
“In the 20th century, widespread electrification gave us power
for our cities, factories, farms, and homes - and forever changed
our lives. Thousands of engineers made it happen, with innovative
work in fuel sources, power generating techniques, and transmission
grids. From street lights to supercomputers, electric power makes
our lives safer, healthier, and more convenient.”

– The National Academy of Engineering, 2000

3. Introduction

3.1. Towards the Greenfield Approach

The National Academy of Engineering named the electric power grid the
greatest engineering achievement of the 20th century [1]. However, as recent
large-scale power grid failures illustrate, the (electro-mechanical) electric grid
is being operated closer and closer to its limits. Specifically, the electric grid
of the 20th century is aging and congested. Furthermore, it will not be able
to meet future demands without operational changes and significant capital
investments over the next decades [2]. Thus, the electric grid of the 21st cen-
tury represents an open problem for the research community and industry.
With the development of new technologies, such as, flexible AC transmis-
sion devices (FACTS), phasor measurement units (PMUs), renewable and
distributed generation, flexible loads, and energy storage solutions, the tools
are available to enable a paradigm shift for the electric grid.

To overcome the limitations of today’s power grid, two main approaches
are considered by engineers and scientists. The first approach investigates im-
provements to energy-delivery systems subject to boundary conditions given
by today’s grid structures. The second approach seeks to develop and design
a new paradigm for optimal future energy delivery systems, which takes into
account novel emerging technologies. By treating the second approach (i.e.
the greenfield approach) as the forecasted optimal ‘target’ system, the first
approach can be considered a coordinated e↵ort to bridge today’s aging and
congested system with the optimal future target system, as Fig. 1 illustrates.

The design and development of the greenfield approach can be considered
the long-term goal of power systems engineers and scientists, while the bridg-
ing approach can be considered a series of short-term projects. It is within
this framework that the work is developed in this chapter. Namely, we build
upon the ETH Zürich project “Vision for Future Energy Networks,” which
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Figure 1: Designing a future greenfield approach allows us to move from today’s aging
and congested power system to the future optimal system. Figure is inspired from [3].

focused on a synergistic interconnected energy systems model as their green-
field approach. To accomplish the interconnection of energy systems, the
ETH project developed modeling tools such as the ‘energy hub’ and multi-
energy carriers and analyzed many scenarios under the new multi-energy
context, see [3, 4, 5].

This chapter expands upon the ETH project by employing the ‘energy
hub’ as a generic energy storage device to analyze the performance of energy
delivery systems with energy storage in contingency scenarios (i.e. under
unscheduled line outages). This is achieved by developing a novel model-
predictive control (MPC) scheme that ensures e�cient operation of energy
systems and mitigates the e↵ects of severe line-outage disturbances through
feedback algorithms. Developed algorithms are illustrated through a com-
prehensive simulation study. The interdisciplinary research presented in this
chapter lies at the intersection of power systems, optimization, and controls.
Specifically, a model-predictive control-based cascade mitigation approach is
analyzed herein. The approach is developed into a practical, yet rigorously
justified, cascade mitigation scheme for the electric bulk power system.
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3.2. Cascade-mitigation
Currently, abnormal conditions are handled either through protection op-

eration or operator intervention, depending on the severity of the abnormal-
ity. In the latter case, where conditions do not immediately threaten the
integrity of plant or loads, operators institute corrective procedures that
may include altering generation schedules, adjusting transformer tap posi-
tions, and switching capacitors/reactors. For more extreme abnormalities,
the protection associated with vulnerable components will operate to ensure
they do not su↵er damage. This myopic response may, however, weaken
the network, exacerbating the conditions experienced by other components.
They may subsequently trip, initiating an uncontrolled cascade of outages.
This pattern was exhibited during the blackout of the U.S. and Canada in
August 2003 [6].

As the amount, type and distribution of controllable resources increases,
operators will find it ever more challenging to determine an appropriate re-
sponse to unanticipated events. At a minimum, operators will require new
tools to guide their decision-making. Given the increased complexity of re-
sponse actions, a closed-loop feedback process will become indispensable.
Furthermore, since power systems are su↵used with constraints and limits
on states and inputs, model predictive control (MPC) schemes can be partic-
ularly useful within the context of contingency management. For a general
overview of MPC, see [7, 8, 9].

The first application of MPC to emergency control of power systems
was [10], where voltage stability was achieved through optimal coordination
of load shedding, capacitor switching, and tap-changer operation. A tree-
based search method was employed to obtain optimal control actions from
discrete switching events. To circumvent tree-based search methods, [11, 12]
employed trajectory sensitivities to develop MPC strategies. However, those
methods focused on voltage stability and did not take into account energy
storage nor thermal overloads of transmission lines. Distributed forms of
MPC have also been proposed, with mitigation of line-outage cascades con-
sidered in [13].

The authors in [14, 15] proposed a framework for electrothermal coordi-
nation in power systems, and developed temperature-based predictive algo-
rithms that are amenable to energy markets and applicable within existing
system controls. Other recent literature, cf. [16, 17], focused on model-
predictive control of electrical energy systems to alleviate line overloads
within a standard DC power flow framework. Specifically, the authors in [17]
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extended the ideas of [16] to include a linearized current-based thermodynam-
ical model of conductors and an auto-regressive model of the weather condi-
tions (i.e. wind speed and ambient temperature) near transmission lines. This
allowed [17] to set a hard upper limit on conductor temperature to ensure
control objectives, and allowed MPC to operate the system closer to actual
physical limits than if using standard (worst-case weather-based) thermal
ratings. Furthermore, [17] illustrated that temperature-based control can
outperform current control within a predictive framework.

The cascade-mitigation scheme described in this chapter is motivated by
the bilevel control structure that was introduced in [18] for large-scale energy-
hub systems and considers both the economic and static security objectives
in operation of the system. The first level operates on a slow timescale
(i.e. hourly) and determines a trajectory of optimal economical set points
for generation, storage, load control, and wind curtailment. The second
level responds to contingencies (i.e. line outages) on a much faster minute-
by-minute timescale to ensure that the system is driven back to a secure
operating regime and line overloads are alleviated. The second level does not
consider fault conditions and automatic protection schemes, which operate
on a sub-second timescale, and assumes transient short-term stability. A
temperature-based cascade mitigation is described for the electric bulk power
system where the role of energy storage is highlighted. The work herein
represents state of the art in model-predictive cascade mitigation.

3.3. Chapter Outline

The chapter is organized as follows. First, basic relevant concepts are
described, including line outage models. Then, relevant system models are
introduced and the use of MPC is motivated for cascade mitigation. A bi-level
cascade mitigation scheme that considers economic and security objectives is
then discussed. A cascade mitigation approach that utilizes model-predictive
control (MPC) is discussed and focuses on receding-horizon MPC of electric
bulk power systems with energy storage. Analysis of the feedback scheme
is provided. The receding-horizon MPC scheme is complemented with a
case-study of the standard IEEE RTS-96 test system augmented with energy
storage to highlight the practical, yet rigorously justified, cascade mitigation
scheme.
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4. Basic concepts and definitions

To ameliorate possible confusion with terminology, relevant definitions
and concepts are described in this section.

4.1. Line tripping

When lines exceed their limits, it is possible that these lines go out of
service or trip. The term “line trip” refers to the event that causes a line to
go from being in-service to out-of-service. When a line pi, jq is tripped (i.e.
out of service) the following must hold:

• no flow (or losses) across pi, jq: fij “ 0.

• node i and j are decoupled in power flow equations. For example, the
DC power flow equation, xijfij “ ✓i ´ ✓j, that relates the voltage phase
angles of nodes i and j to flow across line pi, jq no longer has to hold.

In general, one of the main goals of a system operator is to ensure that line
flows stay within predefined flow limits, which represents a form of network
reliability. Therefore, if fijptq and uij are the (bidirectional) power flow and
the power flow rating (i.e. limit) on arc pi, jq at time t, respectively, then, it
is desirable to enforce the line flow limit:

|fijptq| § uij, (1)

where pi, jq represents arc between nodes i and j. Thus, if system operations
satisfy (1) at all times t, arc pi, jq will not be tripped (under normal operating
circumstances).

While it is feasible to take inequality (1) into consideration upon determi-
nation of an hourly economic energy management schedule, it is unrealistic
to expect such a constraint to be valid after the system undergoes a signifi-
cant disturbance (e.g. multi-line outage). This is due to the fact that flows
depend on the physics of the network and cannot be directly guided (e.g.
FACTS devices1 are not considered here), which means that the line flows
may exceed their limit after a contingency has occurred.

1Flexible AC Transmission System (FACTS) devices employ power electronics to con-
trol AC system parameters, such as impedance, which enables some controllability of line
flows.
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There exists a myriad of approaches to model when overloaded line should
be tripped, ranging from deterministic hard constraints, as in [19], to soft-
constrained probabilistic setups described in [20]. This chapter employs a
probabilistic line-outage model based on temperature overloads.

