability.
Therefore, if fijptq and uij are the (bidirectional) power flow and the power flow
rating (i.e. limit) on arc pi, jq at time t, respectively, then, it is desirable to enforce
the line flow limit:

|fijptq| ¤ uij, (4.1)

where pi, jq represents arc between nodes i and j. Thus, if system operations sat-
isfy (4.1) at all times t, arc pi, jq will not be tripped (under normal operating circum-
stances).

While it is feasible to take inequality (4.1) into consideration upon determination
of an hourly economic energy management schedule, it is unrealistic to expect such a
constraint to be valid after the system undergoes a significant disturbance (e.g. multi-
line outage). This is due to the fact that flows depend on the physics of the network
and cannot be directly guided (e.g. FACTS devices1 are not considered here), which
means that the line flows may exceed their limit after a contingency has occurred.

There exists a myriad of approaches to determine when an overloaded line should
be tripped, ranging from deterministic hard constraints, as in [33], to soft-constrained
probabilistic setups described in [34]. This section presents two models of line trip-
ping: one is a simplified deterministic model and the other is probabilistic based on
temperature overloads.

4.2.2.1 Deterministic outage model

The first model employs a simple deterministic outage criterion, which assumes
that lines can withstand any power overload for MT minutes before being tripped out
of service. This model is obviously conservative, as it will trip lines regardless of the
degree of the overload. For example, a 1% overload for 5 minutes is very different
from 100% overload for 5 minutes, yet under this simple model both lines would trip.
A justification for employing such a simple line outage model is that sensors may be
installed that sample the line flow every MT minutes and trips a line if an overload is
sensed. Therefore, under proper control actions, lines should be brought within flow
limits by time-step MT (assuming synchronization of sensors and actuators). Such
controller response aligns with a shrinking-horizon MPC controller which is described
in Section 4.4.1.

1Flexible AC Transmission System (FACTS) devices employ power electronics to control AC
system parameters, such as impedance, which enables some controllability of line flows.
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4.2.2.2 Probabilistic Thermal Outage Model

The following probabilistic model is utilized in Section 4.5 to represent the actual
line outage process for electrical transmission systems. For electrical systems, com-
ponents, such as over-current relays, are often in place to protect the system against
abnormal conditions by tripping lines (i.e. taking them out of service). However,
these components operate for extreme over-current fault scenarios (e.g. 10, 000� A)
and trigger automatically on a timescale of seconds and mili-seconds and are, there-
fore, not considered in this work. Instead, the line-tripping behavior of interest in
this dissertation occurs on a time-scale of minutes, which shifts the focus from fault-
conditions to thermal conditions of transmission lines and sagging.

Electrical transmission lines have prescribed power flow limits to prevent danger-
ous sagging and permanent damage. These limits are related to the thermal capacity
of the conductor and the current flowing across the line. Generally, there is an inverse
relationship between the overload on a line and the time it takes before the line sags
excessively and must be taken out of service; however, there are no clear rules when a
sagging line will be taken out of service (by operator or nature). For example, a human
system operator may decide that the red flashing warning sign is sufficiently annoying
and trip the line manually or an elephant may just walk into a sufficiently sagging
line and cause an outage2. Excessive line temperature (and resulting sag or possible
annealing) may eventuate in line-tripping. In short: the higher the temperature, the
more likely line tripping becomes. This inverse relationship between temperature and
mean time-to-trip (i.e. mean time-to-failure) is captured in the actual system by use
of the exponential time-to-failure density parametrized by the temperature overload:

P pline pi, jq trips at time tq � λp∆Tijqe�λp∆Tijq t, (4.2)

where rate parameter λp∆Tijq ¡ 0 is a non-linear function of the temperature over-
load, defined such that the mean time-to-failure goes to zeros as temperature in-
creases (i.e. 1

λp∆Tijq
Ñ 0 as ∆Tij Ñ 8). That is, for each temperature overload, there

is different mean time-to-failure. Thus, the probability of line pi, jq tripping during
time-interval Ts, given ∆Tij, is defined by the cumulative density function (also called
the unreliability function):

P pline pi, jq trips during time-step k|∆Tijrksq �
» Ts

0

λp∆Tijqe�λp∆Tijq τdτ (4.3)

� 1� e�λp∆TijrksqTs , (4.4)

where rate parameter λp∆T rksq ¡ 0 is based on the short-time (15-minute) emergency
(STE). That is, given an STE rating (e.g. 1.25 � nominal rating), the method
presented in Appendix 2.5.2 is deployed to compute an associated STE temperature,
from which an appropriate λp∆Tijrksq is chosen. It has been found experimentally
that λp∆Tijrksq � p∆Tijrks{15q6 gives reasonable line tripping behavior, as shown in
Figure 4.2. Notice how the mean time-to-trip decreases with increasing temperature

2This has actually happened more than 120 times in India since 2000 [88].

64



0 5 10 15 200

20

40

60

80

100

M
ea

n
ti

m
e-

to
-t

ri
p

(m
in

s)

Degrees above temperature limit (◦C)
0 5 10 15 200

20

40

60

80

100

P
ro

b
.

o
f
tr

ip
fo

r
in

te
rv

a
l
T

s
(%

)

Probability of Line Trip
Mean Time to Trip

Figure 4.2: Probabilistic line outage model based on exponential time-to-trip dis-
tribution with λp∆Tijrksq � p∆Tijrks{15q6 from STE overload temperature rating.
Tripping times beyond 100 minutes have been truncated for graphical purposes.

overload.
Furthermore, considering over-current protection on transmission lines (for large

overloads), an additional condition can be added to the probabilistic line-tripping
model:

P

�
pi, jq trips at k

����� |fijrks| � 1
2
f loss
ij rks

uij
¥ Ω

�
� 1, (4.5)

where Ω is an upper bound on allowable relative instantaneous overload. For example,
if Ω � 3, then a line flow of 300% of nominal thermal limit uij automatically trips
line pi, jq.

With this formulation for line-tripping, if a line experiences an overload, the ex-
pected time to trip decreases as a function of the inverse of temperature-based rate-
parameter λp∆Tijq and sampling time Ts.

4.2.2.3 Implementation of line-tripping

In this work, line tripping is not considered as a controllable decision made by the
system operator. Therefore, line outages are implemented throughout this work by
dynamically removing power flow constraints and variables associated with tripped
lines from the optimization formulation. That is, it is assumed that network topology
is observable at all times and that line-tripping events are known to the controller
immediately after they occur. Relaxing these conditions represents avenues for future
work.

Remark IV.3 (Extension to active line-switching). Note that disjunctive line outage
models, such as the one proposed by [89], are employed widely in the area of line-
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switching, where system operators are allowed to switch lines ON and OFF (e.g. to
minimize losses). To consider the line-switching process within a linearly constrained
optimization formulation is achieved by defining sij P t0, 1u as the ON/OFF state
of line pi, jq, such that sij � 1, implies that line pi, jq is ON; else, OFF. Thus, to
model the ON/OFF switching of lines, one can modify line flow limit and power flow
constraints (see (3.35)) as follows:

|fijrks| ¤ uijsijrks (4.6)

|Γnpfijrks, ξnrks, Anq| ¤ p1� sijrksqMs. (4.7)

where Ms " 1 is large enough to ensure that the physical parameters (ξij) effectively
become decoupled. For example, for an electric system modeled by DC power flow,
if line pi, jq trips, then sij � 0 and the following conditions are equivalent to a line
that is OFF:

|fijrks| ¤ 0
|Γnpf rks, ξnrks, Anq| ¤Ms

*
ùñ |fijrks| ¤ 0

|xijfijrks � θijrks| � |θijrks| ¤Ms
. (4.8)

Note that line flow is set to zero and voltage phase angles θij :� θi� θj are effectively
decoupled by right-hand side inequality for a large Ms. When sij � 1, the original
constraints are recovered. Note that the extension of line tripping to line-switching
is not pursued in this dissertation, but is straightforward. Of course, it should be
cautioned that implementation of the disjunctive line outage model relies on integer
variables (i.e. sij) and the “big-M” formulation, which does not scale well with net-
work size and can encounter numerical difficulties. Finally, to be clear, the disjunctive
models are not considered herein and this section only represents a possible extension.

4.2.3 Model-predictive control (MPC)

Literature provides two general approaches to mitigating cascade failures in power
networks. The first method predicts disturbances a priori and is based on an off-line
computation of all possible or likely failures in the network — the so-called N � k
problem, which was discussed in Chapter I. In such approach, control policies are
devised to deal with each possible disturbance. A major drawback of this approach
is that it does not scale well, since the number of salient contingencies to consider
increases exponentially with network size. A second method is based on retroactive
control, whereby the uncertainty surrounding the disturbance has been revealed and
one can utilize the knowledge available about the disturbance to determine control
responses in real-time to mitigate the effects of the disturbance. In the latter ap-
proach, the multi-timescale nature of cascading failures provides sufficient time for
post-contingency computations and since power/energy systems are suffused with
constraints on control inputs and states, it is, therefore, natural to consider model
predictive control (MPC) schemes to alleviate the effects of cascading failures.

MPC has gained prominence over the last 30 years from its extensive deployment in
the chemical industry for process/batch control. For a thorough technical discussion
of predictive control in linear systems, please see [2]. Basically, MPC provides a
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method for controlling dynamic systems with constraints on inputs and/or states
using tools from optimization. MPC implementations solve on-line, at each sampling
instant, a finite horizon optimal control problem based on a dynamic model of the
plant. Most MPC approaches can be described by the following algorithm:

1. Determine a control profile that optimizes an objective function over a predic-
tion window, where the current state at time-step k is the initial state.

2. Apply the computed control profile until new process measurements become
available,

3. When new measurements are available, set k � k � 1 and repeat step (1).

MPC is most often formulated in the state space by linear discrete-time difference
equations. The mathematical formulation is given below.

MPC Formulation The constraints are assumed linear (i.e. non-linear MPC is not
discussed) and an l2-norm represents the objective function, therefore, MPC can
be formulated as a quadratic programming (QP) problem over a finite prediction
horizon M :

U�rks � min
url|ks

||xrM |ks||SM
�

M�1̧

l�0

L pxrl|ks, url|ksq (4.9a)

s.t. xrl � 1|ks � Axrl|ks �Burl|ks (4.9b)

xr0|ks � xrks (4.9c)

Cxrl|ks �Durl|ks ¤ d (4.9d)

xrl|ks P X , url|ks P U (4.9e)

xrM |ks P Tx (4.9f)

for all l   M where xrl|ks and url|ks represent the dynamic state and control
input variables, respectively, at predicted time l given initial measured state at
time k, xrks (i.e. rl|ks Ñ time k� l). The objective function in (4.9a) is defined
by:

Lpxrks, urksq � ||xrks � xsp||Q � ||urks � usp||R (4.10)

where ||y||B � yJBy and SM ¡ 0, Q � QJ ¡ 0, R � RJ ¡ 0 are spositive-
definite weighting matrices. The optimizer U�rks � tu�r0|ks, u�r1|ks, . . . , u�rM�
1|ksu represents the open-loop optimal control sequence over the prediction
horizon at time k. Expressions (4.9b) and (4.9c) represent the linear dis-
crete dynamics and initial (measured) state at time k, respectively. Expres-
sions (4.9d), (4.9e), and (4.9f) define static inequality constraints, bounds on
states and inputs, and a terminal state constraint set, respectively. Consider X
closed, U compact, and Tx compact and containing the “origin.” As will be dis-
cussed below, Tx represents a crucial “ingredient” which helps ensure stability
of the MPC scheme.
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4.2.3.1 Some important issues

Feasibility The computation of the optimal control profile U�rks requires solving
the QP optimization problem in (4.9). Therefore, it is necessary that the QP
problem remains feasible under uncertainty and in the presence of noise and
numerical errors. When feasibility is guaranteed for all future time, the QP
problem is denoted persistently feasible. A common method to ensure persistent
feasibility is by softening state constraints and keeping input-only constraints
hard: �

C1

0

�
xrl|ks �

�
D1

D2

�
url|ks ¤ d�

�
I
0

�
εrl|ks (4.11)

where εrl|ks ¥ 0 are slack variables that are penalized relatively heavily in the
objective function. The idea behind the heavy penalty on εrl|ks is that the
optimal solution should only employ εrl|ks ¡ 0 to ensure feasibility, not to
improve control performance. This implies that constraints on actuators, such
as ramp/slew-rate and saturation constraints are enforced at all times to reflect
hard constraints imposed by the physical system.

Stability The basic idea of stability of MPC relies on Lyapunov arguments, where
stability is guaranteed if it can be shown that the total cost in the objective
function is a Lyapunov function. That is, define

V pU, xrksq :� ||xrM |ks||SM
�

M�1̧

l�0

L pxrl|ks, url|ksq (4.12)

with SM , Q,R ¡ 0 to be the objective function value corresponding to a feasible
control profile U rks, then the goal is to show that V pU�, xrksq is a Lyapunov
function (i.e. V pU�, xrk� 1sq ¤ V pU�, xrksq for all k, V p0,0q � 0, V pU, xrksq ¡
0 for all U � 0).

As hinted to with terminal constraint in (4.9f), there exist basic “ingredients”
(i.e. conditions) that enforce stability of MPC. Some popular and relevant
techniques are reviewed here.

• Terminal Equality Constraint. A common condition for stability enforces
that the terminal state of the prediction horizon is at the “origin” (defined
by set point):

xrM |ks � xsp
k�M rks � 0. (4.13)

This implies that a feasible control profile at time-step k � 1 can be con-
structed from U�rks: U rk � 1s � tu�r1|ks, u�r2|ks, . . . , u�rM |ks, 0u. Now,
with the terminal constraint applied at k� 1, it is straightforward to show
that V pU�, xrk � 1sq ¤ V pU, xrk � 1sq ¤ V pU�, xrksq is a Lyapunov func-
tion of the system, which ensures stability [90]. Employing a terminal
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constraint reduces the set of admissible control laws, since initial condi-
tions may prevent a large subset of feasible controls from being able to steer
the state to the origin. Therefore, terminal constraints generally require
longer horizons, which increases computational efforts.

• Invariant Terminal Constraints. A relaxation of the terminal equality
constraint in (4.13) is the invariant terminal set constraint:

xrM |ks P Xf (4.14)

where Xf is control invariant, which implies that if xrks P Xf ñ Durks P
U , s.t. Axrks � Burks P Xf for all k. Thus, when the state enters the
invariant terminal set, there exists a local controller which can drive the
system to the origin and stability follows from Lyapunov arguments. A
common choice for the local (terminal) controller is the linear quadratic
regulator. While less than in the case of (4.13), the terminal set constraint
does shrink the set of admissible control profiles and may require large
M -values.

• Terminal Penalty. To avoid adding stability-enforcing constraints, one
can choose the terminal weighting matrix SM to be the solution of the
Algebraic Ricatti Inequality:

AJSM � SJMA�Q� SMBR
�1BJSM ¥ 0. (4.15)

Stability is then guaranteed from [91].

In this work, two specific MPC techniques are employed: shrinking horizon and re-
ceding horizon MPC. These two approaches are described in detail within the context
of cascade mitigation in Sections 4.4 and 4.5, respectively.

4.3 Overview of Bilevel Cascade Mitigation Scheme

Economic dispatch problems (e.g. MPODF problem from Section 3.5) allow com-
putation of economically optimal trajectories, which the system operator tracks via
available generation, forecasted load, and other available control actions. However,
if a significant disturbance takes place, the operator must modify his economical
trajectory to prevent overloads and subsequent line outages. This requires the formu-
lation of a contingency (safety) controller, which responds quickly to a disturbance
and drives the system back to a secure and economical state, from which economic
dispatch can be re-initiated and normal (economic) operation can resume. Since eco-
nomic and security objectives are often competing objectives, it is natural to form two
separate controllers for each task. Therefore, a bilevel hierarchical control strategy is
employed. Figure 4.3 illustrates the proposed bilevel operation of the system.

The “Level 1” controller is enlisted to compute an economically optimal schedule
for each hour of the day. When a disturbance takes place (e.g. line outage), Level 1
provides an economic reference for the “Level 2” contingency controller, which shifts
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Figure 4.3: Overview of proposed bilevel cascade mitigation scheme.

operation from economically optimal (e.g. hourly) to corrective (e.g. minute-by-
minute) in order to alleviate line overloads. When Level 2 signals that the system is
secure, economic operation resumes with Level 1. The Level 2 controller is formulated
as an MPC problem.

4.3.1 Level 1: economically optimal energy schedule

Over a 24-hour period, Level 1 computes an optimal energy schedule that de-
termines how to best operate energy storage, conventional generation, flexible loads,
and available renewable energy based on forecasts. The Level 1 schedule is, there-
fore, similar to standard economic dispatch [67], except that the temporal coupling
introduced by energy storage implies optimization over a horizon rather than a single
time-step. In addition, line losses can be included with a standard piece-wise linear
(PWL) DC approximation as presented in [69] and described in Section 2.3.4.

