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Abstract—A novel model predictive control (MPC) scheme is
developed for mitigating the effects of severe line-overload dis-
turbances in electrical power systems. A piece-wise linear convex
approximation of line losses is employed to model the effect of
transmission line power flow on conductor temperatures. Control
is achieved through a receding-horizon model predictive control
(MPC) strategy which alleviates line temperature overloads and
thereby prevents the propagation of outages. The MPC strategy
adjusts line flows by rescheduling generation, energy storage
and controllable load, while taking into account ramp-rate limits
and network limitations. In [1], the MPC strategy is illustrated
through simulation of the IEEE RTS-96 network, augmented to
incorporate energy storage and renewable generation.

Index Terms—Cascade mitigation, convex relaxation, energy
storage, modeling, model predictive control, optimization, ther-
mal overloads.

I. INTRODUCTION

THe National Academy of Engineering named the electric
power grid the greatest engineering achievement of the

20th century [2]. However, recent large-scale power grid
failures suggest the electric grid is becoming increasingly
congested, and as a consequence, is being operated closer and
closer to its limits [3].

Currently, abnormal conditions are handled either through
protection operation or operator intervention, depending on
the severity of the abnormality. In the latter case, where
conditions do not immediately threaten the integrity of plant
or loads, operators institute corrective procedures that may
include altering generation schedules, adjusting transformer
tap positions, and switching capacitors/reactors. For more ex-
treme abnormalities, the protection associated with vulnerable
components will operate to ensure they do not suffer damage.
This myopic response may, however, weaken the network,
exacerbating the conditions experienced by other components.
They may subsequently trip, initiating an uncontrolled cascade
of outages. This pattern was exhibited during the blackout of
the U.S. and Canada in August 2003 [4].

As the amount, type and distribution of controllable re-
sources increases, operators will find it ever more challenging
to determine an appropriate response to unanticipated events.
At a minimum, operators will require new tools to guide their
decision-making. Given the increased complexity of response
actions, a closed-loop feedback process will become indis-
pensable. Furthermore, since power systems are suffused with
constraints and limits on states and inputs, model predictive
control (MPC) schemes can be particularly useful within the
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context of contingency management. For a general overview
of MPC, see [5], [6], [7].

The first application of MPC to emergency control of power
systems was [8], where voltage stability was achieved through
optimal coordination of load shedding, capacitor switching,
and tap-changer operation. A tree-based search method was
employed to obtain optimal control actions from discrete
switching events. To circumvent tree-based search methods,
[9], [10] employed trajectory sensitivities to develop MPC
strategies. However, those methods focused on voltage stability
and did not take into account energy storage nor thermal over-
loads of transmission lines. Distributed forms of MPC have
also been proposed, with mitigation of line-outage cascades
considered in [11].

The authors in [12], [13] proposed a framework for elec-
trothermal coordination in power systems, and developed
temperature-based predictive algorithms that are amenable to
energy markets and applicable within existing system controls.
Other recent literature, cf. [14], [15], focused on model-
predictive control of electrical energy systems to alleviate line
overloads within a standard DC power flow framework. Specif-
ically, the authors in [15] extended the ideas of [14] to include
a linearized current-based thermodynamical model of conduc-
tors and an auto-regressive model of the weather conditions
(i.e. wind speed and ambient temperature) near transmission
lines. This allowed [15] to set a hard upper limit on conductor
temperature to ensure control objectives, and allowed MPC
to operate the system closer to actual physical limits than
if using standard (worst-case weather-based) thermal ratings.
Furthermore, [15] illustrated that temperature-based control
can outperform current control within a predictive framework.

The control scheme developed in this paper is motivated
by the bilevel control structure that was introduced in [16]
for large-scale energy-hub systems. The first level operated
on an hour-by-hour timescale with a 24-hour prediction hori-
zon and was in charge of economic dispatch. The second
level responded to contingencies and was implemented as
a simple deterministic shrinking (fixed-point) horizon model
predictive cascade mitigation scheme, which shed minimal
load in the process of halting the cascade. The effectiveness of
the cascade mitigation process in maximizing economic and
secure operation was due to proper management of available
energy storage and renewable energy sources. The impact
of different energy storage scenarios on cascade mitigation
was investigated in [17], where it was concluded that the
MPC scheme alone provided considerable protection against
cascade failures and that appropriate storage schemes further
improved performance. However, the use of shrinking horizon
MPC in [16] required that the system recover from the
initial outage by the fixed terminal time, potentially leaving
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Fig. 1. Overview of proposed control scheme showing Level 1 (economical)
and Level 2 (corrective) interaction.

insufficient time to respond to late disturbances. Therefore, to
improve robustness, this paper extends [16] by implementing a
receding-horizon MPC scheme (henceforth referred to simply
as MPC).

The main contribution of this paper is the formulation
of a linear MPC scheme for bulk power systems, which
balances economic and security objectives, thereby driving
the system to a secure and economical operating region.
In addition, the paper develops a piece-wise linear convex
relaxation for branch losses that significantly reduces the
computational complexity of the optimization problem under-
pinning MPC. The resulting MPC scheme exploits the thermal
inertia inherent in transmission line conductors to allow time
for controllable resources, including generation and energy
storage, to reschedule, thereby alleviating line overloads and
mitigating cascading failures. The proposed approach repre-
sents a departure from current practice because it envisions a
corrective control strategy that shifts the operating paradigm
of power systems from “generation follows load” to “energy
positioning”.

This paper (Part I) motivates and develops the MPC
framework, while the benefits of the proposed approach are
illustrated in Part II [1], where the IEEE RTS-96 system
forms the basis for a contingency management case-study. The
remainder of this paper is organized as follows. Section II
establishes the proposed two-level control framework, and
discusses the roles of Levels 1 and 2, and their interactions.
The Level 2 (MPC) controller model, including a convex
relaxation of line losses, is developed in Section III. Section IV
summarizes the paper and suggests future research directions.

II. SYSTEM OPERATION AND CONTROL

Economic dispatch computes an economically optimal tra-
jectory, for a given load forecast. However, if a significant
disturbance takes place, it may be necessary to operate sub-
optimally for some time to prevent overloads and minimize
the risk of subsequent line outages. This motivates the need
for a contingency (safety) controller, which responds quickly
to a disturbance, and subsequently drives the system back to
a secure and economical state. From that state, economic dis-
patch can be re-initiated and normal (economic) operation can
resume. This suggests a bilevel hierarchical control strategy
for electric power systems. Fig. 1 provides an overview of
the proposed bilevel hierarchical operation of the system. A
discussion of each level follows.