4.1.1. Probabilistic Thermal Outage Model
The probabilistic model of line tripping is utilized in Section 7 to appro-

priately represent the actual line outage process for electrical transmission
systems. For electrical systems, components, such as over-current relays, are
often in place to protect the system against abnormal conditions by tripping
lines (i.e. taking them out of service). However, these components operate for
extreme over-current fault scenarios (e.g. 10 000A) and trigger automatically
on a timescale of seconds and mili-seconds and are, therefore, not considered
in this work. Instead, the line-tripping behavior of interest in this chapter
occurs on a timescale of minutes, which shifts the focus from fault-conditions
to thermal conditions of transmission lines and sagging. Electrical transmis-
sion lines have prescribed power flow limits to prevent dangerous sagging and
permanent damage. These limits are related to the thermal capacity of the
conductor and the current flowing across the line. The method for calculat-
ing the current-temperature relationship of bare overhead transmission lines
is described in detail by IEEE Standard 738 [21]. As the temperature of the
conductor increases, the thermal expansion causes the line to sag. There is
an inverse relationship between the overload on a line and the time it takes
before the line sags excessively and must be taken out of service; however,
there are no clear rules when a sagging line will be taken out of service (by
operator or nature). For example, a human system operator may decide
that the red flashing warning sign is su�ciently annoying and trip the line
manually or an elephant may just walk into a su�ciently sagging line and
cause an outage2. Excessive line temperature (and resulting sag or possible
annealing) may eventuate in line-tripping. In short: the higher the tempera-
ture, the more likely line tripping becomes. This inverse relationship between
conductor temperature and mean time-to-trip (i.e. mean time-to-failure) is
captured in the actual system by use of the exponential time-to-failure den-

2This has actually happened more than 120 times in India since 2000 [22].
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Figure 2: Probabilistic line outage model based on exponential time-to-trip distribution
with �p�Tijrksq “ p�Tijrks{15q6 from STE overload temperature rating. Tripping times
beyond 100 minutes have been truncated for graphical purposes.

sity parametrized by the temperature overload:

P pline pi, jq trips at time tq “ �p�Tijqe´�p�Tijq t, (2)

where rate parameter �p�Tijq ° 0 is a nonlinear function of the temperature
overload, defined such that the mean time-to-failure goes to zeros as temper-
ature increases (i.e. 1

�p�Tijq Ñ 0 as �Tij Ñ 8). That is, for each temperature
overload, there is di↵erent mean time-to-failure. Thus, the probability of line
pi, jq tripping during time-interval Ts, given �Tij, is defined by the cumula-
tive density function (also called the unreliability function):

P pline pi, jq trips during time k|�Tijrksq “ 1 ´ e´�p�TijrksqTs , (3)

where rate parameter �p�T rksq ° 0 can be based on the short-time (15-
minute) emergency (STE) rating of a transmission line. It has been found
experimentally that �p�Tijrksq “ p�Tijrks{15q6 gives reasonable line trip-
ping behavior, as shown in Fig. 2. Notice how the mean time-to-trip decreases
with increasing conductor temperature overload.

Furthermore, considering over-current protection on transmission lines
(for large overloads), an additional condition can be added to the probabilistic
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line-tripping model:

P

ˆ
pi, jq trips at k

ˇ̌
ˇ̌ |fac

ij rks|
uij

• ⌦

˙
“ 1, (4)

where ⌦ is an upper bound on allowable relative instantaneous overload. For
example, if ⌦ “ 3, then a line flow of 300% of nominal thermal limit uij

automatically trips line pi, jq.
With this formulation for line-tripping, if a line experiences an over-

load, the expected time to trip decreases as a function of the inverse of
temperature-based rate-parameter �p�Tijq and sampling time Ts.

Remark 1. (Implementation of line-tripping) If line switching is an admis-
sible action of the controller, a mixed-integer disjunctive line outage can be
employed [18, 23]. However, to be clear, line tripping is not considered as
a decision available to the controller. That is, it is assumed that network
topology is observable at all times and that line outages are known to the
controller immediately after they occur, which means that line outages only
represent a exogenous input for the system (i.e. a disturbance).

4.2. Cascade failures

Given a line-outage model, we can discuss cascade failures. From left to
right, Fig. 3 illustrates three stages of a cascading failure: initial disturbance
(left side of figure), cycles of line outages and flow redistributions (center),
and a terminal blackout (right). Cascade failures are initiated when a dis-
turbance occurs that forces a redistribution of flows. When a line goes out
of service, it can reduce the network’s overall capacity3, which begets power
overloads on the remaining lines as the power flows are redistributed accord-
ing to Kirchho↵’s laws. If overloads are not alleviated in a timely manner,
more lines may go out of service. The cycle of line outages and redistribution
of flows, if left uncontrolled, is referred to as a cascade failure. A cascade fail-
ure generally terminates in a major blackout, with large areas of a network
unable to supply demand.

3The Braess Paradox [24] states that adding capacity to networks can, in some in-
stances, actually increase congestion. Conversely, removing capacity (i.e. lines) does not
guarantee an increase in grid congestion, overloads, and cascade failures, see [19] for ex-
ample networks.
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Figure 3: From left to right, illustration of the general process of a cascade failure in a
network: initial disturbance, overloads and line tripping, and terminal blackout.

Furthermore, for electric power grids, the cascade is multi-scale in a some-
what unusual way. After the initial fault, the first stages of grid failure can
proceed relatively slowly, on a scale of hours or minutes. As the cascade
develops, the pace of failures can accelerate, with later waves happening on
a scale of seconds. Fig. 4 highlights the accelerating pace of major outage
events during the 2003 blackout in Northeastern US and Canada. Note that
the initial two outage events represent transmission lines overheating and
sagging into trees, which is exactly the focus of this chapter. The multi-scale
timing of outages has important consequences for any cascade-mitigation
strategies. Since longer time scales during the initial cascade allow for signif-
icant computations to be performed, it provides an excellent opportunity for
feedback control in mitigating the e↵ect of cascading failures. This provides
the motivation for the model-predictive control approach developed in later
sections.

5. System considerations

The cascade-mitigation schemes proposed herein rely on successive solu-
tions to large optimization problems that drive the system back to a safe and
economical operating regime. Large optimization problems generally produce
numerical problems for solvers or simply take too long to solve to optimality.
Therefore, it is crucial that the cascade-mitigation schemes employ models
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Figure 4: Visualizing the evolution of the August 2003 blackout in Northeastern US and
Canada. Data is taken from description of di↵erent outage phases in [6].

that are amenable to fast and robust computation. To that e↵ect, we have
taken the technical route of employing strictly linear (i.e. convex) models.
They are described in the following sections.

5.1. Multi-energy concept: the energy hub

Multi-carrier energy networks may be formulated in di↵erent ways. This
section will focus the discussion on the “hybrid energy hub” model initially
developed by [25]. Under this formulation, the system operator of an en-
ergy hub network can directly manipulate and control load, generator, and
energy hub (e.g. storage and converter) set points. The energy hub model
is linear, which makes it amenable for computation and optimization. For
mathematical details on the energy hub models, please see [26].

Most common energy hubs consist of five simple interconnected elements:
inputs, input-side energy storage, energy converters, output-side energy stor-
age, and outputs. To properly describe the flow of power through the energy
hub, we need to describe how power flows between these elements. Energy
carrier networks supply power to the hub at the input side, where storage
may be available. The energy that was not utilized for storage is dispatched
into converters that transform the energy accordingly. On the output side
of the hub, converted energy may be utilized for storage or injected into the
carrier network connected to that side.

One simple example of an energy hub is shown in Fig. 5 where a cam-
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Figure 5: Simple illustration of a multi-energy campus energy plant as an energy hub.

pus energy plant is modeled as an energy hub. The chilled water plant (C),
natural-gas steam boiler plant (B), gas turbine cogeneration plant (Cogen),
electrical substation (T), and thermal energy storage (TES) are considered
part of the the same energy hub. The supply of electricity and natural gas
represent the hub inputs while the outputs are cooling, heating, and electric
loads (e.g. buildings and/or processes). The electrical energy is converted
to cooling via the chilled water plant and to low-voltage electrical energy
by the transformer at relevant e�ciencies and injected into the output side.
The natural gas consumed at the hub input can be dispatched to the steam
boilers (for heating only) or to the Cogen plant where natural gas is con-
verted into both electrical energy and heating. To illustrate the inclusion
of storage devices within the energy hub formulation, consider the chilled
water storage tanks in TES that can store cooling at some charge/discharge
e�ciency and standby losses. The chilled water plant can store cooling from
the electric chillers while the boiler plant can store cooling via absorption
processes. The TES can then charge or discharge to achieve objectives re-
lated to improved economics (e.g. reduce peak electric consumption) and/or
increased reliability (e.g. provide backup when chilled water plant is out of
service).

5.2. Energy hubs and cascade mitigation

As was illustrated in our initial work on cascade mitigation, please see [27],
energy hub storage can play a significant role in cascade mitigation since it
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acts as a “bu↵er” against disturbances. That is, a system operator can
employ stored energy to satisfy temporary energy shortages or overflows,
while allowing time for conventional generators to e↵ectively reconfigure their
schedules. Thus, the e↵ectiveness of system operations in minimizing costs
and rejecting disturbances depends on the available energy storage infras-
tructure. Indeed, siting, sizing, and operational capability (e.g. power rating
and standing losses) are salient parameters. Siting is important for reducing
congestion during peak hours; however, the process for determining optimal
location of energy storage is non-trivial and is not considered.

In [27], it was shown through simulations the e↵ects of varying storage
capacity and charge/discharge power limits on the cascade mitigation pro-
cess. Under the energy hub paradigm, we were able to combine multiple
types of energy systems and study their combined performance. Therefore,
we needed to consider multiple types of energy storage, namely, natural gas
storage, electrical storage, and thermal storage. The energy-hub scheme de-
veloped in [27], illustrates the active role of energy storage and conversion
processes and the ability of a bilevel scheme to balance both economic and
security objectives in the cascade mitigation scheme. It is shown that en-
ergy resources must be carefully regulated because MPC has a tendency to
over-exploit stored energy to the detriment of long-term energy requirements.

Note that this chapter significantly extends the work presented in [27] and
focusses on the electric transmission system and associated energy storage
devices. Furthermore, we consider energy storage to have no standing losses,
constant charging and discharging e�ciencies, and we neglect the economics
of construction, operation, and maintenance of storage facilities. That is,
energy storage represents a cost-free service available to the system operator.

5.3. Energy Storage Model

The systems considered in this chapter will have energy storage located
at various nodes throughout the network. During normal operation of the
power system, energy storage plays a significant role in minimizing generation
costs from conventional generators, as it allows the system operator to pre-
position energy in storage during o↵-peak hours to satisfy demand in the
presence of intermittent generation (e.g. wind power) or take advantage
of arbitrage. However, during contingency operation, economics become a
secondary concern, but energy storage can still play a significant role in
cascade mitigation as it acts as a “bu↵er” against disturbances. That is,
a system operator can employ stored energy to satisfy temporary energy
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shortages or overflows, while allowing time for conventional generators to
e↵ectively reconfigure their schedules against ramp-rate limits.