The Level 1 model enforces line flow limits to ensure that, under accurate model
and forecast scenarios, no lines are overloaded (i.e. the system is “safe” and econom-
ical). The dispatch schedule is computed as a multi-period quadratic programming
(QP) problem whose objective is to minimize energy (fuel) costs of conventional gen-
erators:

Cost pfGr ksq � fGrksJαGfGrks � βJGfGrks. (4.16)

where αG [$/h/pu2] and βG [$/h/pu] are diagonal matrices of the generator-specific
cost parameters and fG [pu] is the power output levels provided by the generators.
The only dynamics considered for Level 1 are energy storage dynamics and ramp-rate
limits on generators. Thus, the Level 1 schedule represents a multi-hour reference
signal with economically optimal system set points, xsp, and required operator control
actions to achieve optimal set points, usp. The schedule is submitted to the operator
and recomputed every hour.

Remark IV.4 (Extension to Unit Commitment (UC)). UC algorithms, which gener-
ally involve integer programming over a 24-hour or 36-hour horizon to compute which
generators to schedule for specific periods, could be included as a “Level 0” economic
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computation and act as reference for Level 1. This would be a natural extension in
line with current operating practice. The main challenges would be how to include
energy storage devices and variable renewables within a meaningful and tractable
unit commitment algorithm.

4.3.2 Level 2: corrective controller

The Level 2 controller operates in the background to track the reference trajec-
tories computed from Level 1 (i.e. the economic set-point values). The corrective
controller employs a linear model of the actual system and operates on a minute-by-
minute timescale3. If a disturbance takes place (e.g. a line outage), Level 2 computes
corrective control actions uptq in a MPC fashion that steers the system towards a safe
and economically optimal state as provided by a Level 1 reference.

Level 2 considers ramp-rate limits on conventional generators, dynamics and power
ratings of grid storage devices, and can incorporate the thermal response of overloaded
lines. Note that, in Level 2, lines are no longer subject to a hard flow limit constraint
and, instead, the controller seeks to drive lines below respective limits. The Level 2
MPC-based cascade mitigation scheme is formulated as a quadratic programming
problem (QP) over a finite prediction horizon M .

Our initial work employed a shrinking-horizon (i.e. M Ñ 0) MPC-based scheme
within a simplified framework of energy hubs and is detailed in Section 4.4. However,
a more advanced MPC-based scheme is achieved with receding-horizon MPC (i.e. M
fixed), which is applied within an electric power system setting and described in detail
in Section 4.5.

4.4 Multi-energy cascade mitigation

This section investigates whether the presence of conversion and storage processes
and technologies in a multi-energy system setting helps mitigate the effects of large
network disturbances (i.e. line outages) and halts cascade failures.

Our initial work in the area of cascade mitigation proposes a low-level MPC-
based controller that only is allowed to shed load in the final control instance. Once
a disturbance is detected by the system monitor, operation of the system is switched
from an hourly MPODF (economic) schedule defined by (3.36) to a fast timescale
MPC scheme (one-minute time-steps). During the fast timescale, nominal load and
intermittent power injections are fixed at their most recent slow timescale values, and
generation and storage energy delivery rates are taken into account.

4.4.1 Shrinking horizon MPC (SHMPC)

In this MPC-based cascade mitigation scheme, if lines are overloaded after TF min-
utes, they automatically trip (i.e. a sensor may measure overloads every TF minutes
and trip lines based on simple overload criteria). That is, a deterministic line-tripping

3The Level 2 time-step Ts is much shorter than the time-step used for the Level 1 reference
signals. This is resolved by linearly interpolating between reference values.
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Figure 4.4: Overview of shrinking horizon MPC on fast timescale. The red bars
represent the shrinking prediction horizons of each successive time-step.

model is employed in the multi-energy setting. Therefore, it is sensible to utilize a
prediction horizon of TF minutes and assume new measurements are available every
minute (and that computation of open-loop control sequences is instantaneous). Fur-
thermore, in attempting to halt the cascade, load-shedding is only allowed in the final
time-step TF , as a last resort to bring line flows within their limits. Accordingly, there
is no reason for our prediction window to extend beyond minute TF and, therefore,
the prediction window shrinks by one minute after every measurement update. This
method of MPC is often referred to as “fixed-point” or “shrinking-horizon” MPC
(SHMPC) [92]. Stability arguments of SHMPC are straightforward as long as persis-
tent feasibility is ensured. SHMPC considers a prediction horizon that is fixed in time
as illustrated in Figure 4.4. Consider an energy system at time k over TF minutes (i.e.
initial prediction horizon) with sample time Ts � 1 minute. Then, SHMPC algorithm
is given by:

Shrinking Horizon MPC Algorithm:

1. Given initial state xrks, solving an optimal control problem over horizon rk, k�
TF s yields the open-loop control sequence turl|ksuTF�1

l�0 .

2. For time rk, k� 1q, apply first instance of control sequence ur0|ks to the system
with a zero-order hold.

3. Measure new system states xrk � 1s, set k :� k � 1,

4. Set TF :� TF � 1 and, if TF ¡ 0, repeat step (1). Else, STOP.

As can be realized from the above SHMPC process, with each successive control
action, the horizon shrinks by one minute until horizon has length 0. At the end
of the horizon some physical process may have reached a critical juncture, such as
presented with the simple deterministic line tripping model: lines may trip.

If the MPC model has no errors and matches the real system, no overloads will
remain, and the cascade will be halted. On the other hand, if the MPC model is im-
perfect, some overloads may remain. If more lines do trip, one would re-run SHMPC
with redrawn horizon TF and this shrinking-redrawing horizon cycle continues un-
til SHMPC relieves all line overloads. At that point, the slow-timescale MPODF
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is updated with a new post-disturbance network topology, and the latest values for
generation, storage and load and the optimal schedule over the remainder of the 24-
hour period are determined. An overview of the energy hub system operation under
closed-loop control is illustrated in Figure 4.5. The MPODF schedule is equivalent to
a Level 1, while the MPC Cascade Mitigation block represents Level 2. The cascade
mitigation scheme interfaces with the “Real System” as well but on a faster time-
scale. Note that without the look-ahead feature of MPC, a closed-loop controller
acting only at minute TF would shed more load, as it would not be able to properly
allocate storage utilization to overcome possible future generator power limits.

To contrast the performance of the shrinking-horizon MPC scheme, we consider
the base case of a “dumb” controller. The “dumb” controller seeks only to satisfy
demand (i.e. avoid load-shedding) and line flows are given by the power flow solu-
tion with no regard for line flow limits. Therefore, the “dumb” controller will likely
undergo cascading failures.

4.4.2 SHMPC model outline

The model presented in Chapter III is employed in the SHMPC scheme and, for
convenience, is briefly outlined below. However, the constraints follow directly the
MPODF problem posed in (3.36).

4.4.2.1 Constraints

• DC power flow model for each electric transmission line,

• linearized natural gas flow model for each pipeline (see Section 3.4),

• energy hub flow equations for each hub,

• energy storage SOC integrator dynamics,

• limits on network elements (e.g. storage, renewable and conventional genera-
tion, loads),

• ramp-rate limits on generators, and
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• load shedding is only allowed at the end of the horizon (i.e. last control instance)
which is the instance when line flow limits are enforced.

4.4.2.2 Objective function

The objective of the SHMPC is to alleviate line overloads by minute TF and shed
minimal load in the process. To minimize load shedding, rescheduling of energy stor-
age utilization and generation is possible. Energy conversion and storage represents
cheap control while generators are rescheduled based on their cost-curves (i.e. expen-
sive generation is only used sparingly). A small penalty is placed on wind-spill while
a large penalty is placed on load-shedding.

Remark IV.5. Since line flow limits are not enforced until the final time-instance,
effectively, the load-shedding ability of the controller in the final control instance
and the large penalty placed on load-shedding represents the means for enabling
feasibility at all times. However, since load-shedding is a finite resource, official slack
variables are included in the power balance equations. Thus, the SHMPC problem is
persistently feasible.

4.4.2.3 Base case

For the base case, the arc flows are given by the power flow solution with no
regard for flow limits. Thus, the base-case problem may undergo significant cascading
failures and represents a controller with no information about the disturbance or line
overloads. The goal of this “dumb” controller is, therefore, to just satisfy the load.

4.4.3 Simulations of SHMPC-based cascade mitigation

The formulation of energy hubs described in Chapter III permits the construction
of arbitrarily large interconnected energy hub networks. In this section, the effects
of disturbances (i.e. line outages) on small and large energy hub systems are investi-
gated with simulations. Because current power grid operating and planning standards
ensure power systems are in a reliable condition even if one contingency occurs [28],
the initial disturbances will consist of multiple simultaneous outages. Each system
consists of an electrical network, a natural gas network, district heat loads, wind
turbines, and multiple energy hubs that couple the four different energy types. The
smaller system is useful in describing how the SHMPC approach mitigates a cascade
failure, while the large system allows us to better showcase the effects of cascade
mitigation.

Remark IV.6. Note that these coupled hub systems are meant to represent future
energy systems and, therefore, a lot of economical assumptions about the availability
of storage and conversion processes are neglected in this work.

To construct both energy hub networks, the technique proposed in [80] is employed
for building random grids. The technique assumes uniform node location, exponen-
tial expected link length distribution, and Poisson distribution for arc selection. The
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Figure 4.6: Network representation of small 12-hub system

parameters used to construct the power grids are in per unit (pu) and provided in
Table 4.1. The small energy hub system is shown in Fig. 4.6. Due to the size of elec-
trical and natural gas networks and the random interconnectivity with energy hubs, a
meaningful visualization of the large energy hub system is not straightforward and is
excluded. However, via application of graph drawing software, such as GraphViz [81],
meaningful visualization is a possibility for the future.

The topological characteristics of our systems are given in Tables 4.2a and 4.2b.
The values N , E, G, and D represent the number of nodes, arcs, generators, and
loads, respectively, while xky is the average nodal degree. Many well-known power
systems exhibit average nodal degrees between 3.0 and 4.5. The wind and heat
networks have no arcs and consist exclusively of generators and loads, respectively.
A total of 12 energy hubs are utilized in the small system while the larger network
has 132 energy hubs to couple the four different energy networks. The energy hubs
are used to connect from the electrical network to gas (via electrolysis) and heat
networks (via resistor heating), from the gas network to electrical (via gas turbines
and fuel cells) and heat networks (via furnaces), and from the wind network to the
electrical network (via turbines). All other network couplings, for example from gas
to wind and from heat to electric, are excluded in this simulation. Table 4.2c shows
the energy conversion efficiencies employed in the simulation. Note that the efficiency
between wind energy and electric energy is set to 1.0, because only the injected power
from the wind generators are considered and the lossy conversion between wind speed
and generator is assumed to have already taken place. All hubs connecting the wind
network to the electrical network have limited output storage, while hub (input or
output) storage is added randomly to 75% of the remaining hubs.
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Table 4.1: Parameters for construction of random grids

Parameters Value/Bounds Units

Electric Generators [20,25] p.u.
Gas Generators [20,25] p.u.
Wind Generators [0, 6] p.u.
Electric Loads [0.5, 2] p.u.
Gas Loads [0.5, 2] p.u.
Heating Loads [1,2] p.u.
Arc Flow Limits [2, 4] p.u.
Generator Ramping Limits 40 p.u./hr
Storage Ramping Limits 40 p.u./hr

Table 4.2: Network characteristics for multi-energy simulated systems

(a) The 12-hub energy network

Network xky N E G D

Electrical 1.67 6 5 1 3
Gas 1.67 6 5 3 1
Wind 0 2 0 2 0
Heat 0 4 0 0 4

(b) The 132-hub energy network

Network xky N E G D

Electrical 4.36 100 218 28 37
Gas 4.30 100 214 20 41
Wind 0 30 0 30 0
Heat 0 40 0 0 40

(c) Conversion efficiencies between energy types

From z To Electric Gas Wind Heat

Electric � 0.80 � 0.75
Gas 0.70 � � 0.90
Wind 1.0 � � �
Heat � � � �
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The system is assigned 24 one-hour time-intervals, corresponding to one complete
day of operation. For the fast timescale, network arcs are allowed to be overloaded for
no more than 5 minutes before being tripped automatically (TF � 5). The consumer
demand (load) is set to peak near midday, while wind power is available mostly in the
early and later parts of the day. The cost of generation (electric and natural gas) is
identical to the one depicted in Figure 3.7a and varies along with forecasted demand,
so generation near midday is more expensive than the earlier or later parts of the day.
Electric generation is set to be more expensive than natural gas.

The disturbance takes place at a random time between hours 1 and 24, unknown
to the system controller, and consists of simultaneous outages of multiple lines. For
the small energy hub system, the disturbance takes out 3 lines, while the larger net-
work experiences a simultaneous outage of 5 lines. The 12-hub and 132-hub systems
described by Table 4.2 are subjected to a disturbance and the SHMPC cascade miti-
gation scheme was simulated with Matlab and CPLEX.

• Simulation results for small 12-hub system:

For the small system shown in Fig. 4.6, the disturbance takes place at time
tdist � 7 when three lines are taken out of service: lines 2, 5, and 8. Prior to the
disturbance, the economically optimal dispatch schedule is computed off-line
and is implemented as expected. Due to the cost of generation peaking during
midday, cheap generation is employed to maximize storage utilization early in
the day, as shown in Fig. 4.7 (b and c). Then after 7th hour, the disturbance
causes the simultaneous outage of three lines. Within 5 minutes, the SHMPC
approach reconfigures generation and energy storage (taking account of ramping
limits) to satisfy nominal demand. However, in the fifth minute, as we seek
to enforce the flow limits, the controller must shed around 20% of total load -
mainly from the electrical load supplied by line 1 (� 70% shed), but the gas load
supplied by line 9 (� 25%) and the upper rightmost heating loads (� 30% each)
are affected as well. Line 9 is crucial to the system, as it allows the controller
to mitigate the effects of the disturbance through adjacent hub connections.

Since the MPC halts further line outages, control returns to the slow timescale
and a new economically optimal schedule is computed to minimize generator
costs over the remainder of the 24-hour period with the three lines out of service.
When wind power peaks towards the end of the day, despite having three lines
out of service, the operator is able to restore loads through hub connections as
shown in Fig. 4.7(a) and, therefore, reject the disturbance. Energy hubs play an
important role in this problem, because the storage devices and hub-couplings
of networks provide flexibility in the optimal scheduling of power flows to limit
line overloading.

For the base case, without the fast timescale MPC, it cannot reconfigure gen-
eration to enforce flow limits after the disturbance. Thus, in the fifth minute,
the important line 9 is overloaded (as no load has been shed) and it trips from
service. With the loss of line 9, the controller cannot supply the electric load
supplied by line 1 and the gas load supplied by line 9 (both 100% shed). The

77



5 10 15 20
0

0.2

0.4

0.6

0.8

1

T
o
ta

l
lo

a
d

sh
e
d

(%
)

(a) Load-shedding under different conditions

Open-Loop
MPC
No Disturbance

0 5 10 15 20 25
0

10

20

30

40

50
(b) Generator levels under different conditions

T
o
ta

l
g
e
n
e
ra

ti
o
n

(p
.u

.)

Time (hr)

Base Case

0 5 10 15 20 25
0

5

10

15 x 107 (d) Costs under different conditions

C
o
st

(m
.u

.)

Time (hr)

0 5 10 15 20 25
0

20

40

60

80
(c) Storage utilization under different conditions

T
o
ta

l
en

er
g
y

st
o
re

d
(e

.u
.)

Figure 4.7: Simulation results from small 12-hub system

upper rightmost heating loads utilize stored energy at maximal rates to avoid
having to shed loads. At hour 8, around 40% of load is shed in the system and
at hour 9, when no stored energy remains to supply the upper-right heating
loads, they are shed completely, resulting in � 50% of total load being shed. As
seen in Fig. 4.7(a), the load is not restored in the remaining time.

The focus on cascade mitigation in the SHMPC context was to devise control
policies that shed minimal load. Therefore, load-shedding was heavily penalized
in the objective formulation. As a result, when load-shedding was necessitated
during the “MPC” and “base-case” problems, the costs shown in Fig. 4.7(d)
became less a measure of minimal generation costs and more a measure of how
much load was shed during each case.