A. Level 1: Optimal energy schedule

Level 1 uses forecasts of load demand and renewable
resources to compute an optimal 24-hour ahead schedule for
energy storage, conventional generation, flexible loads, and
available renewable energy. This scheduling process is similar
to standard economic dispatch [18], though the dynamics (and
hence temporal coupling) introduced by energy storage state-
of-charge and generator ramp-rate limits must be taken into
account. This implies optimization over a horizon rather than
a single time-step.

The Level 1 model enforces line flow (thermal) limits to
ensure that, under accurate model and forecast scenarios, no
lines are overloaded (i.e. the system is secure). Line losses
are modeled with a standard piece-wise linear (PWL) DC
approximation as presented in [19]. The dispatch schedule
is computed as a multi-period quadratic programming (QP)
problem whose objective is to minimize energy (fuel) costs of
conventional generators:

Cost
(
fGn[k]

)
= an

(
fGn[k]

)2
+ bnfGn[k] (1)

where an [$/h-pu2] and bn [$/h-pu] are constant parameters
for generator n, and fGn [pu] is its output power.

The Level 1 schedule establishes a reference signal over
a multi-hour horizon, consisting of the economically optimal
system set-points xsp, and the operator control actions usp

required to achieve those optimal set-points. The schedule
is submitted to the operator and recomputed every hour. For
details on the Level 1 formulation, see [16], [20].

Remark II.1. Level 1 may take advantage of existing energy
management system (EMS) tools to assess voltage conditions
and identify corrective behavior [21], [22]. Required actions
can be encapsulated in the set-points submitted to Level 2.
Then, Level 2 can focus on resolving short-term line overloads
while driving the system to a long-term voltage secure and
economically optimal state.

Online monitoring of voltage conditions may necessitate
reconfiguring network limits and modifying set-points for
Level 2. This could be achieved by considering real-time mea-
surements from phasor measurement units, see for example
[23]. Such schemes are beyond the scope of this paper, though
are identified as future work in Section IV.

B. Level 2: Corrective control

This lower level controller operates in the background to
track the reference trajectories computed by Level 1 (i.e. the
economic set-point values). Since the Level 2 time-step Ts
(≈ 1 minute) is much shorter than that of the Level 1 reference
signals (≈ 1 hour), linear interpolation is employed between
state reference values, while a zero-order-hold is used for
control reference values1.

1Assume the Level 1 time-step is KTs, and consider two adjacent Level 1
state reference values x̂sp

i and x̂
sp
i+1. Then the value of the Level 2 state

reference at time kTs, between x̂sp
i and x̂sp

i+1, is xsp
k = k

K
(x̂

sp
i+1−x̂

sp
i )+x̂

sp
i ,

k = 0, ...,K. If the corresponding Level 1 control reference values are ûsp
i

and û
sp
i+1, then the Level 2 control references take the values usp

k = û
sp
i ,

k = 0, ...,K − 1 and usp
K = û

sp
i+1.



The corrective controller employs a linear model of the
actual system. If a disturbance takes place (e.g. line outage),
Level 2 uses MPC to compute corrective control actions that
steer the system towards a safe and economically optimal state
as provided by the Level 1 post-disturbance reference.

Level 2 relies on a discrete-time model of the system.
Discrete dynamics are obtained by forward Euler discretization
with sample time Ts. Controls are step-wise, with step-width
Ts, such that u(t) := u[k] for t ∈ [kTs, (k + 1)Ts). For each
time k, the dynamic states xmeas

k are measured and represent
the initial state of the system. The MPC scheme can be
summarized as follows:

1) At time k, with initial states xmeas
k and updated Level 1

reference signals xsp
k and usp

k , solve an open-loop op-
timal control problem over the interval [k, k + M ]
taking into account current and future constraints. This
yields a sequence of optimal open-loop control actions
{u[0|k], u[1|k], . . . , u[M−1|k]}, where the notation [l|k]
implies prediction time l relative to the actual time k.

2) Apply the first instance of the control sequence: u[k] :=
u[0|k].

3) Measure the actual system state xmeas
k+1 at time k + 1.

4) Set k = k + 1 and repeat step 1).
Level 2 considers ramp-rate limits on conventional generators,
dynamics and power ratings of grid storage devices, and
incorporates the thermal response of overloaded lines. Note
that in Level 2, lines are no longer necessarily subject to
a hard flow-limit constraint. Rather, the controller seeks to
drive line temperatures below their respective limits. The
Level 2 open-loop MPC optimization is formulated as a
quadratic programming problem (QP) over the finite prediction
horizon M :

min
u[l|k]

∣∣∣∣x[M |k]− xsp
k+M

∣∣∣∣
SM

+

M−1∑

l=0

L (x[l|k], u[l|k]) (2a)

s.t. x[l + 1|k] = Ax[l|k] +Bu[l|k] + Fz[l|k] (2b)

0 = Âx[l|k] + B̂u[l|k] + F̂ z[l|k] (2c)
Cx[l|k] +Du[l|k] +Gz[l|k] ≤ d (2d)
x[l|k] ∈ X , u[l|k] ∈ U , z[l|k] ∈ Z (2e)
x[M |k] ∈ Tx (2f)
x[0|k] = xmeas

k (2g)

where x[l|k], u[l|k], and z[l|k] represent the dynamic state,
control input, and algebraic state variables, respectively, at
predicted time 0 ≤ l < M , given initial measured state
xmeas
k at time k. The appropriately-sized matrices A,B, F and
Â, B̂, F̂ , C,D,G describe dynamic and algebraic constraints,
respectively. The objective function in (2a) is defined by:

L(x[l|k], u[l|k]) = ||x[l|k]−xsp
k+l||Q + ||u[l|k]−usp

k+l||R (3)

where xsp
k+l and usp

k+l refer to the Level 1 trajectory interpo-
lated at time k + l, the norms are defined by ||y||B ≡ y>By,
and weighting matrices SM � 0 and Q � 0 are non-negative
definite while R � 0 is positive definite. Expressions (2b)
and (2c) describe the differential-algebraic (DAE) dynamics.
Expressions (2d), (2e), and (2f) define static inequality con-
straints, bounds on states and inputs, and a terminal state

constraint set, respectively. Equation (2g) establishes the initial
state for MPC. The details of the Level 2 MPC system model
are developed and discussed in Section III.