Energy storage is available in many forms (e.g. hydrogen fuel cells, grid-
scale battery systems, pumped hydro, thermal energy storage, etc) and en-
ergy storage devices can be located at various nodes throughout a network.
Let n P ⌦E

i Ä Q be an energy storage device at node i, where Q is the
set of storage devices in the system. Assume steady-state storage power
values, a constant slope for 9Enptq “ dEnptq{dt, and treat storage interface
as a conversion process with charging and discharging e�ciencies ⌘c,n and
⌘d,n, then the relationship between storage state-of-charge (SOC) and power
injected/consumed by device n is

9Enptq “ dEnptq
dt

« enpt, fQnq ˆ fQnptq. (5)

where the SOC switching mechanism en is defined as

enpt, fQnq “
"
⌘c,n, if fQnptq • 0 (charge/standby)
1

⌘d,n
, if fQnptq † 0 (discharge) . (6)

Since energy storage devices have two distinct states of operation, charg-
ing and discharging, that achieve di↵erent e�ciencies, energy storage devices
introduce switches in the SOC formulation. The following reformulation of
the SOC makes this non-convex nonlinearity more apparent:

9Enptq “ ⌘c,nfQc,nptq ` 1

⌘d,n
fQd,nptq (7a)

fQnptq “ fQc,nptq ` fQd,nptq, (7b)

0 “ fQc,nptqfQd,nptq (7c)

where the rate-limited charging (c) and discharging variables (d), fQc,n P
r0, fQc,ns and fQd,n P r´fQd,n, 0s, model the switching mechanism explic-
itly as a complimentarity condition in (7c). The nonlinear complimentarity
condition ensures that q can either charge or discharge, but not both si-
multaneously. To circumvent the nonlinearity, a mixed-integer linear (MIL)
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formulation can be employed:

MIL: fQc,nptqfQd,nptq “ 0 ñ

$
&

%

0 § fQc,n § fQc,np1 ´ znq
´fQd,nzn § fQd,n § 0

zn P t0, 1u
. (8)

where zn is a binary integer. For example, if znrks “ 1, then fQc,nrks ” 0 and
device n is consequently operating in discharging mode at time-step k. While
the above linear formulation is equivalent to the nonlinear complimentarity
condition, the use of integers is generally not desired, as it greatly increases
computational complexity.

To avoid utilizing integers in the linear model, one can ignore the com-
plimentary condition in (7c). This implies that simultaneous charging and
discharging is now mathematically feasible and is equivalent to a convex re-
laxation of the original SOC model. Replace (7) with the strictly linear and
continuous formulation:

9Enptq “ ⌘c,nfQc,nptq ` 1

⌘d,n
fQd,nptq, (9a)

fQnptq “ fQc,nptq ` fQd,nptq. (9b)

Employing a Forward Euler Discretization to (9) with sample-time of
Ts seconds admits linear continuous first-order discrete SOC dynamics that
represents the full linear energy storage model:

Enrk ` 1s “ Enrks ` Ts⌘c,nfQc,nrks ` Ts

⌘d,n
fQd,nrks (10a)

fQnrks “ fQc,nrks ` fQd,nrks (10b)

fQc,nrks P r0, fQc,ns, fQd,nrks P r´fQd,n, 0s. (10c)

Remark 2. The MIL formulation of (8) was implemented in [27] to model
non-simultaneous charging and discharging for energy hubs. However, for
systems with a large number of storage devices, due to the complexity of
integer optimization in the MIL approach, the MIL model is abandoned in
Section 7 and replaced by the strictly continuous linear convex approxima-
tion (10). The e↵ects of allowing simultaneous charging and discharging (i.e.
“simul-charge”) is discussed then and a suitable heuristic is introduced that
reduces the unwanted e↵ects of simul-charge.
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5.4. Power flows

Energy hubs are interconnected via multiple energy supply networks. The
previous section defined how power flows through an energy hub, however, to
describe the flow between energy hubs, we need to consider power networks.
A power network is a collection of a set of nodes i P N (e.g. buses) and a
set of arcs pi, jq P A (e.g. transmission lines and gas pipelines) that define a
simple graph, as shown in Fig. 6. The nodes either consume power from the
network (i.e. loads), inject power into the network (i.e. generators), or act as
throughput nodes that neither inject nor consume power. The sum of power
flows into the network (e.g. hub outputs, generators) must equal the sum of
flows out of the network (e.g. hub inputs, loads, and losses). In fact, any
network must satisfy Kirchho↵’s First Law (also called the “power balance”).
That is, the net flow into a node must equal the net flow out of the node.
Generally, a node may have generators (fGn) and/or loads (fDn) available
and, in a system with energy storage devices, the charging (discharging)
corresponds to additional demands (injections) (fQn). Therefore, the power
balance equation is formulated as:

ÿ

nP⌦D
i

fDnrks ´
ÿ

nP⌦G
i

fGnrks `
ÿ

jP⌦N
i

f total
ij rks `

ÿ

nP⌦E
i

fQnrks “ 0 @i P N (11)

where f total
ij “ fij ` 1

2f
loss
ij is the total flow across line pi, jq and

• ⌦G
i – set of generators at node i (hub outputs and conventional)

• ⌦N
i – set of nodes adjacent to node i

• ⌦D
i – set of demands (loads and hub inputs) at node i

• ⌦E
i – set of energy storage devices at node i.

The power balance equation in (11) determines the net power generated
or consumed at each node. As well as contributing to the power balance,
line losses f loss

ij also drive the temperature dynamics associated with line
overloads. This dual role will be carefully studied in Section 7.

Besides interconnecting energy hubs, the main di↵erence between a simple
graph and a power network lies with the physics of the particular power flows.
That is, there exists a physical relationship between the flow across an arc
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Figure 6: Representation of a power network as a graph.

and the connected nodes. For a simple example, consider an electrical power
network and the linear DC flow model:

xijfij “ ✓ij (12)

where xij represents the reactance of arc pi, jq, fij is the power flow across
said arc, and ✓ij :“ ✓i ´ ✓j represents the voltage phase angle di↵erence
between nodes i and j. In (12), we see that the electrical power flowing
across any arc depends on the di↵erence in the phase angle between connected
nodes and the reactance of the arc. This physical relationship between nodes
and arcs manifests itself di↵erently depending on the nature of the power
network model and may be linear (e.g. DC power flow) or nonlinear (e.g.
AC power flow). Regardless of the type of power network, a set of equations
describing the appropriate power flow and power balance can be formulated.
In this work, the cascade-mitigation schemes employ a linear model of power
flows (i.e. a DC power flow) in the controller. The simulation results will
illustrate the value of such simplified controller models for cascade mitigation
on AC networks.

5.5. Transmission Line Losses

The probabilistic temperature-based line outage model described in Sec-
tion 4.1.1 requires consideration of conductor temperature, which depends
on ohmic I2R losses, local ambient conditions (wind speed, insolation), and
conductive and radiative conductor heat losses. Thus, to alleviate tempera-
ture overloads caused by ohmic heating in transmission lines, it is necessary
for a controller to model and manipulate I2R line losses. However, the DC
power flow model in (12) ignores active line losses. To establish a relationship
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for losses on branch pi, jq, the AC expression for active power flow across a
transmission line can be manipulated to give:

f loss
ij “ fij ` fji “ gij

`
U2
i ` U2

j ´ 2UiUj cos ✓ij
˘
. (13)

where gij, Ui, ✓ij are line’s pi, jq conductance, nodal voltage magnitude, and
voltage phase angle di↵erence, respectively. Assuming voltage magnitudes
are close to 1.0 pu and approximating cos ✓ij by a second-order Taylor series
expansion gives,

f loss
ij « 2gij p1 ´ cos ✓ijq « gij✓

2
ij. (14)

ñ f loss
ij « rij

r2ij ` x2
ij

✓2ij « rij
x2
ij

✓2ij, (15)

where the final step follows because xij • 4rij for most transmission lines.
Thus, the “DC” line losses can be written as follows:

f loss
ij « rij✓2ij

x2
ij

“ rijf
2
ij, (16)

with the DC flow fij defined in (12). Note that the loss term f loss
ij is quadratic

in ✓ij and is therefore not suitable for a strictly linear constraint formulation.
A computationally amenable model of the quadratic losses can be in-

corporated into a linear optimization formulation by applying a (piece-wise)
linear approximation of losses that circumvents the need for integer optimiza-
tion, see [28, 29, 30]: PWL[f loss

ij ]. In fact, you can employ PWL[.] to line
losses and develop a strictly (piece-wise) linear model of active line losses

18



f loss
ij

|✓ij |

convex
relaxation

rij

x2
ij

✓2ij

PWL[f loss
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↵ij(1)
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Figure 7: PWL convex relaxation of line losses for PWL approximation with S “ 3.

in (16) with the following relations:

f loss
ij :“ rij

x2
ij

�✓
Sÿ

s“1

p2s ´ 1q✓PWij psq (17a)

Sÿ

s“1

✓PWij psq “ ✓`
ij ` ✓´

ij (17b)

✓ij “ ✓`
ij ´ ✓´

ij (17c)

✓ij P p´✓max, ✓maxq (17d)

0 § ✓`
ij , ✓

´
ij (17e)

✓PWij psq P r0,�✓s. (17f)

The linear constraint formulation presented in (17) is, in fact, a convex
relaxation of the “DC” line losses. Figure 7 illustrates the relaxation of PWL
line losses. Note that the relaxation given by (17) yields a value for f loss

ij that
is greater than or equal to the piece-wise linear approximation PWLrf loss

ij s.
Equality occurs only when both |✓ij| ” ✓`

ij ` ✓´
ij and ✓

PW
ij psq ° 0 ñ ✓PWij pnq “

�✓, @n † s (i.e. PWL adjacency conditions). Under such conditions, the
relaxation is considered “tight” and the model is exact with respect to PWL,
and the convex relaxation of line losses provides a more accurate method
for estimating line losses than standard linearization. When the losses are
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relaxed (i.e. not tight), overestimated losses are denoted “fictitious losses”,
as they exist only as an artifact of the MPC controller model and not in the
actual system.