• Simulation results for large 132-hub system:

For the larger system, described in Table 4.2b, the disturbance also takes place
at time tdist � 7, when five lines are removed from service. Prior to the distur-
bance, the economically optimal schedule is employed to schedule generation
and storage. As was the case with the small system, the low cost of generation
during the early parts of the day leads to maximal storage utilization. After the
7th hour, the disturbance causes the simultaneous outage of 5 randomly chosen
lines. Within TF � 5 minutes, the SHMPC approach reconfigures generation
and energy storage (taking into account ramping limits) to satisfy nominal de-
mand across the new network. In the fifth minute, arc flows are returned to
within their limits without having to shed any load. This is because a larger
system with more nodes, arcs, and generators has greater flexibility in routing
power flows to satisfy nominal demand.
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Figure 4.8: Simulation results from large 132-hub system

With a larger network, however, the complexity increases and it becomes more
difficult to understand where weaknesses lie and how the system will respond
to a disturbance. For the base-case problem, a cascading failure occurs as a
consequence of the initial loss of five lines. For the next 115 minutes, the
system utilizes all available hub storage to desperately avoid shedding load, as
shown in Fig. 4.8(c). But as lines are tripped due to overloads, more and more
load is shed. Fig. 4.8(a-b) provides a fast timescale view of the cascading effect
of outages and load shedding. The cascade comes to an end when load-shedding
has significantly lowered generation output levels, such that arc flows are within
limits. In fact, the total load shed immediately after the cascade, when wind is
low, is around 40%, Later in the day, when wind power has increased, some of
the load is restored (� 30% shed).

Remark IV.7 (SHMPC disturbance rejection). The generator levels in Fig. 4.8(d)
highlight that the model predictive controller essentially rejects the disturbance by
returning to optimal pre-disturbance levels after time t � 17. At t � 24, the small
difference between generation levels of the “MPC” and “No Disturbance” problems is
due to excess available wind energy, which allows flexibility in the optimal solution.
That is, in the final time-step, either excess (free) wind energy can be stored or wind
generation curbed (i.e. spilled). Both solutions are optimal because stored energy
has no future value in the final time-step. Thus, the MPC approach presented in this
paper minimizes load shed and mitigates the effects of disturbances in general energy
hub systems.
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4.4.4 Impact of storage for cascade mitigation

During normal operation of the energy hub system, energy storage plays a signifi-
cant role in minimizing generation costs from conventional generators, as it allows the
system operator to pre-position energy in storage during off-peak hours (and pricing)
to satisfy demand in the presence of intermittent generation (e.g. wind power). In the
previous section, we employed a method to mitigate cascade failures in multi-energy
systems by determining proper utilization of storage and generation. In fact, hub
storage also plays a significant role in cascade mitigation since it acts as a “buffer”
against disturbances. That is, a system operator can employ stored energy to sat-
isfy temporary energy shortages or overflows, while allowing time for conventional
generators to effectively reconfigure their schedules.

Thus, the effectiveness of system operations in minimizing costs and rejecting dis-
turbances depends on the available energy hub storage infrastructure. Indeed, siting,
sizing, and operational capability (e.g. power rating and standing losses) are salient
parameters. Siting is important for reducing congestion during peak hours; however,
the process for determining optimal location of energy hubs is non-trivial and is not
considered here. Instead, this paper will fix the location of hubs within the system and
study the effects of varying both hub storage capacity and charge/discharge power
limits on the cascade mitigation process.

Under the energy hub paradigm, we are able to combine multiple types of en-
ergy systems and study their combined performance. Therefore, we need to consider
multiple types of energy storage, namely, natural gas storage, electrical storage, and
thermal storage. Note that, in this paper, we consider energy storage to have no
standing losses, constant charging and discharging efficiencies (see Table 4.3), and we
neglect the economics of construction, operation, and maintenance of storage facil-
ities. That is, energy storage represents a cost-free service available to the system
operator.

4.4.4.1 Natural Gas Energy Storage

The two main methods used in industry for storing natural gas are: “packed”
pipelines and underground storage facilities. The packing of pipelines refers to the
accumulation of natural gas in pipelines. Since such practices are commonly employed
for pressure-regulation and only make up a small percentage of natural gas storage
capacity, packing of pipelines is not considered in this paper. Instead, we consider
underground storage in the form of reshaped salt caverns, which have high throughput
and can be cycled hourly for both electric and heating loads, and aquifers, which
can be regularly withdrawn and have large capacity [93]. The energy hubs that
convert natural gas in the proposed multi-energy systems, therefore, contain input-
side storage devices that reflect highly efficient underground storage facilities.

4.4.4.2 Electrical Energy Storage

With the intermittency of renewable energy (e.g. solar and wind), effective im-
plementation of storage is highly desirable for improving system reliability. While
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Table 4.3: Summary of different types of energy storage

Storage Location Charge Eff. Discharge Eff.

Natural gas Only input-side 99 % 99 %
Hydrogen Both sides 80 % 65 %
Thermal Only output-side 100 % 60 %

pumped hydro storage and compressed air systems provide two large-scale methods
for storing electric-ready power, our focus is mainly on distributed storage in the
form of hydrogen storage. Therefore, energy hubs that convert from electrical energy
contain input-side hydrogen storage, while hubs that convert to electrical energy (e.g.
wind) are outfitted with output-side hydrogen storage. Hydrogen storage requires an
electrolytic process for charging (i.e. create hydrogen) and employs efficient fuel cells
during discharging (i.e. consume hydrogen).

4.4.4.3 Thermal Energy Storage

Under the energy hub paradigm, both natural gas and electrical energy can be
converted into thermal energy to satisfy district heating loads. This inherent energy
flexibility improves system reliability and by employing thermal energy storage within
the hub, we can satisfy distributed thermal loads from stored thermal energy, which
reduces network congestion that tends to arise during peak demand. There exists a
wide range of thermal energy storage solutions ranging from molten salt to gas-fired
and electric storage heaters. However, for this paper, we will just consider a general
form of thermal storage that supplies each heating load. The thermal storage device
is employed on the output side of hubs which convert electrical and natural gas energy
into heating. We assume a loss-less conversion of natural gas and electrical energy
into thermal storage and attribute thermal energy losses to the discharging process.

Remark IV.8. Note that the efficiencies in Table 4.3 represent optimistic scenarios
to give best-case performance of a multi-energy system with state-of-the-art storage.

4.4.4.4 Simulating energy storage scenarios

Employing the SHMPC cascade mitigation scheme, the following simulations in-
vestigate the performance of the scheme under different energy storage scenarios.
That is, simulations are used to investigate how the availability (i.e. capacity) and
performance (i.e. charge/discharge power limits) of energy storage devices impact the
amount of load shed (i.e. performance of scheme).

The random grid-generating techniques proposed in [80] are employed again to
construct two multi-energy systems - a small 11-hub system and a larger 69-hub
system and subject each to a multi-line outage. The parameters used to construct
the energy grids are also given by Table 4.1. The small energy hub system is shown
in Figure 4.9 and is identical to the network of Figure 4.6, except that the hub
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Table 4.4: Randomly generated network characteristics

(a) The 11-hub energy network

Network xky N E G D

Electrical 1.67 6 5 1 3
Gas 1.67 6 5 3 1
Wind 0 2 0 2 0
Heat 0 4 0 0 4

(b) The 69-hub energy network

Network xky N E G D

Electrical 3.07 60 92 20 15
Gas 3.00 60 90 12 21
Wind 0 18 0 18 0
Heat 0 22 0 0 22

(c) Conversion efficiencies between energy types

From z To Electric Gas Wind Heat

Electric � � � 0.75
Gas 0.70 � � 0.90
Wind 1.00 � � �

converting electric to natural gas has been omitted as it represented a step too far
into the future. Due to the size of electrical and natural gas networks and the random
interconnectivity with energy hubs, a meaningful visualization of the larger energy
hub system is not meaningful and is again excluded. The smaller, more simple system
enables better understanding of how storage is utilized to mitigate cascade failure,
whereas the larger system becomes useful in the discussion as it exhibits meaningful
cascade behavior.

The topological characteristics of the two systems are given in Tables 4.4a and
4.4b. There are 11 energy hubs in the small system and 69 energy hubs in the large
system to couple the four different energy networks. The energy conversion efficiencies
are given in Table 4.4c. All hubs connecting the wind network to the electrical network
have output storage, while applicable input and output hub storage is added randomly
to all of the remaining hubs.

The energy storage scenarios are considered by varying storage capacity and stor-
age power limits from the nominal values by a given factor. For example, for scenario
(capacity, power) � p0.25, 0.10q, energy storage capacity is at 25% of nominal and
power limits are 10% of nominal. The ideas is to compare the effect of different energy
storage scenarios on the average load shed over the 24 hour period. In particular, the
scenarios include systems with “no” (0), “some” (� 0.25), “nominal” (1.0), and “a
lot” (10) of storage capacity, while the system storage devices are subject to “small”
(0.10), “nominal” (1.0), and “large” (5¥) power limits.

• Small 11-hub system:

In the nominal p1, 1q case, the 11-hub system from Figure 4.9 undergoes a
disturbance that results in the outage of lines 2, 5, and 8. The loss of the
three lines leaves line 9 (natural gas) with a significant overload, which must
be cleared to avoid tripping the line. Under the MPC scheme, generators are

82



Heat (H)

Natural Gas (G)

Electrical (E)

10
9

8 7 6

54

3

2

1

G

G

G

G
G

G

H

H

HH

E

E

E

E EE

W W

Wind (W)

Heat (H)

Energy
     Conversion

Energy Hub

Figure 4.9: Network representation of small 11-hub system

Table 4.5: MPC energy scenario results for 11-hub system

Avg. load Capacity
shed (%) 0 0.25 1.0 10

0.10 12.7 10.6 9.1 8.7
Power 1.0 12.7 10.8 9.0 9.2

5.0 12.7 10.8 10.6 10.6

reconfigured (considering power limits), storage is utilized, and minimal load is
shed over the 5-minute interval to avoid tripping line 9. The MPODF schedule
is updated to reflect the multi-line outage and some load (�20%) must be shed
until wind-power becomes available towards the end of the day. In the nominal
base case, line 9 is not protected and trips after 5 minutes, which leaves the
system in a weak state and results in heavy load-shedding (�50%).

The results of the 11-hub system are shown in Tables 4.5 and 4.6. Increasing
storage capacity generally reduces the amount of load shed and improves perfor-
mance of cascade mitigation, which is expected, since more energy can be stored
and is available to inject into the system upon the disturbance. However, the
general trend suggests that lowering power limits improves performance. The
reason behind this trend is that the MPC scheme does not care about the state
of the system beyond the halting of the cascade and will maximally utilize
(free) stored energy to satisfy demand and avoid shedding load. However, with
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Table 4.6: Base case energy scenario results for 11-hub system

Avg. load Capacity
shed (%) 0 0.25 1.0 10

0.10 32.3 30.6 28.9 28.5
Power 1.0 32.3 32.3 30.1 29.8

5.0 32.3 32.3 31.9 10.4

Table 4.7: MPC energy scenario results for 69-hub system

Avg. load Capacity
shed (%) 0 0.20 1.0 10

0.10 1.1 0.9 0.5 0.4
Power 1.0 1.1 1.0 0.7 0.5

10 1.1 1.0 0.7 0.7

small power limits, the amount of stored energy is effectively rationed during
the cascade mitigation process and some conventional generation is needed to
satisfy demand and halt the cascade. This balance between generation and
energy utilization allows MPC to halt the cascade and best positions the multi-
energy system to satisfy load demand over the subsequent period (following the
cascade).

In the base case, the amount of load shed under scenario p10, 5.0q is relatively
low, because line 9 is “accidentally” not overloaded at minute 5. The term
“accidentally” is used here since the base case controller attempts to satisfy all
demand at the lowest cost with no regard for flow limits. Furthermore, for the
p10, 5.0q scenario, the base case sheds marginally less load than the MPC scheme
over the 24-hour period. This is because the optimization does not penalize the
spilling of wind power, which means that the MPC scheme can use available
energy storage and wind power at the same cost. Thus, stored energy in the
future (i.e. beyond the 5-minute prediction window) has no value to the MPC
controller. MPC employs available energy storage and spills wind power, while
the base case utilizes available wind-power. The MPC response is optimal over
the 5-minute period, however with the cascade halted, it leaves the system with
less energy stored. This results in a marginal increase in load-shedding over the
remaining hours.

• Large 69-hub system:

The trends from the 11-hub system apply to the 69-hub system as well, and the
results are provided in Tables 4.7 and 4.8. As storage capacity increases and
power limits decrease, the performance of MPC increases for the same reasons
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Table 4.8: Base case energy scenario results for 69-hub system

Avg. load Capacity
shed (%) 0 0.20 1.0 10

0.10 23.8 24.7 23.7 19.9
Power 1.0 23.8 23.1 23.7 14.9

10 23.8 23.1 24.8 29.4

mentioned above.

In the base case, the trend is not as strong, but nonetheless discernible. While
the complexity of the network obfuscates the subtleties of the result, it is worth
noting that for the scenario without storage (i.e. zero capacity), the amount of
load shed is similar to low- and medium-capacity scenarios p0.2, �q and p1.0, �q.
The behavior of both the base case system and the MPC cascade mitigation
scheme are depicted in Figures 4.10 and 4.11, for energy scenarios (0, 10),
(0.20, 10), (1.0, 10), and (10,10). (Note that thicker lines represent higher ca-
pacity scenarios). In fact, for scenarios (�, 10), the base case system generally
sheds more and more load as storage capacity increases. This is because the
base case is uncontrollable in the sense that it does not regard line-flow limits
and, for larger systems, this results in significant line tripping as seen in Fig-
ure 4.10a. At high power limits and with increasing storage capacity, the base
case controller will inject more stored energy into the system (Figure 4.10c)
which, coupled with non-trivial generation levels (Figure 4.11), results in line
tripping (Figure 4.10a) and fragmentation of the system. The fragmentation
leads renewables to become isolated from loads, which is evident in the base
case in Figure 4.10b, since the increase in available wind power (in evening and
at night) is unable to recover shed load. The fragmentation is most severe in
the highest capacity case, where available wind-power is separated from loads
and can only be utilized to aimlessly increase energy storage levels.

Note that “No Disturbance” cases represent economically optimal energy man-
agement without any line outages. However, in the absence of a disturbance,
there is still a need to shed some nominal load when wind-power reaches its
nadir and no more power can be injected by conventional generation without
exceeding flow limits. This is a remnant of the fact that the random networks
generated do not properly capture the design and planning of real transmission
power networks.

Furthermore, it is worth noticing that the zero-capacity MPC scheme p0, �q
sheds only 1.1% of total load while the optimal MPC storage configuration
p10, 0.1q sheds 0.4% of total load. Therefore, one should ask if the investment
made in storage devices is worth the marginally improved cascade mitigation
performance (a 0.7% reduction in load shed). Indeed, with the base case mini-
mal load shed of 14.9%, the MPC scheme without storage may provide a suffi-
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Figure 4.10: Cascade simulation results from large 69-hub system with power limits at
10 times nominal. As storage capacity increases, the base case undergoes increasingly
significant cascading. (Note: thicker lines ñ higher capacity).

cient cascade mitigation solution. However, other factors, such as intermittency
and congestion reduction, suggests the need for considering distributed storage
devices in the investment process.
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Figure 4.11: Generator levels for energy scenarios with ten times nominal power
limits. As storage capacity increases, more off-peak power is utilized for storage,
shaving off the midday peaks in generation. (Note: thicker lines ñ higher capacity).

4.5 Cascade Mitigation in Electric Power Systems

The SHMPC-based first attempt at cascade mitigation was discussed in Section 4.4
and provided valuable insight into the role of energy storage for cascade mitigation
purposes and the potential role of model-predictive control. However, the SHMPC
formulation and the crude deterministic line overload model requires an improved
approach. In addition, while the coupling of energy infrastructures may provide an
opportunity to improve upon network resilience against cascade failure, investigations
into the natural gas operations show that natural gas systems are significantly differ-
ent from electric power systems. Namely, there is a time-scale separation between the
two power systems, with electricity flowing at nearly the speed of light while natural
gas pipelines experience gas flows of up to 60 miles per hour (around 100 km/hr). This
relatively slow rate of power flow in natural gas systems gives rise to a different role
for the transmission pipeline system. Specifically, natural gas transmission systems
operate by filling, in advance, large underground natural gas storage facilities near
power and heating load distribution centers. Under such circumstances, the idea of a
cascade failure in natural gas systems is not as natural (no pun intended) as initially
expected. As a result, the focus of this section is on cascade mitigation in electric
power networks, which is more applicable.

4.5.1 Receding Horizon MPC (RHMPC)

The SHMPC scheme suffers from two major drawbacks:
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• An unpredicted event could take place during the shrinking horizon period,
which leaves the system unable to recover in the remaining time.

• As the horizon shrinks and approaches the final time, the control law typically
“gives up trying” since there is too little time to go to achieve anything useful
in terms of objective function reduction.