III. CONTROLLER MODEL

An electric power system network can be described in a
graph-theoretic sense as consisting of a set of nodes and edges,
(i.e. edge el = (i, j) ∈ E for nodes i, j ∈ N ). The physics that
explicitly relate the nodes and the edges of the network must
be considered. Physical power flows in an electric network are
generally modeled with the nonlinear, non-convex AC power
flow [18]. In order to circumvent issues associated with non-
convexity, the Level 2 MPC controller utilizes a simplified but
sufficient linear (i.e. “DC”) power flow model.

In subsequent model developments, the index l ∈ M :=
{0, . . . ,M − 1} denotes discrete time-steps, and the MPC
scheme is employed with prediction and control horizon M .
For notational convenience, the time index l is excluded for
constraints that are point-wise in time.

A. Unified DC power flow

A large power system may consist of multiple interconnec-
tions between differing voltage levels. In order to include the
effects of in-phase (IPT) and phase-shifting (PST) transformers
on branch flows, a “Unified Branch Model”, developed in [24]
and illustrated in Fig. 2, is employed. In the standard way, line
impedance Zij and admittance Yij are related through:

Zij = rij + ıxij =⇒ Yij =
1

Zij
= gij + ıbij (4)

where rij , xij , gij , bij are line resistance, reactance, conduc-
tance and susceptance, respectively. Define the complex volt-
age at node i as Vi = Ui θi and complex transformer tap-
ratio as tij = aij ψij . This allows a unified representation
for transmission lines (aij = 1, ψij = 0), IPTs (ysh

ij = ysh
ji =

0, ψij = 0), and PSTs (ysh
ij = ysh

ji = 0, aij = 1). Using
standard DC assumptions:
• |Vi| = Ui ≈ 1 pu,
• |θij − ψij | � π/2,
• losses are negligible (i.e. gij ≈ 0), and
• reactance is much greater than resistance (xij ≥ 4rij),

the AC (nonlinear) expression for active power flow can be
simplified to give a “unified DC model”:

fij ≈
θij − ψij
aijxij

=
θ̂ij
x̂ij

(5)

where θ̂ij = θij−ψij , x̂ij = aijxij , and fij is the active power
flowing from node i to node j. Note that the expression (5)
is similar to a standard DC transmission line branch model,
except that the phase-shift and tap turns-ratio modify the stan-
dard phase-angle difference and reactance terms, respectively.
To maintain linearity in the model, assume aij is a constant
parameter over the prediction horizon.

Remark III.1. The unified DC model retains the ability of
PSTs to direct line flow via ψij . This affords the proposed
MPC scheme additional control of networks with PSTs.
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Fig. 2. The unified branch model (π-model) with complex voltages, currents,
taps, admittance, and shunts.

B. Line losses

1) Derivation of line losses for the DC power flow: The
unified DC power flow model presented above ignores active
line losses. However, to alleviate temperature overloads caused
by ohmic heating in transmission lines, it is necessary for
the MPC controller to model I2R line losses. To establish
a relationship for losses on branch (i, j), the AC expression
for active power flow can be manipulated to give:

f loss
ij = fij + fji = gij

(
U2
i

a2
ij

+ U2
j − 2

Ui
aij

Uj cos θ̂ij

)
. (6)

Assuming voltage magnitudes are close to 1 pu and approxi-
mating cos θ̂ij by a second-order Taylor series expansion gives,

f loss
ij ≈ gij

(
1

a2
ij

+ 1− 2

aij
cos θ̂ij

)
(7)

≈ gij
((

1

aij
− 1

)2

+
θ̂2
ij

aij

)
. (8)

Furthermore, assuming the nominal tap ratio aij ≈ 1 gives,

f loss
ij ≈ gij

θ̂2
ij

aij
=

rij
r2
ij + x2

ij

θ̂2
ij

aij
≈ rij
x2
ij

θ̂2
ij

aij
, (9)

where the final step follows because xij ≥ 4rij for most
transmission lines. Thus, the unified “DC” line losses can be
written:

f loss
ij ≈

rij θ̂
2
ij

aijx2
ij

= aij rijf
2
ij , (10)

with the unified DC flow fij defined in (5). Note that the loss
term f loss

ij is quadratic in θ̂ij and is therefore not suitable for
the strictly linear constraint formulation. A meaningful model
of losses can be incorporated into this formulation by applying
a (piece-wise) linear approximation of losses that circumvents
the need for integer optimization, see [19], [25].

Remark III.2. For lines with aij ≡ 1 (e.g. without trans-
formers), the PWL approximation can be applied directly to
the term cos θ̂ij , rather than its Taylor series expansion. In
cases where aij 6= 1, though, a PWL approximation of the
term cos θ̂ij gives θ̂ij = 0 ⇒ f loss

ij = (1 − 1/aij)
2 > 0,

which does not represent a standard DC relationship between
phase-angle difference and flow. In contrast, (10) satisfies the
standard DC relationship θ̂ij = 0⇒ fij + f loss

ij = 0. Thus, to
simplify notation and maintain a unified line-loss model, (10)
is employed throughout the paper.

f loss
ij

αij(1)

αij(2)

αij(3)

convex
relaxation

3�

s=1

θPW
ij (s)

rijf
2
ij

(a) PWL adjacency relax-
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θ̂ij

convex
relaxation

3�

s=1
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|θ̂ij |

(b) Absolute value relaxation.

Fig. 3. Relaxing adjacency conditions and absolute value complementarity
condition (i.e. θ+ijθ

−
ij = 0) for PWL approximation with S = 3.