5.6. Model-predictive control

Literature provides two generic approaches for mitigating cascade fail-
ures in power networks. The first method predicts disturbances a priori and
is based on an o↵-line computation of all possible or likely failures in the
network — the so-called N ´ k problem, e.g. [31]. With such an approach,
control policies are devised to deal with each possible disturbance. A major
drawback of this approach is that it does not scale well, since the number of
salient contingencies to consider increases exponentially with network size.
A second method is based on retroactive control, whereby the uncertainty
surrounding the disturbance has been revealed and one can utilize the knowl-
edge available about the disturbance to determine control responses in real-
time to mitigate the e↵ects of the disturbance. In the latter approach, the
multi-timescale nature of cascading failures provides su�cient time for post-
contingency computations. In addition, power/energy systems are su↵used
with constraints on control inputs and states, which makes model predictive
control (MPC) particularly useful in a cascade-mitigation scheme.

MPC is an advanced method of process/batch control that has gained
prominence over the last 30 years from its extensive deployment in the chem-
ical industry. For a thorough technical discussion of predictive control in lin-
ear systems, please see [8]. Basically, MPC provides a method for controlling
dynamic systems with constraints on inputs and/or states using tools from
optimization. MPC implementations solve on-line, at each sampling instant,
a finite horizon optimal control problem based on a dynamic model of the
plant. Most MPC approaches can be described by the following algorithm:

1. Determine a control sequence that optimizes an objective function over
a prediction window, where the measured or estimated state at time-
step k is the initial state.

2. Apply the computed control profile until new process measurements
become available,

3. When new measurements are available, set k “ k`1 and repeat step 1.

MPC is most often formulated in the state space by linear discrete-time
di↵erence equations. The mathematical formulation is given below.
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MPC Formulation The objective of MPC is to drive the system from it’s
current state to some reference state, given by a set-point, xsp, in the
“best possible” way. Power systems are often modeled with a mix of dif-
ferential and algebraic states, which beget a set of di↵erential-algebraic
equations (i.e. equality constraints). In this work, the constraints are
assumed linear (i.e. nonlinear MPC is not discussed) and an l2-norm
describes the objective function, therefore, MPC can be formulated as a
quadratic programming (QP) problem over a finite prediction horizon4

of length M :

U˚rks “ min
url|ks

ˇ̌ˇ̌
xrM |ks ´ xsp

k`M

ˇ̌ˇ̌
SM

`
M´1ÿ

l“0

L pxrl|ks, url|ksq (18a)

s.t. xrl ` 1|ks “ Axrl|ks ` Burl|ks ` Fzrl|ks (18b)

0 “ Âxrl|ks ` B̂url|ks ` F̂ zrl|ks (18c)

Cxrl|ks ` Durl|ks ` Gzrl|ks § d (18d)

xrl|ks P X , url|ks P U , zrl|ks P Z (18e)

xrM |ks P Tx (18f)

xr0|ks “ xmeas
k (18g)

where xrl|ks, url|ks, and zrl|ks represent the dynamic state, control
input, and algebraic state variables, respectively, at predicted time 0 §
l † M , given initial measured state xmeas

k at time k. The optimizer,

U˚rks “ tu˚r0|ks, u˚r1|ks, . . . , u˚rM ´ 1|ksu, (19)

represents the open-loop optimal control sequence over the predic-
tion horizon at time k. The appropriately-sized matrices A,B, F and
Â, B̂, F̂ , C,D,G describe dynamic and algebraic constraints, respec-
tively. The objective function in (18a) is defined by:

Lpxrl|ks, url|ksq “ ||xrl|ks ´ xsp
k`l||Q ` ||url|ks ´ usp

k`l||R (20)

where xsp
k`l and usp

k`l refer to a reference trajectory at time k ` l, the

4Even though the work presented herein uses identical prediction and control horizons
(i.e., Mp “ M “ Mc), it is straight-forward to consider the e↵ect of varying either horizon,
provided Mc § Mp
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norms are defined by ||y||B ” yJBy, and weighting matrices SM © 0
and Q © 0 are non-negative definite while R ° 0 is positive definite.
Expressions (18b) and (18c) describe the di↵erential-algebraic (DAE)
dynamics. Expressions (18d), (18e), and (18f) define static inequality
constraints, bounds on states and inputs, and a terminal state con-
straint set, respectively. Equation (18g) establishes the initial state for
MPC.

In this chapter, one specific MPC technique is employed: receding horizon
MPC5. The approach is described in detail within the context of cascade
mitigation in Section 7.

6. Bilevel Cascade Mitigation Framework

Economic dispatch problems allow computation of economically optimal
trajectories, which the system operator tracks via available generation, fore-
casted load, and other available control actions. However, if a significant
disturbance takes place, the operator must modify his economical trajectory
to prevent overloads and subsequent line outages. This requires the formu-
lation of a contingency (safety) controller, which responds quickly to a dis-
turbance and drives the system back to a secure and economical state, from
which economic dispatch can be re-initiated and normal (economic) opera-
tion can resume. Since economic and security objectives are often competing
objectives, it is natural to form two separate controllers for each task. There-
fore, a bilevel hierarchical control strategy is employed. Fig. 8 illustrates the
proposed bilevel operation of the system.

The “Level 1” controller is enlisted to compute an economically optimal
schedule for each hour of the day. When a disturbance takes place (e.g. line
outage), Level 1 provides an economic reference for the “Level 2” contingency
controller, which shifts operation from economically optimal (e.g. hourly) to
corrective (e.g. minute-by-minute) in order to alleviate line overloads. When
Level 2 signals that the system is secure, economic operation resumes with
Level 1. The Level 2 cascade-mitigation controller is formulated as an MPC
problem.

5Another MPC technique: shrinking horizon MPC was explored in [27]
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Figure 8: Overview of proposed bilevel cascade mitigation scheme.

6.1. Level 1: economically optimal energy schedule

Over a 24-hour period, Level 1 computes an optimal energy schedule
that determines how to best operate energy storage, conventional generation,
flexible loads, and available renewable energy based on forecasts. The Level 1
schedule is, therefore, similar to standard economic dispatch [32], except that
the temporal coupling introduced by energy storage implies optimization over
a horizon rather than a single time-step. In addition, any quadratic line losses
can be included with a standard piece-wise linear (PWL) DC approximation
as presented in [28].

The Level 1 model enforces line flow limits to ensure that, under accurate
model and forecast scenarios, no lines are overloaded (i.e. the system is
“safe” and economical). The dispatch schedule is computed as a multi-period
quadratic programming (QP) problem whose objective is to minimize energy
(fuel) costs of conventional generators:

Cost pfGnr ksq “ anpfGnrksq2 ` bnfGnrks. (21)

where an [$/h-pu2] and bn[$/h-pu] are constant parameters for generator n
and fGnrks is its output power at time-step k.

The Level 1 schedule establishes a reference signal over a multi-hour hori-
zon, consisting of the economically optimal system set-points xsp, and the op-
erator control actions usp required to achieve those optimal set-points. The
schedule is submitted to the operator and recomputed every hour. For details
on Level 1 formulation, please see [18, 26].
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6.2. Level 2: corrective controller

The Level 2 controller operates in the background to track the reference
trajectories computed from Level 1 (i.e. the economic set-point values). The
corrective controller employs a linear model of the actual system and operates
on a minute-by-minute timescale6. If a disturbance takes place (e.g. a line
outage), Level 2 computes corrective control actions urks in a MPC fashion
that steers the system towards a safe and economically optimal state as
provided by a Level 1 reference.

Level 2 considers ramp-rate limits on conventional generators, dynamics
and power ratings of grid storage devices, and can incorporate the thermal
response of overloaded lines. Note that, in Level 2, lines are no longer subject
to a hard flow limit constraint and, instead, the controller seeks to drive
overloaded lines below respective limits. The Level 2 MPC-based cascade
mitigation scheme is formulated as a quadratic programming problem (QP)
over a finite prediction horizon M .

In Section 7, receding-horizon MPC (i.e. M fixed) is described for a
temperature-based cascade-mitigation scheme within a bulk electric power
system setting.

6The Level 2 time-step Ts is much shorter than the time-step used for the Level 1
reference signals. This is resolved by linearly interpolating between reference values.

24



7. Cascade Mitigation in Electric Power Systems

Despite the simple energy hub formulation and the crude deterministic
line overload model, the shrinking-horizon MPC scheme discussed in [27]
provided valuable insight into the role of energy storage for cascade mitiga-
tion purposes and motivated the use of model-predictive control. In addi-
tion, while the coupling of energy infrastructures may provide an opportunity
to improve upon network resilience and protect against cascade failure, in-
vestigations into the natural gas operations show that natural gas systems
are significantly di↵erent from electric power systems. Namely, there is a
timescale separation between the two power systems, with electricity flowing
at nearly the speed of light while natural gas pipelines experience gas flows
of up to 60 miles per hour (around 100 km/hr). This relatively slow rate
of energy flowing in natural gas systems gives rise to a di↵erent role for the
transmission pipeline system. Specifically, natural gas transmission systems
operate by filling, on a seasonal time-scale, large underground natural gas
storage facilities near power and heating load distribution centers. Under
such physical circumstances, the notion of cascade failure in a natural gas
systems becomes more of a planning problem and less of an operations prob-
lems, which reduces the value of including natural gas networks in a cascade
mitigation setting. As a result, the focus in this section shifts from multi-
energy system models to cascade-mitigation in bulk electric power systems
where it will be shown how energy storage can be utilized to actively al-
leviate line overloads. In addition, the shrinking-horizon MPC and simple
line-outage formulations proposed in [27] are now replaced by a more ro-
bust temperature-based formulation in the form of receding-horizon MPC.
Finally, a novel energy-storage algorithm is introduced that takes advantage
of the feedback inherent to MPC to overcome common challenges associated
with predictive optimization of standard energy storage models.