The above two shortcomings surrounding SHMPC can be overcome with the no-
tion of receding horizon MPC. Receding horizon MPC (RHMPC) considers a pre-
diction horizon that moves with time (i.e. moving or sliding window control) and
is immune to the above drawbacks. Consider a system with prediction horizon of
MT minutes and sample time Ts � 1 minute and assume initial time-step is k, then
RHMPC is summarized by the following algorithm.

Receding horizon MPC algorithm:

1. Given xrks, solving an optimal control problem over horizon rk, k �MT s yields
the open-loop control sequence turl|ksuMT�1

l�0 .

2. Apply only the first instance of control sequence to system: urks :� ur0|ks
3. Measure new system state xrk � 1s � fpxrks, urksq.
4. Set k � k � 1 and repeat step (1).

As the above RHMPC process illustrates, with each successive control action, the
horizon no longer shrinks, but, in fact, recedes. A graphical illustration of RHMPC
is given by Figure 4.12. Note that in this work, the prediction and control horizons
are assumed equal: MT .

4.5.2 RHMPC system model

The Level 2 RHMPC cascade mitigation scheme considers ramp-rate limits on
conventional generators, dynamics and power ratings of grid storage devices, and
incorporates the thermal response of overloaded lines. Note that in Level 2, lines are
no longer subject to a hard flow-limit constraint. Rather, the controller seeks to drive
conductor temperatures below their respective limits. The RHMPC optimization is
formulated as a QP over a finite prediction horizon for all l PM :� t0, . . . ,M � 1u:

min
url|ks

����xrM |ks � xsp
k�M

����
SM

�
M�1̧

l�0

L pxrl|ks, url|ksq (4.17a)

s.t. xrl � 1|ks � Axrl|ks �Burl|ks � Fzrl|ks (4.17b)

0 � Âxrl|ks � B̂url|ks � F̂ zrl|ks (4.17c)

Cxrl|ks �Durl|ks �Gzrl|ks ¤ d (4.17d)

xrl|ks P X , url|ks P U , zrl|ks P Z (4.17e)

xrM |ks P Tx (4.17f)

xr0|ks � xmeas
k (4.17g)

88



y[l|k]

u[0|k] u[l|k]

k k + 1 k + M

(a) RHMPC at time-step k

k + 1 + Mk + 2k + 1

u[0|k + 1]
u[l|k + 1]

y[l|k + 1]

(b) RHMPC at time-step k � 1

Figure 4.12: Illustration of receding horizon MPC [2].
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where xrl|ks, url|ks, and zrl|ks represent4 the dynamic state, control input, and alge-
braic state variables, respectively, at predicted time 0 ¤ l  M , given initial measured
state xmeas

k at time k. The objective function in (4.17a) is defined by:

Lpxrl|ks, url|ksq � ||xrl|ks � xsp
k�l||Q � ||url|ks � usp

k�l||R (4.18)

where xsp
k�l and usp

k�l refer to the Level 1 trajectory interpolated at time k � l, the
norms are defined by ||y||B � yJBy, and weighting matrices SM ¥ 0 and Q ¥
0 are non-negative definite while R ¡ 0 is positive definite. Expressions (4.17b)
and (4.17c) describe the differential-algebraic (DA) dynamics. Expressions (4.17d),
(4.17e), and (4.17f) define static inequality constraints, bounds on states and inputs,
and a terminal state constraint set, respectively. Equation (4.17g) establishes the
initial state for RHMPC.

Remark IV.9 (Algebraic state constraints). If the reader compares the general MPC
description in (4.9) with the RHMPC model in (4.17), the main difference lies with the
inclusion of algebraic state variables zrl|ks. Generally, algebraic equality constraints
enable a formulation that adheres to the dynamic state and control input formulation
portrayed in (4.9). This is because algebraic states are, generally, a function of the
dynamic states and control inputs. That is, in the linear case, the matrix F̂ , generally,
is invertible or has full rank and the following holds:

zrl|ks � �F̂�1pÂxrl|ks � B̂url|ksq. (4.19)

However, with the convex relaxation of losses, the algebraic states associated with
non-tight formulations beget a non-invertible F̂ matrix. That is, for a line that is not
tight, there is no unique transformation that maps the algebraic states of a line to the
dynamics/controls. This affects the descriptions of equilibrium points of the system
and turns stability into a quasi-like stability. For example, as the system is driven
from an overloaded (non-economical/non-secure) state to an economical and secure
state by RHMPC, the “equilibrium point” is actually a subspace of the algebraic state
variables defined by the null-space of F̂ .

The details of the Level 2 RHMPC model, system states, and controls are mostly
developed and discussed in Chapter II; however, a summary of the model is provided
below. The states and inputs associated with the proposed formulation of a RHMPC
cascade mitigation scheme for an electric power system are outlined below.

Dynamic states (x): there are three types of dynamic states:

• ∆T̂ij, line pi, jq conductor temperature overload with respect to limit, T lim
ij .

• En, state-of-charge (SOC) for ES n

• fG, generator G’s power output level.

Control inputs (u): the formulation employs six types of control inputs:

4The notation rl|ks implies time k � l.
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• ∆fG, change to conventional generator G output level

• f spill
GW

, wind spilled from nominal wind turbine GW

• f shed
D , load reduction from nominal demand D

• Qc,n, Qd,n, charge (c) and discharge (d) rate for ES n

• ψPST, phase-shifting transformer phase shift (rads)

Uncontrollable inputs: there are three types of forecasted inputs (i.e. exoge-
nous disturbances):

• fnom
GW

, nominal available power from wind turbines GW

• fnom
D , nominal demand D

• dij, thermal effects for conductor pi, jq (e.g. solar input, ambient temperature).

Algebraic states (z): consider nine types of algebraic states:

• fij, real power flowing across line pi, jq
• f loss

ij , real power loss from line pi, jq
• θij, phase angle difference between nodes i and j

• θ�ij , θ�ij , absolute value approximation of |θij|
• tθPW

ij psquSs�1, S-segment PWL approximation of |θij|2

• fGW
, real power injected from wind turbine GW

• fD, real power consumed by load D

• QT
n , total power injected or consumed by ES n

References (xsp, usp): there are five types of non-zero economical reference states
and inputs (i.e. from Level 1):

• Eref
n , state-of-charge (SOC) reference for ES n

• f ref
G , generator G’s reference power output level.

• ∆f ref
G , reference change to conventional generator G output level

• Qref
n , charge / discharge reference rate for ES n

• ψPST,ref, phase-shifting transformer phase shift reference (rads)
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For each time k, the dynamic states xmeas
k are measured and represent the initial

state of the system. Since the system is time-invariant, for ease of notation, the term
rl|ks is replaced by rls. Then, the full RHMPC formulation is defined as a quadratic
programming (QP) problem:

min
urls

����xrM s � xsp
k�M

����
SM

�
M�1̧

l�0

L pxrls, urlsq (4.20a)

s.t ∆Tijrl � 1s � τij∆Tijrls � ρij∆f
loss
ij rls � ρ̂Jij∆drls (4.20b)

Enrl � 1s � Enrls � ηc,nQc,nrls � Qd,nrls
ηd,n

(4.20c)

fGrl � 1s � fGrls �∆fGrls (4.20d)

∆T̂ijrls � maxt∆Tijrls, 0u (4.20e)

0 � Γi

�
fijrls, f loss,est

ij,k , fGrls, fDrls, QT
n rls

	
(4.20f)

0 � aijxijfijrls �
�
θijrls � ψPST

ij rls� (4.20g)

0 � aijx
2
ijf

loss
ij rls � rij∆θ

Ş

s�1

p2s� 1qθPW
ij psqrls (4.20h)

0 � θ�ijrls � θ�ijrls �
Ş

s�1

θPW
ij psqrls (4.20i)

0 � θ�ijrls � θ�ijrls � pθijrls � ψPST
ij rlsq (4.20j)

fDrls � fnom
D,k�lrls � f shed

D rls (4.20k)

fGW
rls � fnom

GW ,k�lrls � f spill
GW

rls (4.20l)

QT
n rls � Qc,nrls �Qd,nrls (4.20m)

xrls P X , urls P U , zrls P Z (4.20n)

xrM s P Tx (4.20o)

xr0s � xmeas
k (4.20p)

for all l PM. The objective function in (4.20a) is defined by (4.18) and measures devi-
ation from reference values over the prediction horizon. Expressions (4.20b), (4.20c),
and (4.20d) represent the linear (discrete) dynamics associated with conductor tem-
perature for line pi, jq, SOC for energy storage device n, and the output level of gen-
erator G, respectively. The thermal conductor model is based on IEEE Standard 738
describing the temperature-current relationship in overhead conductors. Tempera-
ture dynamics in (4.20b) are linearized with respect to the conductor temperature
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(T lim
ij ) at ampacity (I lim

ij ), and conservative ambient parameters (q�s , T
�
amb). That is,

∆Tijrls � Tijrls � T lim
ij (4.21)

∆f loss
ij rls � f loss

ij rlsSb{3Lij �RijpI lim
ij q2, (4.22)

∆drls �
�
qsrls
Tambrls

�
�
�
q�s
T �

amb

�
(4.23)

where Sb [VA/pu] and Lij [m] are power base and conductor length, respectively,
and Rij [Ω/m] is the per-unit length resistance. Recall from Section 2.5 that the
resistance of a conductor varies linearly with temperature (up to �20% ) and, thus,
given previously measured temperatures, one can obtain a good estimate of Rij over
the prediction horizon.

Constraint (4.20e) defines the main objective of alleviating temperature over-
loads while not incentivizing underloading of lines. That is, the RHMPC should
compute control actions that only consider lines with ∆Tijrls ¡ 0. Keeping in
mind the QP linear constraint formulation, the temperature objective is given by
∆T̂ij � maxt0, ∆Tiju. This constraint can be relaxed to the linear formulation,

0 ¤ ∆T̂ij (4.24a)

∆Tij ¤ ∆T̂ij. (4.24b)

Because the objective function penalizes ∆T̂ij, this relaxation will always be tight.
Equations (4.20f) and (4.20g) denote nodal power balance constraints (@i P N )

and DC power flows, respectively. Power balance implies Kirchhoff’s 2nd law: that
power flowing into node i must equal the power flowing out of the node i plus/minus
what is injected/consumed at node i. Note that DC flow as presented in (4.20g),
reflect application of the “Unified Branch Model” [66] that is described in detail in
Chapter 2.3. Under the unified model, in-phase (IPT, ψij � 0) and phase-shifting
(PST, aij � 1) transformers and transmission branches (aij � 1, ψij � 0) can be
described with the same system of equations.

The convex PWL approximation of line losses, developed in Section 2.3.4, is de-
scribed by the algebraic relations (4.20h), (4.20i), and (4.20j). The piecewise linear
relaxation utilizes S segments of width ∆θ � θ{S and is modeled with the algebraic
states θ�ij , θ

�
ij , tθPW

ij psquSs�1. Note that the unified flow model is also applicable for line
losses.

Algebraic equations (4.20k), (4.20m), (4.20l) define the relationship between con-
trol inputs and power balance from (4.20f). Specifically, how load shedding, injec-
tions/consumption by storage, and wind curtailment are coupled with generation and
line flows within the electric network.

The sets defined in (4.20n) and (4.20o) are convex polytypes. In particular, X is
closed and U is compact and the sets contain the Level 1 reference trajectories xsp

l , u
sp
l
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for all l PM:

xspl P X �  
x
��Erls P r0, Es; fGrls P rfG, fGs( (4.25a)

Z �  
z
�� θijrls P r�θ, θs � p�π{2, π{2q; (4.25b)

θ�ijrls, θ�ijrls ¥ 0; θPW
ij psqrls P r0,∆θs(

uspl P U �
!
u
��� f shed

D rls P r0, αDs, f spill
GW

rls P r0, αGs, (4.25c)

∆fGrls P r�Rdown
G , Rup

G s, ψPST
ij rls P r�αP , αP s,

Qc,nrls P r0, Qcs, Qd,nrls P r�Qd, 0s
(

with bounds defined by appropriate parameters.
Finally, the set Tx represents the convex polytopic terminal constraint set, meant

to ensure stability of the RHMPC scheme by enforcing that all temperatures be at or
below their limits by the end of the prediction horizon. The terminal set is defined
as follows:

Tx �
!
x
���∆T̂ rM s � 0^ xrM s P X

)
� X . (4.25d)

Remark IV.10 (Terminal constraint & Feasibility). Terminal constraint set Tx is
compact and contains the “origin” (established by line temperature limits and Level 1
reference values), as required by standard stability arguments [36]. This guarantees
that line temperature overloads will be alleviated by MPC control actions. However,
terminal constraints may, in general, impact feasibility of QP problem if the prediction
horizon, M , is chosen sufficiently short. To ameliorate concerns of feasibility in this
problem, M is appropriately chosen and slack variables are added to the power balance
in (4.20f) to prevent network infeasibilities during line tripping and possible islanding.

Given the complete controller model description provided by (4.20), (4.24), and (4.25)
the state and input vectors can be defined by:

x :� colt∆T̂ , E, fGu (4.26a)

u :� colt∆fG, f spill
G,W , f

shed
D , Qc, Qd, ψ

PSTu (4.26b)

z :� coltθ, θ�, θ�, θPW , f, floss, fD, fGW
, QTu. (4.26c)

4.5.2.1 Stabilizing temperature overloads

To ensure correct temperature dynamics in (4.20b), the convex relaxation of line
losses must be tight whenever a line temperature rises above its limit (i.e. ∆Tij ¡ 0).
This is guaranteed by the following theorem:

Theorem IV.11 (Temperature and Convex Relaxation). Assume gij ¡ 0 and losses
in (4.20f) are fixed to a predetermined value over the duration of the prediction hori-
zon. If the temperature of line pi, jq P A exceeds its limit at time l � 1, then the
convex relaxation is tight with respect to line pi, jq for all previous time-steps. That
is, if D l PM and pi, jq P A such that ∆Tijrl � 1s ¡ 0, then adjacency conditions are
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satisfied and θ�ijrκs θ�ijrκs � 0, @κ ¤ l. Hence the convex relaxation associated with
line pi, jq is tight @κ ¤ l.

Proof. The full proof is given in Appendix B. To sketch the proof, let t∆TijrlsuMl�1

be an optimal MPC temperature trajectory for line pi, jq and assume D l PM such
that ∆Tijrl � 1s ¡ 0 but the solution is not tight for some κ ¤ l. That is, losses are
overestimated via the convex relaxation (i.e. either θ�ijrκs θ�ijrκs ¡ 0 and/or adjacency
conditions are not satisfied in the PWL relaxation, see Figure 2.5). Then a feasible
solution can be derived which is identical to the optimal solution except that it
enforces a tight formulation at time κ and reduces line losses accordingly, say from
f loss
ij,relaxrκs ¡ f loss

ij,tightrκs. According to (4.20b), decreased losses at time κ result in
lower temperature at later times, which implies that the temperature overload at
time l� 1 must be less under the tight feasible solution. Since the objective function
penalizes ∆T̂ijrκs and losses are fixed in power balance equation, the feasible tight
trajectory provides a lower cost solution than the relaxed optimal trajectory. This is a
contradiction. Thus, if pi, jq has a temperature overload at time l�1, the formulation
is locally tight @κ ¤ l.

Remark IV.12 (Fixing losses over the prediction horizon). Under the standard
convex relaxation of a PWL approximation of line-losses [69], it is implicitly assumed,
for tightness of the formulation, that nodal prices (i.e. LMPs) are non-negative.
Negative nodal prices arise for nodes where increasing power consumption leads to
decreased overall system costs. For example, if a line is congested or trips at time k
and forces a generator at node i to decrease output (i.e. fG,irks�fG,irk�1s   0), then
it can be shown that the nodal price at that node at time k will become negative. This
breaks the assumption of non-negative nodal prices and prevents a tight formulation of
losses. Fictitious losses can then “consume” power via the power balance equation (for
nodes with negative LMPs) and reduce the overall objective function value. Similar
but more thorough conclusions have been reached by authors in [70, 94] as it relates
to convex relaxations in power systems.

To overcome the challenge of negative LMPs in this work, losses are fixed in (4.20f)
to a value f loss,est

ij,k obtained from the most recent measurement of the AC system.
The proof in Appendix B does not, therefore, require consideration of nodal prices.
Furthermore, by fixing losses in the power balance equation, the network structure
does not affect the convex relaxation. The astute reader will note that with losses
fixed in (4.20f), the computed control actions will be slightly inconsistent with the
actual AC system. However, this loss approximation typically constitutes less than
0.1% of total load, and is corrected by feedback in the MPC formulation.