2) PWL approximation of line losses: The approximate
losses in (10) can be replaced by a piece-wise linear (PWL)
formulation consisting of S linear segments of width ∆θ,
as indicated in Fig. 3a. To represent (10), the slope of each
segment is given by:

αij(s) = (2s− 1)
rij

aijx2
ij

∆θ, ∀s ∈ {1, . . . , S}. (11)

Define the variables θPW
ij (s) ∈ [0,∆θ], ∀s ∈ {1, . . . , S}, such

that:

|θ̂ij | =
S∑

s=1

θPW
ij (s). (12)

Then the loss formulation (10) can be approximated by:

f loss
ij ≈ PWL

[
rij

aijx2
ij

|θ̂ij |2
]

=

S∑

s=1

αij(s)θ
PW
ij (s), (13)

where PWL[·] denotes the piece-wise linear approximation.
Implementation of PWL[·] within an optimization framework
generally requires binary integers to enforce adjacency condi-
tions for the PWL segments [26]. Adjacency conditions ensure
that if θPW

ij (s) > 0 then θPW
ij (p) = ∆θ, ∀p < s. However

omitting integers and relaxing the adjacency conditions gives
a strictly continuous linear approximation of line losses that
is equivalent to a bounded convex relaxation of PWL[·]:

PWL

[
rij

aijx2
ij

|θ̂ij |2
]
≤

S∑

s=1

αij(s)θ
PW
ij (s) ≡ f loss

ij , (14)

where f loss
ij now gives the relaxed value of the computed

losses. This linear relaxation is convex. Because (7) is strictly
locally convex for θij ∈ (−π/2, π/2) and rij , xij , aij > 0, the
segment slopes satisfy αij(s) < αij(s + 1) and are therefore
monotonically increasing. This is illustrated in Fig. 3a for
S = 3. Note that with the adjacency condition relaxed,
f loss
ij can take any value in the convex space labeled “convex

relaxation” in Fig. 3a.
The (non-convex) absolute value constraint in (12) can be

incorporated into the linear formulation using the standard



relaxation:

θ̂ij = θ+
ij − θ−ij (15)

S∑

s=1

θPW
ij (s) := θ+

ij + θ−ij (16)

where θ+
ij , θ

−
ij ≥ 0. This is equivalent to a bounded convex

relaxation, since |θ̂ij | = |θ+
ij − θ−ij | ≤ |θ+

ij |+ |θ−ij | = θ+
ij + θ−ij ,

which is demonstrated in Fig. 3b.

Remark III.3. To ensure |θ̂ij | = θ+
ij + θ−ij , the comple-

mentarity condition 0 ≤ θ−ij ⊥ θ+
ij ≥ 0 must be enforced.

Otherwise, the absolute-value relaxation (15)-(16) may over-
estimate absolute phase-angle values. Complementarity can be
achieved using a mixed-integer formulation:

0 ≤ θ+
ij ≤ zijθmax, 0 ≤ θ−ij ≤ (1−zij)θmax, zij ∈ {0, 1}.

However, integer implementation prevents a strictly QP formu-
lation of line losses, and is not pursued. Rather, it is proven in
Theorem III.8 that explicit enforcement of complementarity is
unnecessary.

To summarize, the convex relaxation of active line losses is
described by the following relations:

f loss
ij :=

rij
aijx2

ij

∆θ

S∑

s=1

(2s− 1)θPW
ij (s) (17a)

S∑

s=1

θPW
ij (s) = θ+

ij + θ−ij (17b)

θ̂ij ≡ θij − ψij = θ+
ij − θ−ij (17c)

θ̂ij ∈ (−θmax, θmax) (17d)

0 ≤ θ+
ij , θ

−
ij (17e)

θPW
ij (s) ∈ [0,∆θ]. (17f)

The linear constraint formulation presented in (17) is a
convex relaxation of a lossy DC power flow, and gives a
value for f loss

ij that is greater than or equal to the piece-
wise linear approximation PWL[·] given by (13). Equality
occurs only when both absolute value complementarity (i.e.
θ+
ij θ
−
ij = 0) and PWL adjacency conditions are satisfied.

Under such conditions, the relaxation is considered “tight” and
the model is exact (i.e. equality is achieved in (14)). When
the losses are relaxed (i.e. not tight), overestimated losses are
denoted “fictitious losses”, as they exist only as an artifact of
the MPC controller model and not in the actual system.

Remark III.4. Theorem III.8 and Appendix B establish a
sufficient condition that ensures a tight relaxation. Under tight
conditions, the convex relaxation of line losses provides a
more accurate method for estimating line losses than standard
linearization.

C. Generation, load, storage, and power balance

For conventional (controllable) generator n, the injections
are denoted fGn, with ramp-rate limits Rup

n and Rdown
n [pu/s].

The following constraints are included in the controller model:

fGn[l + 1] = fGn[l] + ∆fGn[l] (18a)

fGn ∈ [fGn, fGn], ∆fGn ∈ [−TsRdown
n , TsR

up
n ]. (18b)

The discrete-time equation (18a), with sampling time (i.e.
time-step width) Ts, represents the dynamics of generator
ramping.

Power injections from non-dispatchable wind-turbine gen-
erator n, fGWn, are not subject to ramp-rate conditions but
may be curtailed (i.e. spilled) from their (forecast and actual)
nominal output level:

fGWn = f nom
GWn − f spill

GWn, f spill
GWn ∈ [0, αspill

n ] (19)

where f spill
GWn represents the controlled reduction from the

nominal available wind power.
It is assumed that load n is (partially) controllable through

fast-acting demand response schemes. That is, for all loads n,

fDn = f nom
Dn − f red

Dn, f red
Dn ∈ [0, αred

n ], (20)

where f nom
Dn is the nominal (forecast and actual) load and f red

Dn

represents the reduction in nominal load.
Energy storage is also available (e.g. grid-scale battery sys-

tems, pumped hydro, hydrogen fuel cells), with energy storage
devices located at various nodes throughout the network. The
state of charge (SOC) of the n-th energy storage device,
En[l] ∈ [0, En], is defined by the discrete dynamics:

En[l + 1] = En[l] + Tsηc,nfQc,n[l]− Ts
ηd,n

fQd,n[l], (21)

where ηc,n (ηd,n) is the constant charging (discharging) effi-
ciency of device n. Charging and discharging rates are limited
according to fQc,n ∈ [0, fQc,n], fQd,n ∈ [0, fQd,n]. The total
power injected by storage device n is fQn = fQc,n − fQd,n,
where fQn > 0 (fQn < 0) represent charging (discharging)
behavior.