7.1. Receding Horizon MPC

The shrinking-horizon MPC approach from [27] su↵ers from two major
drawbacks:

• An unpredicted event could take place towards the end of the shrink-
ing horizon period, which leaves the system unable to recover in the
remaining time.
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• As the horizon shrinks and approaches the final time, the control law
typically “gives up trying” since there is too little time to go to achieve
anything useful in terms of objective function reduction.

The above two shortcomings surrounding shrinking-horizon MPC can be
overcome with the notion of receding-horizon MPC, which considers a pre-
diction horizon that does not shrink but, instead, remains fixed in length
and moves with time (i.e. sliding prediction window). This makes receding-
horizon MPC immune against the above drawbacks and, therefore, o↵ers a
more robust control paradigm. That is, consider a system with prediction
horizon of MT minutes and sample time Ts “ 1 minute and assume initial
time-step is k, then receding-horizon MPC is summarized by the following
algorithm.

Receding horizon MPC algorithm:
1. Given xr0|ks :“ xrks, solve an optimal control problem over horizon

rk, k ` MT s to retrieve an open-loop control sequence turl|ksuMT ´1
l“0 .

2. Apply the first instance of control sequence to system: urks :“ ur0|ks.
3. Measure new system state xrk ` 1s :“ fpxrks, urksq.
4. Set k “ k ` 1 and repeat step (1).

As the above MPC process illustrates, with each successive control ac-
tion, the horizon recedes, as the name implies. Note that in this work, the
prediction and control horizons are assumed equal to MT .

The Level 2 model for the receding-horizon MPC cascade mitigation
scheme considers ramp-rate limits on conventional generators and the dy-
namics and power limits of grid storage devices. With the temperature-based
cascade-mitigation scheme, receding-horizon MPC also incorporates the ther-
mal response of overloaded lines. Note that in Level 2, lines are not subject to
a hard flow-limit constraint. Rather, the controller seeks to drive conductor
temperatures below their respective limits. Note that the receding-horizon
MPC optimization is still formulated over a finite prediction horizon as de-
scribed in (18).

The details of the Level 2 receding-horizon MPC model, system states,
and controls are developed and discussed in [30]; however, for sake of com-
pleteness, a summary of the model is provided below. The states and inputs
associated with the proposed formulation of an MPC cascade mitigation
scheme for an electric power system are outlined below:
Dynamic states (x): there are three types of dynamic states:
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• �T̂ij, line pi, jq conductor temperature overload w.r.t. limit T lim
ij .

• En, state-of-charge (SOC) for energy storage (ES) device n.

• fGn, power output level for generator n.

Control inputs (u): the formulation employs five types of control inputs:

• �fGn, change to conventional generator n output level.

• f spill
GWn, wind spilled from nominal, for wind turbine n.

• f red
Dn , demand response (reduction) from nominal, for load n.

• fQc,n, fQd,n, charge (c) and discharge (d) rates for ES n.

Uncontrollable inputs: there are three types of forecast (uncontrollable)
inputs (i.e. exogenous disturbances):

• fnom
GWn, nominal available power from wind turbine n.

• fnom
Dn , nominal demand, for load n.

• dij, ambient temperature and solar gain, for line pi, jq.
Algebraic states (z): models require nine types of algebraic states:

• fij, real power flowing through line pi, jq.
• f loss

ij , real power losses for line pi, jq.
• ✓ij, phase angle di↵erence between nodes i and j.

• ✓`
ij , ✓

´
ij , absolute value approximation of |✓ij|.

• t✓PWij psquSs“1, S-segment PWL approximation of |✓ij|2.
• fGWn, real power injected by wind turbine n.

• fDn, real power consumed by load n.

• fQn, total power injected or consumed by ES n.

From the above descriptions, state and input vectors are defined by:

x “ colt�T̂ , E, fGu (22a)

u “ colt�fG, f
spill
GW

, f red
D , fQc, fQd, u (22b)

z “ colt✓, ✓`, ✓´, ✓PW , f, f loss, fD, fGW , fQu. (22c)
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7.1.1. MPC objective function
The objective of the MPC scheme is to determine the optimal control

actions that alleviate temperature overloads, �T̂ij, while minimizing devia-
tions from the economic set-points established by Level 1. Accordingly, the
MPC objective function is composed of the terms:

pop�T̂ijrlsq2 - line temperature overload
pgpfGg rls ´ f sp

Gg ,k`lq2 - deviation from reference set-point
prp�fGg rls ´ �f sp

Gg ,k`lq2 - changes in generation ramping
pepEnrls ´ Esp

n,k`lq2 - deviation from reference SOC
pqpQnrls ´ Qsp

n,k`lq2 - changes in reference dis/charging
pspf shed

Dd
rlsq2 - load control

pwpf spill
G,windrlsq2 - wind curtailment

where reference values, denoted p¨qsp, refer to the economically optimal set-
points computed in Level 1.

Based on the state and input definitions in (22), the following weighting
matrices define the objectives of the MPC scheme:

Q “ diag
!
poI,

pe
10M2

I,
pg

10M2
I

)
° 0 (23a)

SM “ diag
 
poI, peI, pgI

(
° 0 (23b)

R “ diag
 
prI, pwI, psI, pqI, pqI

(
° 0 (23c)

where I represents identity matrices of appropriate dimensions, p⌃ ° 0 are
weighting coe�cients for states and inputs, and diagt¨u denotes a block-
diagonal matrix. Note that the terminal cost matrix SM is designed to
penalize deviations from economical references for storage SOC and con-
ventional generation states more severely than does the weighting matrix Q.
This is because MPC does not care how these reference signals are tracked,
only that they are being considered at the end of the horizon. The weighting
matrices are used in (24a).

7.1.2. Electric system constraints
For each time k, the dynamic states xmeas

k are measured (or estimated)
and represent the initial state of the MPC system model. Then, the full
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MPC formulation is defined as a quadratic programming (QP) problem:

min
urls

ˇ̌ˇ̌
xrM s ´ xsp

k`M

ˇ̌ˇ̌
SM

`
M´1ÿ

l“0

L pxrls, urlsq (24a)

s.t.

�Tijrl ` 1s “ ⌧ij�Tijrls ` ⇢ij�f loss
ij rls ` �ij�dij (24b)

Enrl ` 1s “ Enrls ` Ts⌘c,nfQc,nrls ´ Ts

⌘d,n
fQd,nrls (24c)

fGnrl ` 1s “ fGnrls ` �fGnrls (24d)

�T̂ijrls “ maxt�Tijrls, 0u (24e)

0 “ fQc,nrls fQd,nrls (24f)

0 “ x2
ijf

loss
ij rls ´ �✓

Sÿ

s“1

p2s ´ 1q✓PWij psqrls (24g)

0 “ ✓`
ijrls ` ✓´

ijrls ´
Sÿ

s“1

✓PWij psqrls (24h)

0 “ ✓`
ijrls ´ ✓´

ijrls ´ ✓ijrls (24i)

0 “ �i

´
fijrls, f loss,est

ij,k , fGnrls, fDnrls, fQnrls, fGWnrls
¯

(24j)

0 “ xijfijrls ´ ✓ijrls (24k)

fDnrls “ fnom
Dn rls ´ f red

Dn rls (24l)

fQnrls “ fQc,nrls ´ fQd,nrls (24m)

fGWnrls “ fnom
GWnrls ´ f spill

GWnrls (24n)

xrls P X , urls P U , zrls P Z (24o)

xrM s P Tx (24p)

xr0s “ xmeas
k (24q)

for all l P M, where xrls, urls, and zrls represent the dynamic state, control
input, and algebraic state variables, respectively, at predicted time k`l given
initial measured state at time k, xmeas

k . This notation has been adopted for
clarity of presentation. The more precise forms, xrl|ks, url|ks, and zrl|ks,
appear in [30]. The objective function (24a) was described in the last section
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and is defined by (20).
Expressions (24b), (24c) and (24d) represent the linear (discrete-time)

dynamics associated with conductor temperature for line pi, jq, SOC for
energy storage device n, and the power supplied by generator n, respec-
tively. The thermal conductor model is based on the IEEE standard de-
scribing the temperature-current relationship in overhead conductors [21].
Temperature dynamics in (24b) are linearized with respect to the conduc-
tor temperature (T lim

ij [˝C]) obtained for steady-state ampacity (I limij [A]),
and conservative ambient parameters. Accordingly, �Tij “ Tij ´ T lim

ij and
�f loss

ij “ f loss
ij Sb{3Lij ´ RijpI limij q2, where Sb [VA] and Lij [m] are the three-

phase per-unit power base and conductor length, respectively, and Rij [⌦/m]
is the resistance per unit length. Also, �dij “ dij ´ d˚

ij describes devia-
tions from representative exogenous conditions, ambient temperature T ˚

amb

and solar heat gain rate q˚
s , with qs a function of conductor diameter and

solar conditions. However, it has been assumed for these studies that am-
bient temperature and solar heat gain rates remain fixed over the period of
interest (i.e. �dij “ 0).

Constraint (24e) enables the main objective of alleviating temperature
overloads while not incentivizing under-loading of lines. That is, MPC should
compute control actions that only consider lines with �Tijrls ° 0. Keeping in
mind the QP formulation, the implementation of this temperature objective
can be relaxed to the linear formulation:

0 § �T̂ijrls (25a)

�Tijrls § �T̂ijrls. (25b)

Because the objective function penalizes �T̂ij, this relaxation will always be
tight.