4.5.3 RHMPC objective function

The objective of the MPC scheme is to determine the optimal control actions
that alleviate temperature overloads, ∆T̂ij, while minimizing deviations from the
economic set-points established by Level 1. Accordingly, the MPC objective function
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is composed of the terms:

pop∆T̂ijrlsq2 - line temperature overload

pgpfGg rls � f sp
Gg ,k�l

q2 - deviation from reference output

prp∆fGg rls �∆f sp
Gg ,k�l

q2 - changes in generation ramping

pepEnrls � Esp
n,k�lq2 - deviation from reference SOC

pqpQnrls �Qsp
n,k�lq2 - changes in reference dis/charging

pspf shed
Dd

rlsq2 - load control

pwpf spill
G,windrlsq2 - wind spill

pppψPST
ij rls � ψPST,sp

ij,k�l q2 - deviation from PST reference shift

where reference values, denoted p�qsp, refer to the economically optimal set-points
computed in Level 1.

Based on the MPC objectives and the state and input definitions in (4.26), the
weighting matrices in (4.20a), (4.18) are given by:

Q � diag{poI,
pe

10M2
I,

pg
10M2

I} ¡ 0 (4.27a)

SM � diag{poI, peI, pgI} ¡ 0 (4.27b)

R � diag{prI, pwI, psI, pqI, pqI, ppI} ¡ 0 (4.27c)

where I represents square identity matrices of appropriate dimensions and diag{.} is
a block-diagonal matrix. Note that the terminal cost matrix SM penalizes deviations
from economical references for storage SOC and conventional generation states more
severely than does the weighting matrix Q. This is because the MPC does not care
how these reference signals are tracked, only that they are being considered by the
end of the horizon.

4.5.4 Base-case Controller

To enable a reasonable comparison of the performance of the RHMPC, a base-
case controller is necessary. The base-case controller serves as an estimate of human
operator behavior during a system emergency (i.e. contingency response). Clearly,
modeling a human operator is non-trivial as standard emergency procedure varies
broadly across regions, involves power market factors, and the experience of a human
operator is not amenable to an implementable mathematical (and repeatable) frame-
work. However, the crude base-case presented here captures the underlying objectives
of the operator:

• Alleviate thermal (power) overloads by rescheduling or curtailing generation,
while considering ramp-rate limits and incremental generator cost curves.

• Employ linear methods, such as, power transmission distribution factors (PTDFs),
generation shift factors (GSFs), and transmission loading relief (TLR) proce-
dures to make quick control decisions to relieve thermal overloads [95].

• Shed load only as an absolute last resort.
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• Do not consider energy storage.

Thus, mapping the above operator traits into an MPC-based framework serves as
the base-case:

• Base-case implementation

– Replace ∆T̂ rks with a relative algebraic overload:
ôijrks � 10 maxt0, p|fijrks| � 0.5f loss,est

ij rksq{uij � 1u
That is, if a line is 10% overloaded, ôij � 1.0.

– Consider PTDF, GSF, and TLR implicitly as a 1-step MPC process akin to
Level 2 (i.e. set M � 1) and include overloads ôijr0|ks, ôijr1|ks in objective
and terminal costs.

– Penalize load shedding and control of energy storage devices heavily.

– Remove terminal constraints on overloads, Tx.
– Set Rbase � R, Qbase � SM , SM,base � SM .

4.5.5 Actual system model (plant)

The AC power flow is generally accepted as a valid representation of the actual
physical power system (i.e. the plant). Therefore, the control actions recommended
by the MPC, which utilizes the strictly linear model described in Section 4.5.2, is
applied to an AC model of the system at each time-step. In addition, resulting
losses from the AC power flow are utilized in the non-linear IEEE Standard 738
conductor temperature model to better capture the effects of MPC recommendations
on the actual system. Finally, the actual energy storage model does not allow for
simultaneous charging and discharging in the same time-step and instead employs
the projected control action QT

n rks such that Qc,nrksQd,nrks � 0.
The higher the temperature, the more likely line tripping becomes. To capture

the inverse relationship between temperature and expected time to trip in the actual
system, the probabilistic thermal line outage model from Section 4.2.2.2 is utilized
with rate parameter λ � 70.

4.5.6 Case-study: IEEE RTS-96

The bilevel cascade mitigation scheme illustrated in Figure 4.13 is implemented
for a case study. Notice how the scheme updates the reference immediately following
a disturbance to capture the correct topology. The hierarchical control scheme de-
veloped above is applied to an augmented version of the IEEE RTS-96 power system
test-case, which is described in full details in [68]. For completeness, a brief overview
of RTS-96 is included here.

The RTS-96 system consists of 138 kV and 230 kV subsystems. The network
is organized into three interconnected physical regions, as illustrated in Figure 4.14,
and consists of 73 nodes and 120 branches, of which 15 branches are IPTs, one is a
PST, and the remaining are overhead transmission lines (138 & 230 kV). Note that
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Figure 4.13: Overview of proposed control scheme showing Level 1 (economical) and
Level 2 (corrective) interaction.

the three underground cables in the original RTS-96 system have been modified into
overhead lines to enable application of a single thermodynamic model. Transformer
temperature overloading is not considered in this paper since the thermodynamic
responses is applicable on a significantly slower time-scale and are generally equipped
with external controls for managing temperatures (i.e. fans).

This case study will highlight the advanced contingency management available
from the proposed hierarchical control scheme, however, the RTS-96 system is de-
signed as a highly reliable system with large nominal thermal ratings. To bring the
system closer to its limits and engender worthwhile scenarios, thermal ratings uij have
been reduced by 40%, which yields line temperature limits that are reduced to the
range of 60-70�C. Furthermore, ramp-rates have been reduced by 82.5% to enhance
the role of storage in congestion management and highlight Level 2 performance. For
the temperature dynamics, the RTS-96 system data only specifies per-unit resistance
and reactance and line length but not the conductor types (i.e. diameter, heat capac-
ity). Therefore, this case-study employs ACSR conductors 18/1 Waxwing (138 kV)
and 26/7 Dove (230 kV), which represent reasonable choices given the reduced line
ratings. The values for Dove and Waxwing conductors along with system parameters
are shown in Table 4.9. Values in brackets represent ranges.

The objective weighting factors utilized in RHMPC Level 2 and base-case are
presented in Table 4.10. Note that overload coefficient, po, for the base-case, reflects
thermal power overload (ôij) and not temperature. Also, the storage control coef-
ficient for the base-case, pq � 1000, is to reflect that this resource is not available
in decision-making. Regarding storage, an interesting phenomena was observed for
high-wind scenarios: when the penalty on wind spill greatly exceeded the storage
control penalty, the RHMPC scheme would burn excess wind energy through the
lossy energy charge/discharge cycles to reduce wind spill. Therefore, penalties on
wind-spill are set below those of storage. Control changes to generator inputs, ∆fG,
are penalized with factors pr � maxt0.05, αG{maxG tαGuu in Level 2 while for the
base-case: pr � 0.1 maxt0.1, αG{maxG tαGuu. Recall, αG is given by Level 1 objec-
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Modified RTS96 Network with Storage and Wind
Buses: Blue = Gen, Maize = Load, Green = Hub, Red = Tripped, Aqua = Xfmr
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Figure 4.14: Augmented IEEE RTS-96 network with storage (E), wind (W) available
at different buses. Specific buses are denoted with three digits. The first digit in-
dicates area and the latter two are intra-area designators. Bus types are indicated
by color: generator (blue), load (yellow), and through-put (white). Edges repre-
sent transmission lines (black) and transformers (aqua/gray). The disturbance (i.e.
tripped lines) is displayed with stars: edges 113-215 and 123-217. Note that storage
and wind nodes are attached to buses as indicated in figure, but the associated edges
do not represent transmission lines.

tive: αGf
2
G � βGfG. The cost-curve parameters (αG, βG) utilized in this case-study

are from [96, Table 1] and repeated here in Table 4.11 for completeness. Note that
generators with ID Ug have upper output limit fGrks ¤ fG � g MW.

Remark IV.13 (Role of Unit Commitment). Since no minimum generator outputs
are specified in [68], fG � 0 is assumed as minimum outputs available for dispatch.

An overview of Level 2/base-case is displayed in Figure 4.13. Since longer timescales
are associated with the early stages of a cascade failure, it allows for significant com-
puting to be performed immediately following a disturbance. Therefore, the updated
economically optimal set points are computed by Level 1 immediately following dis-
turbance. Furthermore, the Level 2 cascade mitigation scheme does interact with
the AC system (i.e. the plant) and is subject to the probabilistic line outage model
between each time-step, which is illustrated in Figure 4.15.

Remark IV.14 (Sampling time and outage probability). The probabilistic outage
model was tuned with respect to Ts � 1 minute. Development of the probabilistic
line outage model parameter λ required consideration of sampling time Ts, since each
time-step represents a random event (i.e. rolling a dice). The probability of a line trip-
ping for time-step k considers the probability of the line tripping during the interval
rkTs, pk� 1qTsq. That is, if the probabilistic line outage parameter for sampling time
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Table 4.9: Network model parameters used in case-study.

Model Parameter Value Unit

3-phase power base, Sb 100 MVA/pu
Energy storage base, Eb 100 MWh/eu
Monetary unit base, Mb 10,000 $/mu
Sampling Time, Ts 60 s
Storage SOC limits, Ei 2 eu
Storage power limits, Qc,�Qd 0.25 pu
Nominal wind power, fnom

G,wind Fig. 4.16a pu
Nominal loads, fnom

D Fig. 4.16b pu
Overcurrent protection limits, Ω 3 -

Ambient Temperature, Tamb 35 C
Wind speed, angle, vw=θw 0.61,π{2 m/s, rads
Solar heat flux rate, Qs 1.03 kW/m2

Solar absorptivity, α 0.9 -
Coefficient of emissivity, ε 0.7 -

Line-to-line base voltage, Vb 138 230 kV
Thermal rating, uij 1.05 3.00 pu
Diameter, Dij 15.5 23.5 mm
Heat capacity, mCp,ij 383 916 J/C-m
Ampacity, Ilim,ij 439 753 A
Resistance per unit length, Rij [103,118] [55,66] µΩ/m
Temperature limit, Tlim,ij [62,64] [67,71] C
Temperature coefficient, τij 0.796 0.888 -
Ambient coefficient, γij 0.193 0.104 -
Loss coefficient, ρij 0.157 0.066 C-m/W

Ts � 1 minute was used for a sampling time Ts � 1{100 minute, then the probability
of tripping would incorrectly increase by a factor of 100, because for 1 minute, the
random event would have taken place 100 times. A simple solution to this issue is to
consider the ratio of the sampling time for which the outage model was tuned T tune

s

and the actual sampling time Ts. Then, multiply the resulting temperature-based
probability by the factor Ts{T tune

s .

4.5.7 Simulation Results

The case-study detailed in Section 4.5.6 is simulated in Matlab according to
Level 1, Level 2, and base-case implementations. Initially, the system is operated
economically according to Level 1. However, at hour 18 (low wind, high demand), a
two-line outage (i.e. the disturbance) trips lines 113-215 and 123-217. Performance
and behavior of Level 2 MPC (with M � 5, 10, 20, 30, and 45) and Base-case are
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Table 4.10: Objection function coefficients for Q,R, SM matrices for RHMPC and
base-case systems.

Model po pe pg pr pw ps pq pa

Lvl 2 1 200 200 [0.05,1] 0.15 250 0.2 0.01
Base 1 0.01 0.01 [0.01,0.1] 0.5 500 1000 0.1

RHMPC or 
Base-case

(DC)

Plant
(AC)

Line 
outage 
model OutputLevel 1 

Setpoints

u[0|k] x[k + 1]

x[k]

usp, xsp

Figure 4.15: Overview of Level 2 RHMPC and base-case implementation.

discussed below.
The two-line outage, at hour 18, causes the remaining inter-area transmission

line 107-203 to become severely overloaded (¡ 1.25uij). The Level 2 MPC scheme
alleviates the temperature overloads and brings the system safely to the updated
economic set points provided by Level 1. However, the base-case undergoes a cascade
failure with line-tripping bringing the system to a voltage collapse after 29 minutes
(as exemplified by non-convergent AC power flow). The base-case cascade failure
evolves as follows:

• k � 3: line 107-203 trips at ∆Tijr3s � 13.5 �C.

• k � 16: line 114-116 trips at 8.14 �C.

• k � 26: line 113-123 trips at 11.4 �C.

• k � 28: lines 103-109 & 112-123 trip at 16.8 & 20.7 �C

• k � 29: Voltage collapses! “Blackout.”

For the base case, Area 1 undergoes a voltage collapse k � 29, as illustrated in
Figure 4.17 when the minimal voltage magnitude drops below 0.87 pu.

The maximum line temperatures for each time-step of the base-case and MPC
runs are illustrated in Figure 4.18a. Note that MPC is able to avoid high temperature
overloads and drive the temperatures below their respective limits by minute k � 75.
After this time period, a few lines hover above their temperature limits. However,
this is due to model uncertainty regarding non-linear temperature and AC power
system models in the plant and the linear temperature and DC models employed in
the controller and for the Level 1 set points. In particular, the largest temperature
deviations above limits are associated with 138 kV lines that exhibit xij{rij   4, which
engenders errors in the DC approximation of an AC system. Basically, the DC model
incorrectly informs the controller that losses are low enough that the temperature will

101



Table 4.11: Generator ramp-rate and cost parameters.

Generator # of Ramp rate Cost-curve parameters
ID units (pu/hr) βG ($/pu-h) αG ($/pu2-h)

U12 15 0.105 1.57 2.87
U20 12 0.315 1.66 2.1
U50 18 0.105 0.11 0.01
U76 12 0.210 0.19 0.07
U100 9 0.735 1.36 0.22
U155 12 0.315 0.182 0.01
U197 9 0.315 1.39 0.09
U350 3 0.420 0.179 0.01
U400 6 2.10 0.062 0
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Figure 4.16: Wind power and demand profiles from 8 turbines and 51 loads in the
RTS-96 network over 24-hour horizon

drop below its limit in the next time-step under negligible control action. Then, the
AC power flow yields higher-than-DC losses and temperature stays above limit. The
controller repeats these incorrect estimates of losses until control action is required
or load-patterns autonomously reduce line loadings below limits. However, the errors
associated with the model uncertainty are highlighted in Figure 4.18b where line flows
are less than 6% above their thermal rating for k ¡ 50, which is within expected
standard DC approximation error levels [97].

The control of line temperatures is achieved from Level 2 MPC schedules via avail-
able control actions: load-shedding, wind curtailment, and energy storage injections.
Figures 4.18c, 4.18d, 4.18e illustrates the aggregated control signals required to al-
leviate temperatures (with Level 2). Contrasting MPC runs with the base-case, it
is clear that load-shedding and and storage control plays a major factor in Level 2
MPC performance. Namely, by initially shedding less than 3% of the aggregate load
(Fig. 4.18c) and curtailing storage injections (Fig. 4.18e), the temperature is brought
to within its limit. For k P r75, 240s, storage injections exceed reference levels to
bring SOC back to economical reference levels while wind curtailment (Fig. 4.18d)
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Figure 4.17: Voltage levels under cascade failure event from base-case operation high-
lighting voltage collapse.

is employed as cheap control to bring/keep temperatures below limits under model
uncertainty.

The Level 2 MPC performs a balancing act between economically optimal refer-
ences and ensuring safety criteria. This balance is highlighted in Figure 4.18f, where
the cost of generation is illustrated for MPC runs and the base-case. To ensure safety,
the different MPC cases initially sacrifice economical optimality by deviating from the
Level 1 set points. For k ¡ 120, the system returns to economically optimal levels
with model uncertainty causing some minor discrepancies. Recall that Level 1 (eco-
nomic) and Level 2 (safety) are computed based on the DC power flow model, but
the actual implementation utilizes the AC power flow.

It is worthwhile to point out the effect on performance from varying the prediction
horizon. Assuming the QP problem remains feasible, by employing the terminal
constraint Tx, the MPC is required to bring line temperatures within their limits by
the end of the horizon. Therefore, as the prediction horizon decreases, the MPC
scheme utilizes more aggressive (and expensive) control actions to alleviate overloads
as evidenced by load-shedding trajectories. In addition, with decreasing M , the
terminal constraint on temperature, generally, causes less severe overloads and brings
smaller departures from economic references as established with generation costs.

As alluded to Section 4.2.3, the approach employed to show stability of the
RHMPC scheme relies on Lyapunov-type arguments. Specifically, it is sufficient to
show that the objective function that defines that RHMPC scheme is a Lyapunov
function. From the Lyapunov ideas, suitable “ingredients” can be derived, which
allow for straightforward stability results for linear systems. For the RHMPC scheme
simulated in this case-study, stability was ensured with positive-definite objective
weighting matrixes and the terminal constraint Tx. To illustrate that this precipi-
tates a Lyapunov function (and guarantees stability), Figure 4.19 plots the total cost
over time of each RHMPC prediction-horizon example and the base-case controller.
It can be seen that the cost function does behave as a Lyapunov function for all
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Table 4.12: Average QP solver times for different M .