Remark III.5. This model permits simultaneous charging and
discharging. While this is mathematically feasible, it is gen-
erally not physically realizable (i.e. some hydro-storage can
simultaneously charge/discharge, but most electrical storage
devices cannot). A more accurate energy storage model would
employ the complementarity condition fQc,n[l]fQd,n[l] = 0,
but that results in a difficult nonlinear model [27]. Instead of
applying an integer-based approach to model the complemen-
tarity condition (see Remark III.3), the MPC model relaxes
complementarity. This introduces modeling inaccuracy be-
tween plant and controller that is proportional to 1−ηc,nηd,n.
However, as discussed in Appendix A, a heuristic algorithm
can be employed to reduce the occurrence and effects of
simultaneous charge/discharge events. Any remaining model-
ing inaccuracy is rejected through the feedback process, as
evidenced in [1].

Networks must satisfy Kirchhoff’s laws, which implies that
the net power flow into any node must equal the net flow out.
Generators (loads) may inject (consume) power at a node. If
energy storage devices are available at a node, then discharging



(charging) corresponds to additional injections (demands). The
power balance equation at each node i ∈ N is formulated as:

∑

n∈ΩG
i

fGn −
∑

j∈ΩN
i

fT
ij −

∑

n∈ΩE
i

fQn −
∑

n∈ΩD
i

fDn = 0 (22)

where fT
ij = fij + 1

2f
loss
ij is the total flow on line (i, j) and

• ΩG
i – set of generators at node i (wind and conventional)

• ΩN
i – set of nodes adjacent to node i

• ΩD
i – set of demands at node i

• ΩE
i – set of energy storage devices at node i.

As well as contributing to the power balance (22), line losses
f loss
ij also drive the temperature dynamics associated with line

overloads. This dual role must be carefully considered to
ensure a tight formulation of the PWL approximation.

Remark III.6. (Fixing losses over the prediction horizon.)
Under the standard convex relaxation of a PWL approximation
of line-losses [19], it is implicitly assumed, for tightness
of the formulation, that nodal prices (i.e. LMPs) are non-
negative. Negative nodal prices arise for nodes where in-
creasing power consumption leads to decreased overall system
costs. For example, if a line is congested or trips at time
k and forces a generator at node i to decrease output (i.e.
fGn[k] − fGn[k − 1] < 0 for n ∈ ΩG

i ), then it can be shown
that the nodal price at that node at time k will become negative.
This breaks the assumption of non-negative nodal prices and
prevents a tight formulation of losses. Fictitious losses can
then “consume” power via the power balance equation (for
nodes with negative LMPs) and reduce the overall objective
function value. Similar but more thorough conclusions have
been reached by authors in [25], [28] in relation to convex
relaxations in power systems.

To overcome the challenge of negative LMPs, losses are
fixed in (22), with line flows given by:

fT
ij = fij +

1

2
f loss,est
ij,k (23)

where f loss,est
ij,k is obtained from the state estimate of the AC

system at time k, (i.e. the initial point of the MPC horizon.)
The proof of tightness of the convex relaxation, given in
Appendix B does not, therefore, require consideration of nodal
prices. Furthermore, by fixing losses in the power balance
equation, the network structure does not affect the convex
relaxation.

It should be emphasized that losses are not omitted from
(22), but rather are held constant through (23). Therefore,
only the variation in losses over the prediction horizon is
neglected. As the system settles to its post-disturbance steady-
state, this loss variation approaches zero and the approximation
disappears.

D. Line overloads

Protection schemes, such as over-current relays, detect ab-
normal conditions and trip affected components (i.e. remove
them from service.) These devices operate automatically on
a sub-second timescale and are, therefore, not considered in

this work. Rather, this paper considers a time-scale of min-
utes, which shifts the focus from fault conditions to thermal
considerations of transmission line conductors and sagging.

Transmission lines have prescribed power flow limits to
prevent dangerous sagging and permanent conductor damage.
These limits are related to the thermal capacity of the conduc-
tors and their ability to dissipate heat arising from resistive
losses. Generally, there is an inverse relationship between the
current flow on a line and the time allowed before the line must
be taken out of service. In most common overload scenarios,
this time response is on the order of 10-20 minutes.

Let f lim
ij > 0 be the (3-phase MVA) thermal limit on line

(i, j). To ensure secure line flows, it is desirable for an operator
to enforce:

|fij |+
1

2
f loss
ij ≤ f lim

ij ∀(i, j). (24)

While it is feasible to take inequality (24) into consideration in
determining an hourly energy dispatch schedule (i.e. Level 1),
it is unrealistic to expect such a constraint to be enforced
immediately following a significant disturbance (e.g. line out-
age). This is because power flows depend on the physics of the
network and are uncontrollable in the short term. Consequently
line flows may temporarily exceed their limits following
contingencies. Therefore, in the Level 2 control strategy, line
overloads are tracked via the conductor temperature, and the
controller seeks to alleviate sustained temperature overloads.

To model conductor temperature, the IEEE Standard 738
[29] for calculating the current-temperature relations of bare
overhead conductors was employed. Consider an overhead
conductor as a per-unit length thermal mass with continuous-
time temperature dynamics:

Ṫ (t) =
1

mCp

(
qs(t) + f loss

ij (t)− ηc
(
T (t)− Tamb(t)

)

− ηr
(
(T (t) + 273)4 − (Tamb(t) + 273)4

))
(25)

where T and Tamb are the conductor and ambient temperatures
[◦C], respectively, and f loss

ij is the active power loss per unit
length [W/m] in conductor (i, j), calculated according to (17).
Values mCp, qs, ηc, and ηr represent per unit length conductor
heat capacity [J/m-◦C], solar heat gain rate [W/m], conductive
heat loss rate coefficient [W/m-◦C], and radiative heat loss rate
coefficient [W/m-◦C4], respectively. Coefficients ηc, ηr depend
on the conductor characteristics. Besides the variation in re-
sistance with conductor temperature, nonlinearities arise from
the radiative heat losses. However, for conductor temperatures
below 100◦C, it is approximately linear.