The complementarity condition (24f) ensures that energy storage devices
cannot simultaneously charge and discharge. Since exact (integer-based) im-
plementation of complementarity would considerably increase computational
complexity of the proposed scheme, the algorithm described in Section 7.1.4
has been adopted for (approximately) enforcing (24f).

A convex piece-wise linear (PWL) approximation of line losses is described
by algebraic relations (24g), (24h), and (24i). This PWL relaxation utilizes
S segments of width �✓ “ ✓max{S and is modeled using the algebraic states
✓`
ij , ✓

´
ij , t✓PWij psquSs“1. In [30], it was proven that if a line experiences a tem-
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perature overload at predicted time l ` 1, then for all prior time-steps (i.e.
 § l) the convex relaxation will be exact with respect to PWL approxima-
tion. When the relaxation is locally tight, the controller has a meaningful
and relatively accurate model of line losses, and hence of line temperature.
This allows MPC to compute control actions that relieve line overloads.

Equations (24j) and (24k) denote nodal power balance constraints (@i P
N ) and DC power flows, respectively. Power balance is implied by Kirchho↵’s
law: power flowing into node i must equal the power flowing out plus/minus
that injected/consumed. Note that the term f loss,est

ij,k in (24j) is a constant
estimate of line losses at time-step k. It is shown in [30] that by decoupling
this loss term from f loss

ij , the PWL relaxation inherits crucial tightness prop-
erties. The “DC” power flow presented in (24k) couples lines flows to nodal
phase angles.

Remark 3 (Fixing losses over the prediction horizon). Under the standard
convex relaxation of a PWL approximation of line-losses [28], it is implicitly
assumed, for tightness of the formulation, that nodal prices (i.e. LMPs)
are non-negative. Negative nodal prices arise for nodes where increasing
power consumption leads to decreased overall system costs. For example,
if a line is congested or trips at time k and forces a generator at node i to
decrease output (i.e. fG,irks ´ fG,irk ´ 1s † 0), then it can be shown that
the nodal price at that node at time k will become negative. This breaks the
assumption of non-negative nodal prices and prevents a tight formulation of
losses. Fictitious losses can then “consume” power via the power balance
equation (for nodes with negative LMPs) and reduce the overall objective
function value. Similar but more thorough conclusions have been reached by
authors in [29, 33] as it relates to convex relaxations in power systems.

To overcome the challenge of negative LMPs in this work, losses are fixed
in (24j) to a value f loss,est

ij,k obtained from the most recent measurement of the
AC system. The proof in [30] does not, therefore, require consideration of
nodal prices. Furthermore, by fixing losses in the power balance equation, the
network structure does not a↵ect the convex relaxation. The astute reader
will note that with losses fixed in (24j), the computed control actions will be
slightly inconsistent with the actual AC system. However, this loss approxi-
mation typically constitutes less than 0.1% of total load, begets normalized
line loss prediction errors of less than 5%, and is corrected by feedback in
the MPC formulation.

Algebraic equations (24l), (24m), (24n) establish the relationship between
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control inputs, namely demand response, storage injection/consumption, and
wind curtailment, and the power balance of (24j).

The sets defined in (24o) and (24p) are convex polytopes. In particular,
X is closed and U is compact:

X “
!
x

ˇ̌
Erls P r0, Es; fGrls P rfG, fGs;�T̂ rls • 0

)
(26)

Z “
!
z
ˇ̌
✓ijrls P r´✓max, ✓maxs Ä p´⇡{2, ⇡{2q;

✓`
ijrls, ✓´

ijrls • 0; ✓PWij psqrls P r0,�✓s
)

(27)

U “
!
u

ˇ̌
f red
Dn rls P r0,↵red

n s; f spill
GWnrls P r0,↵spill

n s;
�fGnrls P r´TsR

down
n , TsR

up
n s;

fQc,nrls P r0, fQc,ns; fQd,nrls P r0, fQd,ns
)

(28)

with bounds defined by appropriate parameters. The sets contain the Level 1
reference trajectories xsp P X , usp P U . Finally, the set Tx represents the
convex polytopic terminal constraint set and is defined by:

Tx “
!
x

ˇ̌
�T̂ rM s “ 0 ^ xrM s P X

)
Ä X . (29)

Note that terminal constraints such as (29) may impact the feasibility of the
QP problem if the chosen prediction horizon M is too short. In this work,
M is appropriately chosen to ameliorate concerns of feasibility.

7.1.3. Enabling MPC to alleviate temperature overloads
To alleviate conductor temperature overloads, the convex relaxation of

line losses must be tight whenever a line temperature rises above its limit
(i.e. �Tij ° 0). This condition is guaranteed by the theorem proven in [30],
which also provides the full proof. To sketch the proof, let t�TijrlsuMl“1 be an
optimal MPC temperature trajectory for line pi, jq and assume D l P M such
that �Tijrl ` 1s ° 0 but the solution is not tight for some  § l. That is,
losses are overestimated via the convex relaxation as shown in Fig. 7. Then
a feasible solution can be derived which is identical to the optimal solution
except that it enforces a tight formulation at time  and reduces line losses
accordingly, say from f loss

ij,relaxrs ° f loss
ij,tightrs. According to (24b), decreased

losses at time  result in lower temperature at later times, which implies that
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the temperature overload at time l ` 1 must be less under the tight feasible
solution. Since the objective function penalizes �T̂ijrs and losses are fixed
in power balance equation, the feasible tight trajectory provides a lower cost
solution than the relaxed optimal trajectory. This is a contradiction. Thus,
if pi, jq has a temperature overload at time l ` 1, the formulation is locally
tight @ § l, which provides MPC with an accurate model of line losses and
enables MPC to alleviate temperature overloads.

7.1.4. Mitigating simultaneous charging and discharging
This section compares the simple linear “simul-charge” energy storage

model used in the receding-horizon MPC to the more accurate but (non-
convex) complimentarity-based model. First, define the models’ respective
actions by the superscripts p.qS and p.qC . Then, for a given optimal storage
device action, f˚

Q, the following holds:

fC
Qcrls ´ fC

Qdrls “: f˚
Q :“ fS

Qcrls ´ fS
Qdrls. (30)

Note that there exists only one unique complementarity-based control action
(due to the condition fC

QcrlsfC
Qdrls ” 0). However, without complementarity

(i.e. under the simultaneous charge/discharge formulation), multiple solu-
tions may exist. One side-e↵ect of allowing simultaneous charge/discharge
events is identified by the following:

Theorem 4. For a given optimal storage flow f˚
Qrls, the simultaneous charge/dis-

charge model (compared with the complementarity-based model) underesti-
mates SOC (i.e. �Erl ` 1s :“ ECrl ` 1s ´ ESrl ` 1s) by

�Erl ` 1s “ Ts
1 ´ ⌘c⌘d
⌘d

lÿ

m“0

min
 
fS
Qcrms, fS

Qdrms
(
. (31)

Proof. The proof follows directly from considering the two cases: fC
Qc ” 0

and fC
Qd ” 0.

From the theorem, it is straightforward to see that the simultaneous
charge/discharge model exactly matches the complementarity-based model
when one of the following holds:

• ⌘c “ ⌘d “ 1 (perfect e�ciency)

• mintfS
Qcrls, fS

Qdrlsu “ 0 (complementarity is satisfied)
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• f˚
Qrls “ fQ

where fQ ” fQc “ fQd has been assumed for presentation clarity. (General-
ization to fQc ‰ fQd is straightforward.) The last condition stems from

mintfS
Qcrls, fS

Qdrlsu P
“
0, fQ ´ f˚

Qrls
‰
. (32)

This means that the controller can (erroneously) employ simultaneous
charge/discharge to achieve a lower-than-actual SOC, which could be advan-
tageous to reduce the cost of SOC deviations from the Level 1 reference.
Furthermore, the controller can utilize simultaneous charge/discharge to re-
duce line overloads by fictitiously “burning” excess power through energy
storage ine�ciencies (⌘c, ⌘d † 1).

To reduce the e↵ect and occurrence of simultaneous charge/discharge
events, two steps have been implemented. Firstly, to reduce the worst-case
behavior of the simultaneous charge/discharge formulation, the following con-
straint is utilized:

fQc,nrls
fQc,n

` fQd,nrls
fQd,n

§ 1 @l, n, (33)

where fQc,n, fQd,n are the rate limits on charging and discharging, respec-
tively.

Secondly, most devices at most time-steps will satisfy fQnrl|ks ‰ 0. This
knowledge can be used to enforce complementarity-like constraints, and limit
occurrences of simultaneous charge/discharge events. When MPC first runs,
the charge/discharge status of storage devices over the prediction horizon is
most likely unknown. In order to initialize the status, simultaneous charg-
ing/discharging is permitted for that first prediction trajectory. When MPC
next runs, at time k, the charge/discharge status of each storage device
over the prediction horizon is determined from its status at the correspond-
ing time-step in the previous prediction trajectory (i.e. k ´ 1). It should
be noted that the prediction horizon at time-step k ´ 1 only extends to
fQnrM ´ 1|k ´ 1s, so no prior value is available for initializing the status
of fQc,nrM ´ 1|ks and fQd,nrM ´ 1|ks. Therefore, the Level 1 status at the
corresponding time can be used to establish the charging state for all devices
at this terminal time-step. Fig. 9 outlines the algorithm employed in MPC.