MPC M-value 5 10 20 30 45

Average Time (sec) 0.8 2 5 9 16

RHMPC instances, while the base case exhibits unstable behavior (mainly due to
lines tripping). The astute reader may also notice that as the prediction horizon de-
creases from 45 to 5 minutes, the total cost increases, which is in line with standard
MPC results. This increase in total cost due to the terminal constraint and that as
MPC predicts further into the future, the MPC is able to respond earlier to predicted
events and apply correspondingly cheaper control. Of course, the quality of predic-
tions is coupled with the quality of forecasts, which are assumed perfect in this case
study. Generally, with temporally deteriorating forecasts, the reduction in total cost
as a function of prediction horizon reaches a limit when the forecasts provide no new
information.

In addition, it could be argued that for M ¡ 20 the improved performance from
increasing M is negligible compared with increased computational complexity of solv-
ing the open-loop (QP) problem. Table 4.12 describes the approximate solution times
for the average instances of MPC for different M -values. The simulations were per-
formed on a personal computer with Matlab and GUROBI and it would be reasonable
to assume that, given the solver times, dedicated hardware may allow for real-time
implementation of RHMPC scheme. Of course, any implementation would require
considerations for the cyber-couplings that arises between sensors, measurements,
state estimators, computation, and control. Implementation, except for maintaining
computational tractability of the RHMPC scheme, is outside the scope of this work.

Furthermore, the utilization of estimated AC line losses in the power balance
equation effectively decouples the transmission lines (losses and temperatures) in the
system and enables the RHMPC scheme to stabilize line temperature via a convex
relaxation. However, using fixed estimates of line losses over the prediction horizon
in the power balance equation in the RHMPC model manifests itself as a power
mismatch in the actual “real” system. The total power mismatch due to the fixed
estimate is smaller than 0.05 pu (  0.1% of total load) and is, essentially, rejected as a
model inaccuracy by the RHMPC scheme as displayed in Figure 4.20. The thick blue
line represents the closed-loop response to mismatches (i.e. updates AC estimates)
while the thin red lines are open-loop mismatch trajectories from each time-step.
The large closed-loop spikes occur due to the hourly Level 1 step-changes in the
economically optimal input reference usp for storage and generators. For example,
see the hourly reference signal for Qn in Figure 4.18e). The RHMPC scheme ability
to reject model uncertainty is well-illustrated with these power mismatches.

Finally, to illustrate the locally tight nature of the convex relaxation, Figure 4.21
presents the adjacency, absolute-value, and temperature conditions for RHMPC pre-
dictions rl|k � 1s, l PM with prediction horizon M � 30. Notice, how any predicted
temperature overloads at time l�1 yields a tight relaxation for all previous time-steps
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p ¤ l. For example, line 52 (207-208) is predicted to have a temperature overload for
l P r19, 23s and adjacency and absolute values relaxations are tight for all l   23.

4.6 Summary

This chapter presents two bilevel hierarchical control approaches to cascade mit-
igation in power systems. The first approach represents initial efforts aimed at mit-
igating the effects of cascading failures in multi-energy hub systems and is based
on shrinking-horizon MPC (SHMPC) with a deterministic line outage model. The
SHMPC scheme illustrates the active role of energy storage and conversion processes
and the benefit from balancing both economic and security objectives in the cascade
mitigation scheme. It is shown that energy resources must be carefully regulated be-
cause MPC has a tendency to over-exploit stored energy to the detriment of long-term
energy requirements.

The ideas uncovered by the SHMPC scheme are advanced by the development
of a receding horizon MPC (RHMPC) cascade mitigation scheme applied to electric
transmission systems with energy storage. The RHMPC scheme balances economic
and security objectives through the use of a higher-level optimal scheduling process
and a lower-level model predictive control (MPC) strategy. The MPC design rejects
disturbances (contingencies) while tracking the optimal set-points established by the
higher level. Disturbance rejection exploits the thermal overload capability of trans-
mission lines. This allows time for adjustments to be made to controllable resources
that include generation levels, energy storage and demand response. A convex relax-
ation is applied to the AC power flow to develop a piece-wise linear approximation
for line losses. This formulation is proven to be sufficient to enable RHMPC to drive
line temperatures below limits. As supported by an augmented IEEE RTS-96 case
study, the RHMPC scheme can significantly improve system reliability and economic
performance by leveraging the temporal nature of storage and conductor tempera-
tures.

105



0 50 100 150 200 250 3000

5

10

15

m
a
x i

j
{∆

T̂
ij
[k

]}
(C

)

Time after disturbance, k (min)

Base Case
MPC (M = 5)

MPC (M = 10)

MPC (M = 20)

MPC (M = 30)

MPC (M = 45)

(a) Line temperature responses

0 50 100 150 200 250 300

100

110

120

130

140

150

M
a
x

li
n
e

lo
a
d
s:

m
a
x i

j
{ô

ij
[k

]}
(%

)

Time after disturbance, k (min)

Base Case
MPC (M = 5)

MPC (M = 10)

MPC (M = 20)

MPC (M = 30)

MPC (M = 45)

Level 1 Ref

(b) Relative line flow response
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(c) Aggregate load shedding
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(d) Aggregate wind curtailment
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(e) Aggregate storage (dis)charging
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Figure 4.18: Case-study simulation results of RHMPC and Base-case.
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CHAPTER V

Distributed Model-predictive Overload Prevention

via Load Control

5.1 Introduction

Distribution utilities are becoming increasingly aware that their networks may
struggle to accommodate large amounts of plug-in electric vehicles (PEVs). In par-
ticular, uncoordinated overnight charging is expected to be problematic, as the corre-
sponding power demand exceeds the capacity of most distribution substation trans-
formers. In this chapter, a dynamical model of PEVs served by a single temperature-
constrained substation transformer is presented and a centralized scheduling scheme
is formulated to coordinate charging of a heterogeneous PEV fleet. Because predic-
tion errors and fluctuations in background demand can be severe due to a low extent
of aggregation in the distribution network, feedback to disturbances is introduced by
solving the scheduling problem in a receding horizon fashion. This results in a cen-
tralized MPC scheme. The centralized scheme is then decomposed into a set of local
control laws, which determine the charging strategy of each individual electric vehicle,
and which can be coordinated via a common (pseudo-)price for electrical energy. This
price is generated by a centralized agent, via application of the dual-ascent method,
in such a way that the aggregated power demand is kept within its operational limits
and is optimal upon convergence. Then, an implementation is proposed in which
this distributed open-loop problem is embedded in an MPC scheme to introduce ro-
bustness against exogenous disturbances. Simulations of a realistic charging scenario
illustrate the effectiveness of the so-obtained incentive-based coordinated PEV control
scheme in terms of performance and enforcing the transformer’s thermal constraint.

This work appears in the proceedings of the 2012 American Control Confer-
ence [98].

5.2 Basic notation and definitions

Let R, R�, Z and Z� denote the sets of reals, non-negative reals, integers and
non-negative integers, respectively. For each c P R and Π � R let Π¥c :� tk P Π |
k ¥ cu and similarly, Π¤c. Let ZΠ :� Z X Π. For a finite set txiuiPZr1,Ns

, xi P Rni ,
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Figure 5.1: PEV charging via a single substation transformer.

N P Z¥1, let colptxiuiPZr1,Ns
q and colpx1, . . . , xNq denote the vector

�
xJ1 , . . . , x

J
N

�J
.

Let 1n be the all-one vector r 1 ... 1 sJ in Rn, and In the n by n identity matrix. The
i-th element of a vector x P Rn is denoted by rxsi. Define projection rxs� P Rn

� by
rrxs�si :� maxt0, rxsiu. Let z :� tzplqulPZ� with zplq P Rn, l P Z�, denote an arbitrary
sequence. For some scalar c P R, let rcs :� minkPZ¥c k and let |c| be its absolute value.
All inequalities are interpreted elementwise.

5.3 Dynamical Model of PEV Charging

We begin by describing a model for the PEV charging problem. Consider a fleet
of N P Z� plug-in electric vehicles, all connected to a distribution grid that is fed
by a single substation transformer, see Fig. 5.1. Let the continuous-time charging
dynamics of vehicle n P N :� t1, . . . , Nu be described by

9snptq � η̃npnptq � η̃VACinptq, t P R�, (5.1)

where snptq, pnptq [W] and inptq [A] denote the vehicle battery’s normalized state of
charge (SOC), the charging power and the charging current at continuous-time instant
t P R�, respectively. We assume that the rms grid voltage VAC [V] is constant.
The parameter η̃n [J�1] is obtained as the ratio of the vehicle’s charging efficiency
αn P Rr0,1s and battery size βn [J]. Note that the above dynamics are valid only for
sn in Rr0,1s, where sn � 1 and sn � 0 mean that the battery of vehicle n P N is
fully charged and empty, respectively. Next, suppose that the charging profiles inptq
are step-wise with step width Ts [s], such that inptq :� inrks for t P RrkTs,pk�1qTsq and
k P Z�. Then, (5.1) yields

snrk � 1s � snrks � ηninrks, k P Z�, (5.2)

where snrks :� snpkTsq and ηn :� Tsη̃nVAC [A�1].
The transformer that connects the distribution grid to the high-voltage transmis-

sion network is modeled as a single thermal mass with continuous-time temperature
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dynamics

9T ptq � 1

C

"
Rci

2ptq � T ptq � Taptq
R

*
, (5.3)

with aggregated current iptq :� p°nPN inptqq�idptq [A], transformer heat capacity C [J
K�1], heat outflow resistance R [K W�1], coil resistance Rc [Ω], and where T ptq [K] is
the transformer core temperature at time instant t P R�. The net background/non-
PEV current idptq [A] and the ambient temperature Taptq [K] act as exogenous dis-
turbances. Using Euler forward discretization and sampling period Ts, the following
discrete-time temperature model is obtained:

T rk � 1s � τT rks � γ̄i2rks � ρTarks, (5.4)

where τ :� �
1� Ts

RC

� P R, γ̄ :� TsRc

C
P R� and ρ :� Ts

RC
� 1� τ P R�, and where T rks

is the transformer core temperature at discrete-time instant k P Z�. For stability, the
sampling period is required to satisfy 0   Ts   2RC, such that τ P Rp�1,1q.

In what follows, we use a linearized version of (5.4) to allow for a tractable imple-
mentation of the charging control scheme described in Sect. 5.4. Linearization around
the equilibrium point T �, i� :� a

γ̄�1ρpT � � T �
a q for Ta :� T �

a and id :� 0 yields the
approximate transformer dynamics described by

∆T rk � 1s � τ∆T rks � γ

��¸
nPN

∆inrks
�
� idrks

�
� ρ∆Tarks, (5.5)

with ∆T rks :� T rks � T �, ∆inrks :� inrks � i�

N
and ∆Tarks :� Tarks � T �

a , and where
γ :� 2γ̄i�.

Next, let tsnrl | ksulPZr0,Ks
and t∆T rl | ksulPZr0,Ks

be the SOC and temperature se-

quences generated by (5.2) and (5.5) from initial state r s1rks ... sN rks ∆T rks sJ P �Rr0,1s

�N�
R, charging rate sequences t∆inrl | ksulPZr0,K�1s

, n P N , and disturbances tidrl |
ksulPZr0,K�1s

, t∆Tarl | ksulPZr0,K�1s
over a finite prediction horizon K P Z�. Next,

consider the following sequence vector notation, i.e.,

Trks � col
�t∆T rl | ksulPZr0,Ks

� P RK�1

snrks � col
�tsnrl | ksulPZr0,Ks

� P RK�1, n P N ,
drks � col

�tdrl | ksulPZr0,K�1s

�
:� col

�!�
idrl|ks

∆Tarl|ks

�)
lPZr0,K�1s



P R2K

πnrks � col
�tπnrl | ksulPZr0,K�1s

�
:� col

�t∆inrl | ksulPZr0,K�1s

� P RK , n P N ,

111



and the sequence vector of aggregated charging current

πrks � col
�tπrl | ksulPZr0,K�1s

�
:� °

nPN πnrks P RK ,

such that (5.2) and (5.5) yield the prediction model

Trks � Φ∆T rks �Ψπrks �Ψddrks (5.6)

snrks � Φssnrks �ΨSnπnrks, n P N , (5.7)

with transition matrices Φ P RK�1, Ψ P RpK�1q�K , Ψd P RpK�1q�p2Kq, Φs P RK�1,
ΨSn P RpK�1q�K .

5.4 Centralized Scheduling of PEV Demand

Next, we formulate a centralized load scheduling strategy that serves as a starting
point for the incentive-based, distributed control scheme derived in Sect. 5.5.

We begin by observing that, for safety or performance reasons, PEV battery
charging is subject to strict state and input constraints. Firstly, battery chargers
usually come with a limited power capacity, i.e.,

πn,min ¤ πnrks ¤ πn,max, k P Z�, n P N , (5.8)

with finite πn,min P R, πn,max P R�. Note that vehicle-to-grid technology, which
enables power delivery to the network, can be taken into consideration via negative
πn,min.

Secondly, to prevent transformer overheating, a (relative) temperature constraint
is imposed, i.e.,

T � �∆T rks ¤ Tmax, k P Z�. (5.9)

For simplicity, we restrict our attention to a static upper bound on temperature, even
though this may be overly strict in practice. Normally, a slight temporary violation of
(5.9) is allowed, provided that secure steady-state operating conditions are recovered
within a sufficiently short subsequent cooling-down period.

Thirdly, by construction, the SOCs are bounded by

0 ¤ snrks ¤ 1, k P Z�. (5.10)

Additionally, each PEV owner can set a certain SOC target that needs to be reached
by the time they expect to leave their home. Thus, given (5.7) and initial states
of charge s1r0s, . . . , sN r0s, the load scheduling scheme has to select, for all n P N ,
an appropriate charging profile πnrks such that a certain minimum battery state
Sn P Rr0,1s is attained at some discrete-time instant Kn P Z¤K . That is,

Sn ¤ snrks, k P Z¥Kn . (5.11)
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Next, recall that the individual charging rates πnrks are coupled to temperature
dynamics (5.6) and constraint (5.9) through the relation

πrks � °
nPN πnrks, k P Z�. (5.12)

The set of solutions tπnunPN to (5.6)–(5.12) given ∆T rks, tsnrksunPN and drks is the
set of valid charging/feasible control strategies. Note that this set is polytopic (and
thus convex), as all constraints (5.6)–(5.12) are affine in πn.

The selection of a particular control schedule out of the set of feasible strategies
may be based on an optimization criterion. In our work, a PEV-centric objective
is employed, namely, the minimization of SOC deviations from 1 and minimization
of local battery wear and control effort. Thus, the centralized controller’s composite
objective is

min
πnrks,snrks,nPN

°
nPN Jnpπnrks, snrksq (5.13)

where Jn : RK � RK�1 Ñ R�, n P N , is defined as

Jnpπn, snq :� πJ
nRnπn � psn � 1K�1qJQs,npsn � 1K�1q,

with Qs,n � Qs,nIK�1 and Rn � RnIK , for some Qs,n, Rn P R¡0. Since both Qs,n

and Rn are strictly positive and constraints (5.6)–(5.12) are linear, the optimization
problem obtained by solving (5.13) over the set of feasible control strategies is strictly
convex and any optimal solution is therefore globally optimal.

Now consider the following optimization problem.

Problem V.1 (Open-loop Centralized PEV Charging). Given snr0 | ks � snrks for

n P N , ∆T r0 | ks � ∆T rks and disturbance forecast d̂rks :� col
�
td̂rl |ksulPZr0,K�1s

	
,

solve

min
πn, nPN

¸
nPN

�
πJ
n pΨ

J
Sn
Qs,nΨSn �Rnqπn (5.14a)

� 2pΦSnsnr0 | ks � 1K�1q
JQs,nΨSnπn




s.t. Φ∆T r0 | ks�Ψ

�¸
nPN

πn

�
�Ψdd̂¤Tmax1K�1 (5.14b)

πn,min1K ¤ πn ¤ πn,max1K (5.14c)

0 ¤ ΦSnsnr0 | ks � ΨSnπn ¤ 1K�1 (5.14d)

Sn1K�Kn�1 ¤ MKn

�
ΦSnsnr0 | ks�ΨSnπn

�
(5.14e)

for all n P N , where MKn P RpK�Kn�1q�pK�1q is such that MKnsnrks � col
�tsnrl |

ksulPZrKn,Ks

�
. �

In what follows, we refer to Prob. V.1 as the primal load scheduling problem. It
is obtained by reformulating constraints (5.9)–(5.11) and objective (5.13) in terms of
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control sequences πnrks only. This is achieved by eliminating state predictions Tnrks
and snrks using (5.6)–(5.7) and (5.12).