To allow for tractable implementation of the MPC scheme,
(25) is discretized and linearized around the equilibrium point
T ∗ = T lim, where T lim is computed from steady-state condi-
tions with line current at ampacity (i.e. set f loss

ij
∗

= Rij(I
lim)2,

with Rij the resistance per unit length [Ω/m].) Values T ∗amb,
q∗s describe representative ambient conditions, and may be
obtained from forecasts, measurements or historical records.
Thus, linearization of (25), together with forward Euler dis-
cretization, yields:

∆Tij [k + 1] = τij∆Tij [k] + ρij∆f
loss
ij [k] + δij∆dij [k], (26)



where

τij = 1− Tsγ̄c
mCp

, γ̄c = ηc + 4ηr(T
lim + 273)3, (27)

and ρij = Ts

mCp
[◦C-m/W]. The effects of exogenous inputs

are captured by δij = [ρij γij ], where

γij =
Tsγ̄a
mCp

, γ̄a = ηc + 4ηr(T
∗
amb + 273)3, (28)

and ∆dij = col(∆qs,ij , ∆Tamb). Note that ∆qs,ij is a function
of conductor diameter and solar input. Numerical stability
requires that τij ∈ (−1, 1), ∀ij, which implies the sampling
time must satisfy Ts < minij{2mCp,ij

γ̄c,ij
}. That is, the choice of

controller sampling time Ts is determined based on the fastest
linearized line-temperature time-constant.

Remark III.7. The MPC mitigation scheme seeks to drive line
temperatures below limits (subject to the lossy DC model), but
once below limits there is no incentive to lower temperatures
further. That is, MPC should compute control actions that only
take into account lines with ∆Tij > 0. Thus, a measure of
temperature that aligns with such an objective is given by
∆T̂ij = max{0, ∆Tij}. This constraint can be relaxed to the
linear formulation,

0 ≤ ∆T̂ij (29a)

∆Tij ≤ ∆T̂ij . (29b)

Because the objective function penalizes ∆T̂ij , this relaxation
will always be tight.

To ensure correct temperature dynamics in (26), the convex
relaxation of line losses given by (17) must be tight whenever
a line’s temperature rises above its limit (i.e. ∆Tij > 0). The
following theorem establishes this crucial result.

Theorem III.8. (Temperature and Convex Relaxation.) As-
sume gij > 0 and losses in (22) are fixed to a predetermined
value, according to (23), over the duration of the prediction
horizon. If the temperature of line (i, j) ∈ E exceeds its limit at
time l+1, then the convex relaxation (17) is tight with respect
to line (i, j) for all previous time-steps. That is, if ∃ l ∈M and
(i, j) ∈ E such that ∆Tij [l+1] > 0, then adjacency conditions
are satisfied for (17a) and θ+

ij [κ] θ−ij [κ] = 0, ∀κ ≤ l. Hence the
convex relaxation associated with line (i, j) is tight ∀κ ≤ l.
Proof. The full proof is given in Appendix B. To sketch
the proof, let {∆Tij [l]}Ml=1 be an optimal MPC temperature
trajectory for line (i, j) and assume ∃ l ∈ M such that
∆Tij [l + 1] > 0 but the solution is not tight for some κ ≤ l.
That is, losses are overestimated via the convex relaxation (i.e.
θ+
ij [κ] θ−ij [κ] > 0 and/or adjacency conditions are not satisfied

in the PWL relaxation, see Fig. 3). Then a feasible solution can
be derived which is identical to the optimal solution except that
it enforces a tight formulation at time κ and reduces line losses
accordingly, say from f loss

ij,relax[κ] > f loss
ij,tight[κ]. According to

(26), decreased losses at time κ result in lower temperature
at later times, which implies that the temperature overload
at time l + 1 must be less under the tight feasible solution.
Since the objective function penalizes ∆T̂ij [κ], the feasible

tight trajectory provides a lower cost solution than the relaxed
optimal trajectory. This is a contradiction. Thus, if (i, j) has a
temperature overload at time l + 1, the formulation is locally
tight ∀κ ≤ l.
Remark III.9. (From DAE to ODE.) The DAE system
presented in (2) cannot be expressed as an ordinary differ-
ential equation (ODE) system, because there is no bijective
transformation between algebraic and dynamic states. This is
because the convex relaxations employed in the MPC model
beget multiple optimal algebraic solutions for lines that satisfy
∆Tij ≤ 0. Thus, the algebraic set of equations in (2c) has
singular F̂ . Theorem III.8 yields conditions which ensure a
locally unique solution for lines that exhibit temperature over-
loads, thus providing the basis for MPC to take meaningful
action against such overloads.

E. MPC implementation

Given the complete controller model description, the state
and input vectors can be collated:

x = col{∆T̂ , E, fG} (30a)

u = col{∆fG, f spill
GW

, f red
D , fQc, fQd, ψ} (30b)

z = col{θ, θ+, θ−, θPW , f, f loss, fD, fGW
, fQ}. (30c)

The objective of the MPC scheme is to determine the optimal
control actions that alleviate temperature overloads ∆T̂ij ,
while minimizing deviations from the economic set-points es-
tablished by Level 1. Accordingly, the MPC objective function
is composed of the terms:

po(∆T̂ij [l|k])2 - line temperature overload

pg(fGn[l|k]− f sp
Gn,k+l)

2 - generation output deviation

pr(∆fGn[l|k]−∆f sp
Gn,k+l)

2 - generation ramping

pe(En[l|k]− Esp
n,k+l)

2 - SOC deviation

pq(fQd/c,n[l|k]− f sp
Qd/c,n,k+l)

2- dis/charging deviation

ps(f
red
Dn[l|k])2 - demand response

pw(f spill
GWn[l|k])2 - wind spill

pp(ψij [l|k]− ψsp
ij,k+l)

2 - PST reference deviation

where reference values, denoted (·)sp, refer to the economi-
cally optimal set-points computed in Level 1. Based on the
MPC objectives and the state and input definitions in (30), the
weighting matrices in (2a), (3) are given by:

Q = diag
{
poI,

pe
10M2

I,
pg

10M2
I
}
� 0 (31a)

SM = diag
{
poI, peI, pgI

}
� 0 (31b)

R = diag
{
prI, pwI, psI, pqI, pqI, ppI

}
� 0 (31c)

where I represents square identity matrices of appropriate di-
mensions, diag{·} is a block-diagonal matrix, and � 0 denotes
positive-definiteness. Note that the terminal cost matrix SM
penalizes deviations from economical references for storage
SOC and conventional generation states more severely than
does the running-cost weighting matrix Q. This is because
MPC does not care how these reference signals are tracked,



only that they are being considered by the end of the horizon.
The objective function weighting factors must be tuned to
achieve the desired MPC response.