Remark 5. This algorithm introduces a delay of one time-step in the tran-
sition of storage devices from charging to discharging, or vice-versa. To
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1: Initialize: set ↵tol • 0
2: if k “ 0 then ô MPC first run: allow simulcharge
3: for l “ 0, 1, . . . ,M ´ 1 do
4: fQc,nrl|ks, fQd,nrl|ks satisfy (33)
5: end for
6: else
7: for l “ 0, 1, . . . ,M ´ 2 do
8: if fQnrl ` 1|k ´ 1s ° ↵tol then
9: fQd,nrl|ks “ 0, fQc,nrl|ks P r0, fQc,ns

10: else if fQnrl ` 1|k ´ 1s † ´↵tol then
11: fQc,nrl|ks “ 0, fQd,nrl|ks P r0, fQd,ns
12: else ô Possible transition: allow simulcharge
13: fQc,nrl|ks, fQd,nrl|ks satisfy (33)
14: end if
15: end for ô Terminal control
16: set fQc,nrM ´ 1|ks “ 0, fQd,nrM ´ 1|ks “ 0 according to Level 1
17: end if

Figure 9: Reducing the e↵ect of simultaneous charge/discharge for Level 2 MPC at time-
step k.

address this issue, computation of the MPC trajectory for time k can be
repeated using the latest status information. At this re-run, storage devices
with fQnrl|ks P r´↵tol,↵tols are handled in accordance with line 13 in Fig. 9.

To summarize, constraint (33) limits the worst-case behavior of simulta-
neous charge/discharge, and the algorithm in Fig. 9 reduces the frequency
of simultaneous charge/discharge events. The methodology of the proposed
simul-charge algorithm is illustrated in Fig. 10. The red arrows represent
the original complementarity-based (non-convex) model, while the green re-
gion represents e↵ect of constraint (33). The total impact of the heuristic is
given by union of red arrows and dashed red line, which represents the ad-
missible set of storage behaviors. Thus, by shrinking the simul-charge area
from the green-blue rectangle to just the red dashed line, the heuristic makes
the storage model more representative of reality, but at a slightly increased
computational cost.
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Figure 10: Visualizing the e↵ects of the heuristic proposed in Fig. 9 to reduce severity of
simultaneous charging and discharging in MPC scheme.

7.2. Base-case Controller

To benchmark the performance of the proposed MPC scheme, a base-case
controller was developed. This base-case was meant to provide an indica-
tion of human operator behavior during a system emergency (disturbance).
Clearly, modeling a human operator is non-trivial as standard emergency
procedures vary broadly across utilities. Furthermore, the experience of a
human operator is not amenable to an implementable (and repeatable) al-
gorithmic framework and, as far as the authors are aware, no data-sets exist
which captures operator behavior during (simulated) contingencies. How-
ever, the formulation presented here captures the underlying goals of the
operator:

1. alleviate thermal overloads by rescheduling or curtailing generation,
while considering ramp-rate limits and incremental generator cost curves,

2. employ sensitivity-based methods, such as power transmission distri-
bution factors (PTDFs), generation shift factors (GSFs), and transmis-
sion loading relief (TLR) procedures to make quick control decisions to
relieve thermal overloads [34],

3. shed load as an absolute last resort, and

4. ignore energy storage.

Thus, mapping the above operator traits into an MPC-based framework
serves as the base-case:
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• Base-case implementation

– Replace �T̂ijrls with a relative overload metric:

ôijrls “ 10maxt0, p|fijrls| ` 0.5f loss
ij rlsq{f lim

ij ´ 1u (34)

That is, if a line is 25% overloaded, ôij “ 2.5.

– Consider PTDF, GSF, and TLR implicitly as a 1-step linear MPC
process akin to Level 2 (i.e. set M “ 1) and include overloads
ôijr0|ks, ôijr1|ks in the objective and terminal costs.

– Heavily penalize load control and adjustment of SOC.

– Remove terminal constraints on overloads, Tx.

– Set weighting matrices Rbase “ R, Qbase “ SM , SM,base “ SM .

7.3. Actual system model (plant)

The AC power flow is generally accepted as a valid representation of
the actual physical power system (i.e. the plant). Therefore, the control
actions recommended by the MPC, which utilizes the strictly linear model
described in Section 7.1.2, is applied to an AC model of the system at each
time-step. This interaction between predictive DC controller and actual AC
plant is illustrated in Fig. 11. Furthermore, the resulting losses from the
AC power flow are utilized in the nonlinear IEEE Standard 738 conductor
temperature model to better capture the e↵ects of MPC recommendations
on the actual system. Finally, the actual energy storage model does not allow
for simultaneous charging and discharging in the same time-step and instead
employs the projected control action fQnrks such that fQc,nrksfQd,nrks ” 0.

The higher the temperature, the more likely line tripping becomes. To
capture the inverse relationship between temperature and expected time to
trip in the actual system, the probabilistic thermal line outage model from
Section 4.1.1 is employed.

7.4. Case Study: IEEE RTS-96

The bilevel control scheme is applied to an augmented version of the IEEE
RTS-96 power system test-case, which is described in full details in [35]. A
brief overview of this test-case is included here.
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Figure 11: Interaction of Level 2 MPC with the grid.

7.4.1. Overview
The IEEE RTS-96 system consists of 138 kV and 230 kV subsystems. The

network is organized into three interconnected physical regions, as illustrated
in Fig. 12. It consists of 73 nodes and 120 branches, of which 15 branches are
tap-changing transformers, one is a phase-shifting transformer7, and the re-
mainder are overhead transmission lines (138 and 230 kV). Buses are denoted
with three digits: the first digit indicates the area while the latter two are
intra-area designators. Bus types are indicated by color: generator (blue),
load (yellow), and zero-injection (white). Edges represent transmission lines
(black) and transformers (aqua/gray). The disturbance is displayed with
stars: lines 113-215 and 123-217 were tripped. Note that the three under-
ground cables in the original RTS-96 system have been replaced by equivalent
overhead lines to enable application of a single thermodynamic model. Trans-
former temperature overloading is not considered in this case study, as their
thermodynamic models di↵er from those of overhead transmission lines.

The aim of this case study is to explore the contingency management
achievable with the proposed hierarchical control scheme. Unfortunately, the
RTS-96 system is designed as a highly reliable system, with unusually high
thermal ratings for lines. To bring the system closer to its limits and engender
worthwhile scenarios, thermal ratings f lim

ij were reduced by 40%, yielding line
temperature limits in the range of 60-70˝C. Furthermore, ramp-rates have
been reduced by 82.5% to highlight Level 2 performance and enhance the
role of storage in congestion management. For the temperature dynamics,
the RTS-96 system data only specifies per-unit resistance, reactance and line
length, but not the conductor types (i.e. diameter, heat capacity). Therefore,
this case-study employed ACSR conductors, 18/1 Waxwing (138 kV) and

7Transformers modify power flows but can be accounted for within a unified power flow
framework as was done in [30].
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Modified RTS96 Network with Storage and Wind
Buses: Blue = Gen, Maize = Load, Green = Hub, Red = Tripped, Aqua = Xfmr
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Figure 12: Modified IEEE RTS-96 network with storage (E) and wind (W) included. Note
that storage and wind resources are associated with buses, as indicated in the figure, but
the respective edges do not represent transmission lines.
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Figure 13: Hourly wind power profiles for 8 wind turbines in the RTS-96 network over a
24-hour horizon.

26/7 Dove (230 kV), which represent reasonable choices given the reduced
line ratings. The parameter values for Dove and Waxwing conductors, along
with other system parameters, are provided in Table 1. Values in brackets
represent ranges.

7.4.2. Optimization implementation
The objective function weighting factors utilized in MPC Level 2 and the

base-case are presented in Table 2. Note that for the base-case, the overload
coe�cient po weights the thermal power overload, ôij, and not temperature.
Also, the storage control coe�cient for the base-case, pq “ 1000, reflects
the fact that this resource is not available for decision-making. Generator
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Table 1: Network model parameters used in case-study.

Model Parameter Value Units

Sampling Time, Ts 60 s
3-phase power base, Sb 100 MVA
Energy storage base, Eb 100 MWh
Monetary unit base, Mb 10,000 $
Storage SOC limits, Ei 2 pu
Storage power limits, fQc, fQd 0.25 pu
Nominal wind power, fnom

GW
Fig. 13 pu

Nominal loads, fnom
D Week 1, day 1 in [35] pu

Overcurrent protection limit, ⌦ 3 -

Ambient Temperature, Tamb 35 ˝C
Wind speed, angle, vw=✓w 0.61,⇡{2 m/s, rads

Line-to-line base voltage, Vb 138 230 kV
Thermal rating, f lim

ij 1.05 3.00 pu
Conductor diameter, Dij 15.5 23.5 mm
Heat capacity, mCp,ij 383 916 J/m-˝C
Ampacity, I limij 439 753 A
Resistance per unit length, Rij [103,118] [55,66] µ⌦/m
Temperature limit, T lim

ij [62,64] [67,71] ˝C
Temperature coe�cient, ⌧ij 0.796 0.888 -
Loss coe�cient, ⇢ij 0.157 0.066 ˝C-m/W
Ambient coe�cient, �ij 0.193 0.104 -
Solar heat gain rate, qs,ij 14.4 21.9 W/m

Table 2: Objective function coe�cients for Q, R, SM matrices for MPC and base-case
systems.

Model po pe pg pr pw ps pq pp

Level 2 MPC 1 200 200 [0.05,1] 0.15 250 0.2 0.01
Base Case 1 0.01 0.01 [0.01,0.1] 0.5 500 1000 0.1
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control actions, �fG, are weighted using cost curve parameters8, with pr “
maxt0.05, an{maxntanuu for Level 2, and pr “ 0.1maxt0.1, an{maxntanuu
for the base-case. The cost-curve parameters pan, bnq utilized in this case-
study are from [36, Table 1].

Recall, that the early stages of a cascade evolve relatively slowly, which al-
lows for significant computation to be performed during that period. There-
fore, immediately following a disturbance, Level 1 computes new optimal
set-points and passes that updated information to Level 2. An overview of
Level 2 operation is displayed in Fig. 11.