5.5 Incentive-based Coordinated Charging

In what follows, we derive an iterative, price-coordinated implementation of Prob-
lem V.1. Close inspection of (5.14) reveals that except for the complicating temper-
ature constraint, i.e., (5.14b), the centralized charging problem is fully separable in
local control sequences πn. Thus, if it was not for the temperature constraint that
couples the profiles πn for all n P N , it would be possible to find the optimizer of
Prob. V.1 by solving, in parallel, a set of N local PEV-specific optimization prob-
lems in πn. To derive a non-centralized implementation while still accounting for the
coupling temperature constraint, consider the partial dual of Prob. V.1 obtained by
relaxing (5.14b), i.e.,

maxλPRK�1
�

Υ pλq (5.15)

where

Υ pλq :� min
πnPΠn

�
snr0|ks

� ¸
nPN

�
Ĵnpπnq � λJΨπn

	
� λJ

�
Φ∆T r0 |ks �Ψdd̂� Tmax1K�1

�
,

with Πn

�
snr0 |ks

�
:� tπn P RK | (5.14c)–(5.14e) holdsu,

Ĵnpπnq :� πJ
n pΨJ

Sn
Qs,nΨSn �Rnqπn � 2pΦSnsnr0 |ks � 1K�1qJQs,nΨSnπn,

and where λ P RK�1
� is the Lagrangian multiplier or pseudo-price vector associated

with constraint (5.14b), see [99].
A well-known decomposition technique from convex optimization, the dual-ascent

method, can now be applied to solve Prob. V.1 in a distributed way, see [100, 99]. The
underlying observation is that Υ pλq allows for separate optimization over πn, n P N ,
yielding the following problem.

Problem V.2 (Open-loop Coordinated PEV Charging). At iteration p P Z�, given
snr0 | ks � snrks, ∆T r0 | ks � ∆T rks, disturbance forecast d̂rks and price vector
λppqrks P RK�1

� , solve for each PEV n P N ,

πppq
n rks � arg min

πnPΠn

�
snr0|ks

� Ĵn�πn

�� �
λppqrks�JΨπn. (5.16)

Then, given initial price λp0qrks, generate λpp�1qrks via

λpp�1qrks �
�
λppqrks � αppq p∇λΥq

�
�
, (5.17)
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with

∇λΥ :� Φ∆T r0 | ks�Ψ

�¸
nPN

πppq
n rks

�
� Ψdd̂rks � Tmax1K�1

and iteration-dependent step-size parameter αppq P R�. �

Prob. V.2 can be interpreted as follows, see Fig. 5.2. To decentralize Prob. V.1, we
employ a centralized coordinator that is responsible for secure transformer operation,
and that supplies the vehicles with a common time-varying pseudo-price for electrical
energy, i.e., λppq [$/J]. Each PEV owner can respond autonomously to this price. In
accordance with (5.16), rational car owners will adjust their scheduled power demand
in a way that complies with their local constraints and minimizes the sum of local

objectives (i.e., Ĵnpπnq) and energy costs (i.e.,
�
λppq

�J
Ψπn). The coordinator is

informed about the individual optimal power profiles π
ppq
n and updates the price in

a way that supports feasibility of temperature constraint (5.14b) at iteration p � 1.
More specifically, the corresponding master problem, i.e., maximizing over λ in (5.15),
is solved via the projected subgradient method using (5.17). Accordingly, the price is
driven towards zero at time instants for which the temperature associated with the
profiles π

ppq
n is predicted to be below Tmax. However, the price is increased, and thus,

charging is discouraged, at instants for which the demand response
°
nPN π

ppq
n would

lead to a violation of constraint (5.9).
Now consider the following theorem.

Theorem V.3. Let tαppqupPZ� with αppq P R� for p P Z� be such that
°8
p�0 α

ppq �
8 and

°8
p�0

�
αppq

�2   8. Then the profiles π
ppq
n , n P N , generated by Prob. V.2

asymptotically converge to the optimizers π�
n of Prob. V.1, i.e., }πppq

n �π�
n}2 Ñ 0 for

pÑ 8.

The above result can be obtained along the following lines. For the above con-
ditions on the step-size sequence tαppqupPZ� , the iterates generated by projected sub-
gradient step (5.17) are guaranteed to converge asymptotically to the optimizer λ� of
(5.15), see [100, 99]. Thus, Prob. V.2 asymptotically recovers the optimal Lagrangian
multiplier associated with complicating constraint (5.14b) in Prob. V.1. The result
now follows from strong duality of Prob. V.1.

In conclusion, we have obtained a distributed implementation of Prob. V.2 that
allows for autonomous decision making of individual PEV owners based on a common
pseudo-price signal. Next, we describe how this incentive-based scheduling problem
can be embedded in a model predictive control scheme as a means to provide feedback
to disturbances and changing network conditions.

5.5.1 Implementation: receding horizon control

The previously defined PEV-load scheduling schemes, i.e., Prob. V.1 and Prob. V.2,
compute an optimal charging profile given a single state measurement and disturbance
forecast. Such approaches are only effective if the future temperature and SOC values
can be predicted with high accuracy. Although net inelastic demand can be predicted
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relatively well on the transmission-network level (in an empirical fashion), unexpected
fluctuations in background demand can be significant in distribution networks due to
a low extent of aggregation. Moreover, for a PEV-load control scheme to be useful, it
should allow for varying numbers of connected cars during the charging period. Thus,
in practice, it is difficult to avoid significant prediction errors over a long horizon K
using open-loop scheduling only. However, we can introduce feedback as a solution to
unexpected disturbances, modeling errors and changing numbers of PEVs, by running
Probs. V.2 and V.1 in a receding horizon fashion. This yields a predictive control
law that solves the PEV-load scheduling problem each sampling time, while taking
a new state measurement and disturbance forecast into account. At each instant
k P Z�, the first sample of the last obtained control sequences π

ppq
n rks is applied to

the system, before running the procedure again at time instant k�1. This procedure
is summarized below.

Algorithm V.4. At each time instant k P Z�:
1: Obtain SOC snrks (PEV controller n), temperature ∆T rks and disturbance forecast

d̂rks (coordinator);

2: Initialize λp0qrks and run Prob. V.2 for pmax iterations;

3: Vehicle n charges its battery at a rate of π
ppmaxq
n r0 | ks. �

Fig. 5.2 depicts the control/communication architecture associated with Alg. V.4.
Red lines represent exchange of information; measurements and physical inputs are
reflected by black lines. The coordinator performs both price update (5.17) and
disturbance estimation, whereas PEV behavior is determined by charging laws (5.16)
and SOC dynamics (5.2).

In general, there is no guarantee that the iterates π
ppq
n generated by Prob. V.2 will

be feasible for p   8. However, in practice, it may still be possible to obtain a feasible
(yet, not necessarily optimal) set of PEV charging schedules within a finite number
of iterations. In what follows, we assume that pmax   8 iterations are sufficient for
this to occur. Then, for Alg. V.4 to be suited for implementation in practice, it is
necessary that the time required for evaluating these iterations does not exceed the
sampling period Ts.

Simulation results (see Sect. 5.6) indicate that the number of iterations required
for obtaining feasible control actions may be reduced by appropriately choosing the
sequence tαppqupPZ� . Also, convergence speed may be increased considerably in case

of small prediction errors, by initializing λp0qrks � tλp0qrl | ksulPZr0,Ks
as a time-shifted

version of the previous price λppmaxqrk � 1s, i.e., λp0qrl | ks :� λppmaxqrl � 1 | k � 1s,
l P Zr0,K�1s, and random λp0qrK | ks P R�, for k P Z¥1. Yet, to the best of our
knowledge, general results on the convergence rate of dual-ascent based optimization
schemes are lacking still.

Also, note that evaluation of the PEV-specific quadratic programming prob-
lems (5.16) can be implemented efficiently, using, e.g., interior-point techniques. A
more relevant obstacle for real-time implementation may be posed by the PEV–
coordinator communication network, which needs to allow for both secure and reliable
bidirectional data transmission.
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Figure 5.2: Control/communication architecture of coordinated PEV control.

Remark V.5. In Alg. V.4, Prob. V.2 is run for pmax iterations each sampling instant.
To avoid superfluous computations and reduce the extent of communication between
the vehicles and the coordinator, it may be attractive to stop iterating earlier, based on
some convergence test criterion. For example, if the convergence of λppq is monotonic
and super-linear, sufficiently accurate approximation of λ� can be concluded if }λppq�
λpp�1q}   ε for a small ε P R�.

Although the receding-horizon feedback mechanism in Alg. V.4 helps to reduce
the effects of prediction inaccuracy, robust feasibility can only be guaranteed if some
uncertainty model is explicitly accounted for during open-loop scheduling, i.e., in
Prob. V.1 or Prob. V.2. In what follows, we assume that the background demand
and ambient temperature can be predicted up to a certain accuracy, that is, drl�ks �
d̂rl | ks�δrl�ks, with arbitrary, unknown δrl�ks P ∆ � R2. One way of establishing
robust feasibility of Prob. V.1 with respect to inaccuracies δ in the (compact) set ∆,
consists of replacing (5.14b) by the constraint

Φ∆T r0 | ks � Ψ

�¸
nPN

πn

�
� Ψdd̂ �

�
� maxδP∆K rΨdδs1

...
maxδP∆K rΨdδsK�1

�
� ¤ Tmax1K�1, (5.18)

A similar worst-case feasibility approach can be employed in Prob. V.2, by appropriate
modification of ∇λΥ in (5.17).

5.6 Case Study: Overnight PEV Charging

Next, we simulate the charging of N � 20 PEVs during an overnight period from
20:00h (i.e., t � 0 s) to 8:00h given by the centralized and distributed PEV demand
control schemes defined by Prob. V.1 and Prob. V.2 to test their effectiveness in
terms of satisfying the temperature and SOC constraints, as well as to compare their
performance for a realistic charging scenario. Table 5.1 summarizes the simulation
scenario, where the bracket notation ra, bs, denotes randomly distributed values over
the interval Rra,bs. The PEV fleet is heterogeneous in terms of cost parameter values
Rn andQs,n, battery parameters ηn and charging rate limits πn,max; the latter two were
selected to resemble those of today’s PEVs. The ambient temperature Ta is constant
and representative for a hot summer night. The employed SOC and charging penalties
are constant, except for a factor 10 increase in Rn after time Kn. This reflects that
PEV owners prefer to charge quickly early in the evening. The background load idrks,
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Table 5.1: Simulation parameters for PEV case study

Parameter Value Unit

Sampling Time, Ts 155 s
Temperature limit, Tmax � T � 393 K
Ambient temperature, Tarks 303 K
Initial temperature, T r0s 333 K
Transformer parameters, τ, γ, ρ 0.9, 0.1, 0.85 -, -, K/A
Battery parameter, ηn [0.47, 0.75] 1/kA
Current bounds, πn,min, πn,max 0, [10, 20] A
Initial SOC, snr0s [0, 0.2] -
Required minimum SOC, Sn [0.8 1.0] -
Required minimum SOC time, Kn [4:00, 8:00] hr:min
Initial control input penalty, Rn [0.05, 0.10] -
State penalty, Qs,n [10, 20] -
Dual-ascent step-size parameter, αppq 2{rp{3s 1 / K
Iterations per time instant, pmaxrks 150 to 20 iterations

see Fig. 5.3c, is representative for the nightly power demand of 100 households (i.e.
total inflexible load is 45kW to 60kW). Finally, note that the sequence αppq satisfies
the conditions of Thm. V.3.

We evaluated the performance of Prob. V.1 and Prob. V.2 in closed-loop with
the linearized system characterized by Table 5.1 and (5.2), (5.5). Additionally, we
simulated uncoordinated charging by evaluating Prob. V.2 for an all-zero price signal,
i.e., λppqrks � t0, . . . , 0u, for all k, p P Z�. All schemes were implemented in a receding
horizon fashion, using a 12-hour prediction horizon at time instants between 20:00h
and 22:00h, and a shrinking horizon with a fixed end-point at 10:00h at time instants
after 22:00h. The coordinator was provided with a perfect forecast of Tarts and a
�5 % uncertain forecast of demand idrks, i.e., idrl � ks � îdrl | ks � δirl � ks with
δirks P ∆irks :� Rr�0.05̂idrks,0.05̂idrkss

. Persistent feasibility was ensured via temperature
constraint (5.18).

Fig. 5.3 shows the simulation results for the three charging schemes. Clearly, the
uncoordinated method performs poorly, since, without the price signal, the PEVs are
not affected by the temperature constraint and thus charge rapidly, taking only their
own SOC requirements and objectives into account (Fig. 5.3b). Consequently, the
temperature exceeds Tmax for over 3 hours, which could result in transformer failure.

In contrast to uncoordinated charging, both Prob. V.1 and Prob. V.2 respected
temperature constraint (5.9). Note that the uncertainty margin employed in (5.18)
caused a performance degradation of less than two degrees Kelvin as compared to
the noise-free centralized scheme. Also, observe that the noisy coordinated incentive-
based scheme and the noisy centralized scheme induce only slightly different current
and temperature trajectories, despite pmax being finite.
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Because the employed cost functions (5.13) (and, equivalently, (5.16)) heavily pe-
nalize non-fully charged batteries early in the evening, PEV owners attempt to charge
as quickly as possible. Fig. 5.3a shows that as a result, the temperature reaches Tmax

as soon as ca. 20:30h. In response to this, the coordinator increases the price to
suppress charging (Fig. 5.4), and thus, overloading is prevented. In response to the
decrease in price that occurs from 21:00h to 23:30h, the PEV charging current in-
creases again. After 00:00h, the increased penalty on control effort comes with a
reduced priority for rapid charging, causing the average charging rate to decrease
slightly. Combined with low inelastic demand, this causes the transformer temper-
ature to drop below Tmax, and thus, the optimal price λ�rks is driven to zero (in
accordance with complementary slackness of the optimal Lagrangian multiplier [99]).
For the remainder of the night, the network offers plenty of charging capacity and the
PEV owners can charge freely, unhindered by a non-zero price, to reach their SOC
target while minimizing their local objectives.

Moreover, even though we employed finite pmax and a �5% uncertain load forecast,
the incentive-based control scheme performed nearly optimal and was feasible with
respect to constraints (5.8)-(5.11) at all simulated time instants.

5.7 Summary

Simultaneous overnight charging of plug-in electric vehicles (PEVs) may cause
severe overloading of substation transformers in the near future. A distributed
incentive-based demand-scheduling problem was derived as a solution to this is-
sue, based on a dynamical model of a small PEV fleet that is served by a single
temperature-constrained transformer. Feedback to disturbances was provided by eval-
uating the open-loop scheduling problem in a receding horizon fashion, yielding an
iterative model predictive control (MPC) scheme in which the individual PEVs can
autonomously respond to incentives provided by a coordinator that is responsible for
secure transformer operation. Simulation results showed that even for a finite num-
ber of iterations, the method can be effective in terms of enforcing the temperature
constraint.
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CHAPTER VI

Conclusions and Future Work

6.1 Conclusions

Due to the protracted and cost-intensive nature of upgrading energy infrastruc-
tures, power systems are today operating closer and closer to their limits. The re-
search presented herein brings together ideas from power systems, optimization, and
control theory to improve the utility of existing and future energy infrastructures.
Specifically, this dissertation proposes practical, yet rigorously justified solutions that
mitigate the effects of overloads in power systems. Chapter I provides a general in-
troduction to the research area of the dissertation and surveys the relevant literature.

There are signs that co-generation (i.e. the recovery of previously wasted heat) is
on the rise in central energy plant settings, such as universities. These venues provide
a starting point for the application of energy hub ideas and the tools developed in
Chapter III allow for quick analysis of arbitrary energy hub systems under relatively
mild assumptions. In addition, the formulation developed for energy hub systems is
linear (and convex), which enables computationally tractable and globally optimal
solutions to multi-energy system problems.

The electric grid today is operated to ensure safety from common and predicted
disturbances, but it is only ad-hoc safety guidelines and human grid operators that
stand between cascade failures and consumers. As experienced in 2003, this is not
always enough of a safety guarantee and the human and economic costs can be se-
vere. This is why there is a need to consider automated and verifiable methods to
minimize the impact of disturbances. Within this context, Chapter IV develops a
bilevel model-predictive emergency control scheme to mitigate the effect of cascading
failures. The centralized linear receding-horizon MPC (RHMPC) cascade mitiga-
tion scheme developed in Section 4.5 incorporates a simple but sufficient model of
an electric transmission system into an MPC formulation and considers the system
response on a fast minute-by-minute timescale. Importantly, the RHMPC scheme
combines and balances economic and security objectives and is shown to significantly
improve system reliability by leveraging the temporal nature of storage and conductor
temperatures.