To bring line temperatures at or below their limits by the end
of the prediction horizon, a terminal constraint is employed:

Tx =
{
x
∣∣∣∆T̂ [M ] = 0;E[M ] ∈ [0, E]; fG[M ] ∈ [fG, fG]

}
.

(32)
Note that Tx is compact and contains the “origin”, established
by line temperature limits and Level 1 reference values. The
remainder of the controller description (2) follows directly
from the model details presented in Section III.

Remark III.10. (Stability and controllability.) Despite the
controller consisting of a linear model together with terminal
constraints and penalties, ensuring stability of the proposed
hierarchical control scheme (Level 1 and Level 2) is not
straightforward. Few systematic analysis methods are available
for guaranteeing performance [30]. Furthermore, the DAE
singularity discussed in Remark III.9 limits application of
standard state-space results.

It is assumed that the controllable resources defined in
(30b) exert a non-negligible influence on the power flowing
through overloaded lines. That may not be the case if an
overloaded line is remote from all the available resources. This
controllability can be assessed by evaluating sensitivities, such
as “generation shift factors” [18], for the lines in question.

F. Data management and communication

The MPC control scheme requires a model of the network,
together with measurements of the conductor temperature of
(potentially) overloaded lines, SOC of energy storage devices,
output power from both conventional and renewable genera-
tion, power demand, and PST angles2. These data establish
the initial point for the MPC prediction trajectory, and there-
fore must be updated every time MPC reinitializes, at the
time-step Ts. These measurement requirements are consistent
with existing energy management system (EMS) capabilities,
with topology processing establishing the network model, and
state-estimation providing generation and load information.
Technology for measuring conductor temperature is available,
though telemetry of such measurements is not currently com-
mon. It is argued in [12] and references therein, in the context
of dynamic line rating, that gathering line temperatures is quite
feasible. Also, a trivial modification to the MPC formulation
would allow some lines to be subject to standard (hard) power
flow limits, while modeling temperature dynamics for lines
that were outfitted with temperature sensors. Participation of
energy storage devices in electricity markets will likely require
telemetry of their SOC. This is already the case in NYISO
[31].

In addition to well defined initial conditions, MPC predic-
tion also requires forecasts of demand, the power available
from renewable generation sources, and the ambient weather
conditions governing line temperatures. Generation and load
forecasts are already available and used in EMS contingency

2More generally, the operating points of all FACTS devices would be
required.

analysis. Short-term weather forecasts are also typically avail-
able. Given that the MPC prediction horizon will generally be
on the order of 15-30 minutes, a persistence forecast (which
assumes those external influences remain unchanged) will
often be adequate.

MPC broadcasts control signals at an interval of Ts, which is
much slower than other controls, such as AGC [32]. Thus the
input/output communications and data management require-
ments of the MPC scheme are consistent with the capabilities
of existing EMS installations.

G. Case study

Simulation of the MPC scheme is described in Part II [1].
That paper considers a case study that is based on the IEEE
RTS-96 test system [33], augmented to include energy storage
and wind generation.

IV. SUMMARY AND FUTURE WORK

A bilevel hierarchical control scheme is proposed for man-
aging contingencies in electric power systems. The scheme
balances economic and security objectives through the use
of a higher-level optimal scheduling process and a lower-
level model predictive control (MPC) strategy. The MPC
design rejects disturbances (contingencies) while tracking the
optimal set-points established by the higher level. Disturbance
rejection exploits the thermal overload capability of transmis-
sion lines. This allows time for adjustments to be made to
controllable resources that include generation levels, energy
storage and demand response.

A convex relaxation is applied to the AC power flow to
develop a piece-wise linear approximation for line losses.
This formulation is proven to be sufficient to enable MPC
to drive line temperatures below limits. As supported by the
IEEE RTS-96 case study analyzed in Part II [1], the proposed
MPC scheme can significantly improve system reliability and
economic performance by leveraging the temporal nature of
energy storage and conductor temperatures.

The DC power flow used in the MPC development does
not consider voltage magnitudes (nor reactive power). There
is value in being able to include voltage information in a
linear/convex MPC scheme as that would facilitate a more
integrated approach to protecting against voltage collapse. To
accomplish this, convex relaxations and cutting plane methods
will be explored [34].
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APPENDIX A
SIMULTANEOUS CHARGING AND DISCHARGING

In order to compare simultaneous charge/discharge behavior
with complementarity-based charging, define their respective
actions by the superscripts (.)S and (.)C . Then for a given
optimal storage device action the following holds:

fCQc[l]− fCQd[l] =: f∗Q := fSQc[l]− fSQd[l]. (33)



Note that there exists only one unique complementarity-based
control action (due to the condition fCQc[l]f

C
Qd[l] ≡ 0). How-

ever, without complementarity (i.e. under the simultaneous
charge/discharge formulation), multiple solutions may exist.
One side-effect of allowing simultaneous charge/discharge
events is identified by the following:

Theorem A.1. For a given optimal storage flow f∗Q[l],
the simultaneous charge/discharge model (compared with
the complementarity-based model) underestimates SOC (i.e.
∆E[l + 1] := EC [l + 1]− ES [l + 1]) by

∆E[l + 1] = Ts
1− ηcηd

ηd

l∑

m=0

min
{
fSQc[m], fSQd[m]

}
. (34)

Proof. The proof follows directly from considering the two
cases: fCQc ≡ 0 and fCQd ≡ 0.

From the theorem, it is straightforward to see that the
simultaneous charge/discharge model exactly matches the
complementarity-based model when one of the following
holds:
• ηc = ηd = 1 (perfect efficiency)
• min{fSQc[l], fSQd[l]} = 0 (complementarity is satisfied)
• f∗Q[l] = fQ

where fQ ≡ fQc = fQd has been assumed for presentation
clarity. (Generalization to fQc 6= fQd is straightforward.) The
last condition stems from

min{fSQc[l], fSQd[l]} ∈
[
0, fQ − f∗Q[l]

]
. (35)

This means that the controller can (erroneously) employ
simultaneous charge/discharge to achieve a lower-than-actual
SOC, which could be advantageous to reduce the cost of
SOC deviations from the Level 1 reference. Furthermore, the
controller can utilize simultaneous charge/discharge to reduce
line overloads by fictitiously “burning” excess power through
energy storage inefficiencies (ηc, ηd < 1).