7.4.3. Simulation Results
The case-study described in Section 7.4.1 is simulated in Matlab according

to Level 1, Level 2, and base-case implementations. Initially, the system is
operated economically according to Level 1. However, at hour 18 (low wind,
high demand), a two-line outage (i.e. the disturbance) trips lines 113-215
and 123-217. Transient (short-term) stability was assumed. Performance
and behavior of the Level 2 MPC (with horizon lengths of M “ 5, 10, 20,
30, and 45) and the base-case are discussed below.

The double-line outage caused the remaining inter-area transmission line
107-203 to become severely overloaded (greater than 1.25f lim

ij ). The Level 2
MPC scheme alleviated the temperature overloads and brought the system
safely to the updated economic set-points provided by Level 1. In con-
trast, the base-case underwent a cascading failure, with line tripping bringing
the system to a voltage collapse after 29 minutes, as exemplified by non-
convergence of the AC power flow. The base-case cascading failure evolved
as follows:

• k “ 3: line 107-203 tripped at �Tijr3s “ 13.5 ˝C.

• k “ 16: line 114-116 tripped at 8.14 ˝C.

• k “ 26: line 113-123 tripped at 11.4 ˝C.

• k “ 28: lines 103-109 and 112-123 tripped at 16.8 ˝C and 20.7 ˝C.

• k “ 29: voltage collapse “Blackout”.

8Recall that the generator cost curves used in Level 1 are of the form: CostpfGnrksq “
anpfGnrksq2 ` bnfGnrks.

41



�10 �5 0 5 10 15 20 25 300.85

0.9

0.95

1

1.05

1.1

Time after disturbance, k (minutes)

V
ol

ta
ge

M
ag

n
it

u
d
e

(p
u
)

maxi{|Vi|}
avgi{|Vi|}
mini{|Vi|}
Time of line trip

Figure 14: Base-case operation: voltages undergo cascading failure, resulting in voltage
collapse.

This process is illustrated in Fig. 14, where it can be seen that the minimum
voltage magnitude fell below 0.87 pu.

Fig. 15a illustrates that the objective function cost (18a), calculated for
each MPC run, decreased monotonically over time. This does not prove
stability, but highlights the Lyapunov-like properties of the objective function
[7] as MPC drives the system back to the Level 1 (economically optimal)
equilibrium point.

The maximum line temperatures for the base-case and MPC are illus-
trated in Fig. 15b. Note that MPC is able to avoid excessively high tempera-
tures, and in fact drives all line temperatures below their respective limits by
around minute k « 75. Later, a few lines hover slightly above their temper-
ature limits. However, this is due to model inaccuracy arising from MPC’s
use of an approximate linear temperature model and the DC power flow. In
particular, over that latter phase, the largest temperature deviations above
limits are associated with 138 kV lines that exhibit X{R “ 3.83 † 4. This
relatively low X{R ratio engenders errors in the DC approximation of the
nonlinear AC network equations. The DC model incorrectly informs the con-
troller that losses are su�ciently low, implying that negligible control action
is required for the temperature to drop below its limit in the next time-step.
But the actual power system, described by the AC power flow, has higher
than predicted losses, and the temperature stays slightly above the limit.
The controller repeats these incorrect estimates of losses until control ac-
tion is required for other reasons, or load patterns autonomously reduce line
loadings below limits. For k ° 50, all line loadings are less than 5% above
their thermal ratings, which is within expected error levels [37, 38]. These
results suggest that despite the presence of approximate models, the MPC
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scheme is able to reject the disturbance through feedback and return the
system to an acceptable state. A thorough discussion of the impact of model
approximations is provided in [39].

Level 2 MPC performs a balancing act between ensuring safety criteria
and restoring economically optimal set-points. This balance is highlighted in
Fig. 15c, where the cost of conventional generation is shown for both MPC
and the base-case. To ensure acceptable line temperatures, MPC initially
sacrifices economic optimality by deviating from the Level 1 set-points. For
k ° 120, the system returns to economically optimal levels, with inaccuracy
in the MPC model causing some minor discrepancies. Interestingly, over
the first 15 minutes or so, the generation cost achieved by MPC is actu-
ally less than the optimal cost given by Level 1. Two factors contribute to
this apparent anomaly. Firstly, Fig. 15c shows the post-disturbance Level 1
schedule, whereas the generators were initially operating according to less-
costly pre-disturbance set-points. Secondly, the updated Level 1 reference
schedule enforces hard line-flow constraints, while MPC allows line flows to
temporarily exceed limits.

As discussed in Section 7.1, the control actions available to Level 2 MPC
for reducing line temperatures include: load reduction, wind curtailment,
and energy storage injections. Figs. 15d and 15e illustrate the main controls
employed to alleviate excessive temperatures for this case-study. Contrasting
MPC response with the base-case, it is clear that load and energy storage
controls were crucial immediately following the disturbance. By initially
curtailing energy storage discharge (Fig. 15d) and reducing the aggregate
load by less than 5% (Fig. 15e), line temperatures were brought to within
their limits. For k P r75, 240s, storage discharge exceeded reference levels
in order to bring SOC back to economical reference levels as displayed in
Fig. 15f. Wind curtailment was employed as cheap control over the longer
term to bring and keep line temperatures below their limits.

Finally, with a shorter horizon M and the terminal constraint requiring
greater use of expensive load and storage control, the MPC enjoys smaller
departures in generation from the Level 1 economic reference. Such an out-
come is displayed in the generation costs of Fig. 15c. However, with a short
horizon (e.g. M “ 5), the controller is unable to predict the line overloads
far enough in advance, which causes inferior management of energy storage
and load. For example, notice in Fig. 15f how much further away from the
Level 1 reference the MPC with horizon M “ 5 is compared with M • 10.
Considering the degree of load and storage control and line temperature pro-

43



0 50 100 150 200 250
0

500

1000

1500

M
P

C
co

st
:
P

l{
J

(x
[l
|k

],
u
[l
|k

])
}

Time after disturbance, k (min)

Base Case
MPC (M = 5)

MPC (M = 10)

MPC (M = 20)

MPC (M = 30)

MPC (M = 45)

(a) Total MPC objective function value.

0 50 100 150 200 250
0

5

10

15

m
ax

ij
{�

T̂
ij
[k

]}
(C

)

Time after disturbance, k (min)

Base Case
MPC (M = 5)

MPC (M = 10)

MPC (M = 20)

MPC (M = 30)

MPC (M = 45)

(b) Maximum line temperature responses.

0 50 100 150 200 250
0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
g
C

os
t(

f G
g
[k

])
(m

u
)

Time after disturbance, k (min)

Base Case
MPC (M = 5)
MPC (M = 10)
MPC (M = 20)
MPC (M = 30)
MPC (M = 45)
Level 1 Ref

(c) Total cost of generation with reference
from Level 1.

0 50 100 150 200 250

−2.5

−2

−1.5

−1

−0.5

0

P
i{

Q
i[
k
]}

(p
u
)

Time after disturbance, k (min)

Base Case
MPC (M = 5)

MPC (M = 10)

MPC (M = 20)

MPC (M = 30)

MPC (M = 45)

Level 1 Ref
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Figure 15: Case-study simulation results for MPC and the base-case.
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files, a prediction horizon of M “ 20 provides the best sacrifice between
computational complexity and controller performance.

7.5. Data management and communication

The MPC control scheme requires a model of the network, together with
measurements of the conductor temperature of (potentially) overloaded lines,
SOC of energy storage devices, output power from both conventional and re-
newable generation, power demand, and the operating points of all FACTS
devices would be required. These data establish the initial point for the MPC
prediction trajectory, and therefore must be updated every time MPC reini-
tializes, at the time-step Ts. These measurement requirements are consistent
with existing energy management system (EMS) capabilities, with topology
processing establishing the network model, and state-estimation providing
generation and load information. Technology for measuring conductor tem-
perature is available, though telemetry of such measurements is not currently
common. It is argued in [14] and references therein, in the context of dynamic
line rating, that gathering line temperatures is quite feasible. Also, a trivial
modification to the MPC formulation would allow some lines to be subject
to standard (hard) power flow limits, while modeling temperature dynam-
ics for lines that were outfitted with temperature sensors. Participation of
energy storage devices in electricity markets will likely require telemetry of
their SOC. This is already the case in NYISO [40] and PJM [41].

In addition to well defined initial conditions, MPC prediction also requires
forecasts of demand, the power available from renewable generation sources,
and the ambient weather conditions governing line temperatures. Genera-
tion and load forecasts are already available and used in EMS contingency
analysis. Short-term weather forecasts are also typically available. Given
that the MPC prediction horizon will generally be on the order of 15-30 min-
utes, a persistence forecast (which assumes those external influences remain
unchanged) will often be adequate but more advanced very-short-term load
forecasting techniques can be applied if necessary [42].

MPC broadcasts control signals at an interval of Ts « 1 minute, which is
much slower than other controls, such as AGC [43]. Thus the input/output
communications and data management requirements of the MPC scheme are
consistent with the capabilities of existing EMS installations.
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8. Summary

This chapter describes the active role of energy storage in a cascade
mitigation scheme, which leverages the benefits of model-predictive control
(MPC) while simple linear models greatly reduce MPC’s computational re-
quirements. The MPC scheme balances economic and security objectives
through the use of a higher-level optimal economical scheduling process and
a lower-level MPC corrective strategy.

The notion of cascade mitigation is advanced by the development of a re-
ceding horizon MPC cascade mitigation scheme applied to electric transmis-
sion systems with energy storage. The MPC design rejects disturbances (con-
tingencies) while tracking the optimal set-points established by the higher
economical level. The controller exploits the thermal overload capability of
transmission lines. This allows time for adjustments to be made to control-
lable resources that include generation levels, energy storage and demand
response. A convex relaxation is applied to the AC power flow to develop a
linear approximation for line losses. This formulation is proven to be su�-
cient to enable MPC to drive line temperatures below limits. As supported
by an augmented IEEE RTS-96 case study, the MPC scheme can signifi-
cantly improve system reliability and economic performance by leveraging
the temporal nature of energy storage and conductor temperatures.
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