Simultaneous overnight charging of plug-in electric vehicles (PEVs) may cause
severe overloading of substation transformers in the near future. In Chapter V, a
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non-centralized incentive-based demand-scheduling problem is derived as a solution
to this issue, based on a dynamical model of a small PEV fleet that is served by a sin-
gle temperature-constrained transformer. The solution is obtained with an iterative
MPC scheme in which the individual PEVs can autonomously respond to incentives
provided by a coordinator that is responsible for secure transformer operation.

In this work, the problems addressed and the main results are as follows.

• A strictly linear formulation of the energy hub model is derived that is consistent
with the nonlinear models developed in literature. Then, a concise ASCII-based
format and a set of Matlab tools are developed, which allow for seamless simu-
lation, optimization, and analysis of multi-systems with more than 100 energy
hubs. This allows users to answer questions about the economical role of renew-
ables and energy storage in a multi-energy setting, such as a university campus
or military base.

• The SHMPC cascade mitigation scheme is developed for multi-energy systems
that highlights the importance of energy storage and balancing of economic
and security constraints in power systems. Specifically, it is shown that without
coupling economic and security objectives, an automated cascade mitigation
scheme may become too greedy and place the system in a worse position long-
term.

• The RHMPC cascade mitigation solution is provided for electric power systems,
which alleviates temperature overloads on transmission lines and prevents cas-
cade failures. The scheme uses a simple, but sufficient, model of the system and
balances economic and security constraints. Using a case-study of a standard
IEEE test system, it is shown that the RHMPC scheme can mitigate the effect
of severe disturbances and return the system to economically optimal set points
under uncertainty and significant model inaccuracies.

• A convex relaxation of AC line losses is derived and proven to be tight for the
RHMPC scheme when line temperatures exceed their limit, which enable alle-
viation of line overloads. The relaxation provides a superior approximation of
losses in an AC transmission system compared with standard Taylor approxima-
tions and is not subject to any limiting LMP or network topology assumptions
as is often the case in literature.

• A non-centralized incentive-based robust MPC scheme is developed for prevent-
ing distribution-level transformer overloads. The scheme employs distributed
load control of PEVs and a centralized coordinator to balance the objectives
of the PEVs subject to network constraints. To achieve this overload preven-
tion scheme, the dual ascent algorithm is applied. Simulations highlight that
even with finite iteration limits enforced, the performance of the scheme is near-
optimal and overload is prevented robustly.
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6.2 Future Work

The following challenging tasks and interesting ideas represent future work ema-
nating from this dissertaton:

• In the area of energy hubs:

– While Hubert is useful to us, it needs to be groomed a bit to become useful
to others. That is, with some time and effort, the energy hub tools we call
Hubert could become an open-source toolbox enabling users to quickly
model, simulate, optimize, and analyze multi-energy systems.

– The concise ASCII-based format presented herein somewhat lacks model-
ing flexibility. That is, there are multi-energy systems which are not readily
captured by the proposed format. This presents challenges for applying
the tools in specialized industrial settings.

– Energy hubs are known for their simplicity, but when it comes to modeling
conversion processes they might be too simple. Therefore, development of
an improved energy hub, which captures nonlinear/non-constant conver-
sion efficiencies would be valuable. One approach would be to consider
piece-wise affine efficiency curves, which introduces integer variables.

• In the area of receding-horizon cascade mitigation:

– The balancing of multiple MPC objectives was performed manually in
this work. However, multi-objective MPC, in a general setting, requires
a method for automatically tuning the Q and R weighting matrices to
achieve desired balance between security and economic performance. In
a sense, economical and security objectives are competing objectives but
methods, such as economic [101] and utopia-tracking [102] MPC may be
particularly useful in describing performance and stability.

– The PWL relaxation of line losses is only tight for overloaded lines. There-
fore, lines that are not overloaded can attain any relaxed value and, thus,
there is no unique optimal mapping between the algebraic states and dy-
namic states and control inputs. This prevents us from writing RHMPC
in standard form: xrk � 1s � Axrks � Burks, which complicates technical
verification of the scheme. As a result, there is value in developing MPC
results for systems such as this, with the “origin” (i.e. equilibrium point)
defined by a subspace of the algebraic states.

– Non-centralized (i.e. distributed) MPC for cascade mitigation in power
systems represents a natural and immediate extension of this work. Non-
centralized schemes are motivated by the multi-agent nature of power sys-
tems, and the computational requirements for solving large-scale power
system problems. However, a less obvious but more interesting motivation
arises from the physical nature of power systems. Specifically, the imme-
diate effects of a disturbance are generally localized, with more widespread
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consequences evolving over a longer time-frame. This implies an oppor-
tunity for adapting the (potentially overlapping) control areas based on
sensitivities and the nature of contingencies, see [103].

– The DC power flow model used in the MPC development does not consider
voltage magnitudes (nor reactive power). There is value in being able to
include voltage information in a linear/convex MPC scheme as that would
facilitate protection against voltage collapse. To accomplish this, convex
relaxations and cutting planes will be explored in the future.

– The proposed control scheme provides a basis for considering enhanced
roles for energy storage, and for addressing questions regarding optimal
siting and sizing as a function of economic and security objectives.

– The performance of the RHMPC scheme under uncertainty should be an-
alyzed subject to different scenarios. In particular, the cyber-coupling of
the RHMPC scheme with state estimators and PMUs would provide in-
sight into future implementation of scheme. In addition, due to the role of
information in the scheme, development of control policies that consider
resource-constrained adversaries would be very interesting.

• In the area of distributed charging control of PEVs:

– In real-time implementation, it is key that the PEV coordination scheme
can generate feasible control actions within each sampling period. Since
the incentive-based charging control method relies on an iterative scheme,
it is important, for the purpose of implementation, to ensure fast con-
vergence. Therefore, it becomes valuable to improve the notoriously slow
convergence rate of dual ascent method, which is used in the iterative
scheduling problem, or replace it with other alternative non-centralized
implementations that may exhibit faster convergence.

– A linearized current-based thermal model for transformer heating is em-
ployed in this problem. Using the quadratic current-based model is pre-
ferred but requires reformulation of our MPC and is not immediately well
suited for dual decomposition. Employing a convex relaxation similarly to
the PWL relaxation of AC line losses seems promising.

– The current setup assumes perfect communication between coordinator
and PEVs. However, under imperfect or adversarial communication net-
work assumptions, it would be interesting to investigate how uncertainty
and noise (e.g. faulty price signals sent to a few vehicles) affect convergence
of the dual ascent method.

– Lastly, a comprehensive experimental validation of the scheme is impor-
tant.

The solutions to these challenging and interesting problems will provide practical,
but rigorously justified solutions to real-world problems and be of interest to both
local utilities and ISOs.
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APPENDIX A

Karush-Kuhn-Tucker Necessary Conditions

Given a general (not necessarily convex) mathematical program, P :

pPq
maxx fpxq
s. t. hpxq � b P Rl

gpxq ¤ d P Rm

x P X � Rn,

(A.1)

where fpxq : Rn Ñ R, hpxq : Rn Ñ Rl, and gpxq : Rn Ñ Rm are continuously
differentiable functions. The Lagrangian L : Rn�m�l Ñ R is defined as follows:

Lpx;λ, µq � fpxq � λJphpxq � bq � µJpgpxq � dq, (A.2)

where µ P Rm, λ P Rl denote the KKT multipliers. Let x� P Rn represent a feasible
(locally) optimal solution to P that satisfies a constraint qualification (see [104]).
Then, the Lagrangian must satisfy the following KKT first-order necessary optimality
conditions:

∇Lpx�;λ, µq � ∇fpx�q � Jhpx�qJλ� Jgpx�qJµ � 0 (A.3)

µ � pgpx�q � dq � 0 (A.4)

µ ¥ 0 (A.5)

where p.qJ is the matrix transpose and Jypxq P Rp�n denotes the Jacobian and has
the following structure of partial derivatives:

Jypxq �

�����
By1
Bx1

By1
Bx2

. . . By1
Bxn

By2
Bx1

By2
Bx2

. . . By2
Bxn

...
...

. . .
...

Byp
Bx1

Byp
Bx2

. . . Byp
Bxn

����� ùñ Jypxq �

�����
∇yJ1 pxq
∇yJ2 pxq

...
∇yJp pxq

����� . (A.6)
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Thus, from (A.3), we have that for each variable xi, where x � rx1, . . . , xnsJ, the
following must hold:

0 � Bf
Bxi

����
xi�x

�
i

�
ļ

j

λj
Bhj
Bxi

�����
xi�x

�
i

�
m̧

j

µj
Bgj
Bxi

�����
xi�x

�
i

@i � 1, 2, . . . , n. (A.7)

If m � 0 (i.e. no inequality constraints), then λ is denoted the Lagrange multi-
plier. Geometrically, one can view the KKT constraints by considering only inequality
constraints (i.e. hpxq � b becomes hpxq ¤ b and �hpxq ¤ b) and rearranging (A.3):

�∇fpx�q � Jgpx�qJµ �
¸
j

µj∇gjpx�q (A.8)

which, with µ ¥ 0, implies that the largest decrease in objective cost function value
�∇fpx�q P Kpt∇gjpx�qumj�1q, where Kpt∇gjpx�qumj�1q is the convex cone of active
constraints at x� since gjpx�q   dj ñ µj � 0. That is, any optimal solution must
exhibit decreasing objective function inside the convex cone of active constraints.
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APPENDIX B

Proof of Theorem IV.11

Theorem B.1 (Temperature and Convex Relaxation). Assume gij ¡ 0 and losses
in (4.20f) are fixed to a predetermined value over the duration of the prediction hori-
zon. If the temperature of line pi, jq P A exceeds its limit at time l � 1, then the
convex relaxation is tight with respect to line pi, jq for all previous time-steps. That
is, if D l PM and pi, jq P A such that ∆Tijrl � 1s ¡ 0, then adjacency conditions are
satisfied and θ�ijrκs θ�ijrκs � 0, @κ ¤ l. Hence, the convex relaxation associated with
line pi, jq is tight @κ ¤ l (i.e. relaxation is locally tight).

Proof. Let l � 1 be the predicted time when line pi, jq exceeds its temperature limit.
Pick an arbitrary κ ¤ l. Since the RHMPC problem reflects that of a QP problem
(with linear constraints), it satisfies the Linearity/Concave Constraint Qualification
trivially and the Karush-Kuhn-Tucker (KKT) first-order conditions are therefore nec-
essary conditions for (global) optimality [104]. See Appendix A for an overview of
the first-order KKT necessary conditions. The KKT conditions relating variables
tθ�ijrκs, θ�ijrκs, θPW

ij psqrκsu for any κ ¤ l and ∆T̂ rl � 1s give the following:

θ�ijrκs : 0 � �λ1 � µ1 � µ2 � µ
5

(B.1)

θ�ijrκs : 0 � �λ1 � µ1 � µ2 � µ
6

(B.2)

θPW
ij psqrκs : 0 � λ1 � µs3 � µs

4
� µ7ϕij,καijpsq (B.3)

∆T̂ijrl � 1s : 0 � 2po∆T̂ijrl � 1s � µ7 � µ
8

(B.4)

where

• λ1 P R – multiplier related to constraint that couples absolute value and PWL
variables in (4.20i);

• µ1 P R� – multiplier related to upper bound for θ̂ij;

• µ2 P R� – multiplier related to lower bound for θ̂ij;

• µs3 P R� – multiplier related to upper bound for θPW
ij psq;
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• µs
4
P R� – multiplier related to lower bound for θPW

ij psq;

• µ
5
P R� – multiplier related to lower bound for θ�ij ;

• µ
6
P R� – multiplier related to lower bound for θ�ij ;

• µ7 P R� – multiplier related to temperature dynamics and ∆T rl�1s ¤ ∆T̂ rl�1s
in (4.24a).

• µ
8
P R� – multiplier related to 0 ¤ ∆T̂ rl � 1s in (4.24b).

• ϕij,κ P R� – constant based on ∆Tijrl�1s-to-f loss
ij rκs transition (see Remark B.2).

Remark B.2 (Relating θPW
ij psq and ∆T̂ij). Given the discrete difference equation

for temperature dynamics and ignoring effect of ∆d on temperature, it is possible to
define ∆Tijrl� 1s in terms of the initial condition ∆Tijr0s and past losses t∆fijrκs �
f loss
ij rκs � f loss,lim

ij ulκ�0 via the transition matrix. Combining this with the constraints

∆Tijrl�1s�∆T̂ijrl�1s ¤ 0 and f loss
ij rκs � °S

s�1 αijpsqθPW
ij psqrκs, yields the following:

τ lij∆Tijr0s �
ļ

κ�1

ϕij,κ

�
Ş

s�1

αijpsqθPW
ij psqrκs

�
�∆T̂ijrl � 1s ¤ χij

where

ϕij,κ � pτijql�κSbρij
3Lij

and χij �
ļ

κ�1

pτijql�κρijf loss,lim
ij

are strictly positive constants @κ. Now, it is straightforward to compute coefficients
of KKT multiplier µ7.

Lemma B.3. KKT condition (B.4) implies that µ7 � β∆T̂ijrl � 1s ¥ 0 for some
β ¡ 0.

Proof. Consider two cases:

1. ∆T̂ijrl � 1s � 0: Then, 0 � �µ7 � µ
8
ñ µ7 � µ

8
� 0 since µ7, µ8

¥ 0.

2. ∆T̂ijrl � 1s ¡ 0: Then, µ
8
� 0 ñ µ7 � 2po∆T̂ijrl � 1s ¡ 0 as po ¡ 0.

Thus, µ
8
� 0 and set β � 2po ¡ 0. The proof is concluded.

From the KKT conditions associated with θ�ij , θ
�
ij , it is straightforward to show

that,
2λ1 � �µ

5
� µ

6
¤ 0. (B.5)

This relationship will be used in Lemma B.4 to establish tightness of the convex
relaxation of the absolute value constraint (i.e. θ�ijθ

�
ij � 0).
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Lemma B.4. If line pi, jq P A is predicted to exceed its temperature limit, then the
absolute value complimentarity relaxation is tight for all previous time-steps. That is,
if l P t0, . . . ,M � 1u such that ∆T̂ijrl � 1s ¡ 0 then θ�ijrκs θ�ijrκs � 0, @κ ¤ l.

Proof. Let ∆T̂ijrl � 1s ¡ 0, choose arbitrary κ ¤ l, and consider the following two
cases:

1. Suppose
°S
s�1 θ

PW
ij psqrκs � 0, then θ�ijrκs � θ�ijrκs � 0 and θ�ijrκs θ�ijrκs � 0.

2. Suppose
°S
s�1 θ

PW
ij psqrκs ¡ 0, then Ds P t1, . . . , Su such that θPW

ij psqrκs ¡ 0, so
µs

4
� 0. Using Lemma B.3 and (B.3), and re-arranging gives:

0   β∆T̂ijrl � 1sϕij,κ � � µs3
αijpsq �

λ1

αijpsq . (B.6)

Since µs3 ¥ 0 this implies λ1   0. From (B.5), one or both of µ
5
, µ

6
¡ 0,

which implies that one or both of θ�ijrκs, θ�ijrκs � 0, and hence θ�ijrκs θ�ijrκs � 0.

Because 0   °S
s�1 θ

PW
ij psqrκs � θ�ijrκs � θ�ijrκs, only one of θ�ijrκs and θ�ijrκs can

be zero.

Since κ was arbitrary, it has been proven that for positive temperature overload at
time l � 1, the absolute value relaxation is locally tight for all κ ¤ l.

Next, the goal is to prove that adjacency conditions are upheld in the relaxed
formulation for all time-steps κ ¤ l if ∆Tijrl� 1s ¡ 0. Chose arbitrary κ. To improve
readability of the following argument, the notation “rκs” will be dropped, though all
notation is with respect to time-step κ.

Suppose θPW
ij psq ¡ 0 for some s ¡ 1. Then KKT condition (B.3) has µs

4
� 0 and

µs3 ¥ 0, and so:

µ7ϕij,κ ¤ � λ1

αijpsq . (B.7)

In order to establish a contradiction, suppose θPWij ps�1q P r0,∆θq. If θPWij ps�1q � 0,

then µs�1
3 � 0 and µs�1

4
¥ 0, so (B.3) implies that,

µ7ϕij,κ ¥ � λ1

αijps� 1q ¡ � λ1

αijpsq , (B.8)

where the last strict inequality derives from strict monotonicity of αijpsq ¡ 0 over s,
and the guarantee that λ1   0 from Lemma B.4. This contradicts with (B.7). The
proof that θPWij ps � 1q R p0,∆θq is similar. Hence, θPW

ij psq ¡ 0 ñ θPW
ij ps � 1q � ∆θ.

Since κ was arbitrary, adjacency conditions are upheld for all κ ¤ l. Thus, the
convex relaxation is locally tight for all times prior to a line’s predicted temperature
exceeding its limit.
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