To reduce the effect and occurrence of simultaneous
charge/discharge events, two steps have been implemented.
Firstly, to reduce the worst-case behavior of the simultane-
ous charge/discharge formulation, the following constraint is
utilized:

fQc,n[l|k]

fQc,n
+
fQd,n[l|k]

fQd,n
≤ 1 ∀l, k, n, (36)

where fQc,n, fQd,n are the rate limits on charging and
discharging, respectively.

Secondly, most devices at most time-steps will satisfy
fQn[l|k] 6= 0. This knowledge can be used to enforce
complementarity-like constraints, and limit occurrences of
simultaneous charge/discharge events. When MPC first runs,
the charge/discharge status of storage devices over the pre-
diction horizon is most likely unknown. In order to initialize
the status, simultaneous charging/discharging is permitted for
that first prediction trajectory. When MPC next runs, at time
k, the charge/discharge status of each storage device over
the prediction horizon is determined from its status at the
corresponding time-step in the previous prediction trajectory
(i.e. k − 1). It should be noted that the prediction horizon at

time-step k−1 only extends to fQn[M −1|k−1], so no prior
value is available for initializing the status of fQc,n[M − 1|k]
and fQd,n[M − 1|k]. Therefore, the Level 1 status at the
corresponding time can be used to establish the charging state
for all devices at this terminal time-step. Fig. 4 outlines the
algorithm employed in MPC.

1: Initialize: set αtol ≥ 0
2: if k = 0 then . MPC first run: allow simulcharge
3: for l = 0, 1, . . . ,M − 1 do
4: fQc,n[l|k], fQd,n[l|k] satisfy (36)
5: end for
6: else
7: for l = 0, 1, . . . ,M − 2 do
8: if fQn[l + 1|k − 1] > αtol then
9: fQd,n[l|k] = 0, fQc,n[l|k] ∈ [0, fQc,n]

10: else if fQn[l + 1|k − 1] < −αtol then
11: fQc,n[l|k] = 0, fQd,n[l|k] ∈ [0, fQd,n]
12: else . Possible transition: allow simulcharge
13: fQc,n[l|k], fQd,n[l|k] satisfy (36)
14: end if
15: end for . Terminal control
16: set fQc,n[M − 1|k] = 0 or fQd,n[M − 1|k] = 0

according to Level 1 status
17: end if

Fig. 4. Reducing the effect of simultaneous charge/discharge for Level 2
MPC at time-step k.

Remark A.2. This algorithm introduces a delay of one time-
step in the transition of storage devices from charging to
discharging, or vice-versa. To address this issue, computation
of the MPC trajectory for time k can be repeated using
the latest status information. At this re-run, storage devices
with fQn[l|k] ∈ [−αtol, αtol] are handled in accordance with
line 13 in Fig. 4.

To summarize, constraint (36) limits the worst-case behav-
ior of simultaneous charge/discharge, and the algorithm in
Fig. 4 reduces the frequency of simultaneous charge/discharge
events. Thus, these two steps make the model more represen-
tative of reality, but at a slightly increased computational cost.

APPENDIX B
PROOF OF THEOREM III.8

Proof. Let l + 1 be the predicted time when line (i, j)
exceeds its temperature limit. Pick an arbitrary κ ≤ l.
Since the MPC problem embodies a QP problem (with lin-
ear constraints), it satisfies the Linearity/Concave Constraint
Qualification trivially and the Karush-Kuhn-Tucker (KKT)
first-order conditions are therefore necessary conditions for
(global) optimality [35]. The KKT conditions relating vari-
ables {θ+

ij [κ], θ−ij [κ], θPW
ij (s)[κ]} for any κ ≤ l and ∆T̂ [l + 1]

give the following



θ+ij [κ] :0 = −λ1 + µ1 − µ2 − µ
5

(37)

θ−ij [κ] :0 = −λ1 − µ1 + µ2 − µ
6

(38)

θPW
ij (s)[κ] :0 = λ1 + µs3 − µs

4
+ αij(s)(µ

l
7ϕij,l−κ + ζij,κ) (39)

∆T̂ij [l + 1] :0 = 2po∆T̂ij [l + 1] − µl7 − µl
8

(40)

where
• λ1 ∈ R – multiplier related to constraint that couples

absolute value and PWL variables in (17b);
• µ1 ∈ R+ – multiplier related to upper bound for θ̂ij ;
• µ2 ∈ R+ – multiplier related to lower bound for θ̂ij ;
• µs3 ∈ R+ – multiplier related to upper bound for θPW

ij (s);
• µs

4
∈ R+ – multiplier related to lower bound for θPW

ij (s);
• µ

5
∈ R+ – multiplier related to lower bound for θ+

ij ;
• µ

6
∈ R+ – multiplier related to lower bound for θ−ij ;

• µl7 ∈ R+ – multiplier related to the inequality obtained
by substituting temperature dynamics (26) into (29b).

• µl
8
∈ R+ – multiplier related to 0 ≤ ∆T̂ [l + 1] in (29a).

• ϕij,l−κ ∈ R+ – constant based on ∆Tij [l+ 1]-to-f loss
ij [κ]

transition from (26).
• ζij,κ ∈ R+ – linear combination of multipliers based on

∆Tij [m]-to-f loss
ij [κ] transitions (κ ≤ m ≤M−1,m 6= l).

Lemma B.1. KKT condition (40) implies that µl7 = β∆T̂ij [l+
1] ≥ 0 for some β > 0.

Proof. Consider two cases:
1) ∆T̂ij [l + 1] = 0: Then, 0 = −µl7 − µl8 ⇒ µl7 = µl

8
= 0

since µl7, µ
l
8
≥ 0.

2) ∆T̂ij [l+ 1] > 0: Then, µl
8

= 0 due to complementarity,
so µl7 = 2po∆T̂ij [l + 1] > 0 as po > 0.

Thus, µl
8
≡ 0 and set β = 2po > 0. The proof is concluded.

From the KKT conditions associated with θ+
ij , θ

−
ij , it is

straightforward to show that,

2λ1 = −µ
5
− µ

6
≤ 0. (41)

This relationship will be used in Lemma B.2 to establish tight-
ness of the convex relaxation of the absolute value constraint
(i.e. θ+

ijθ
−
ij = 0).

Lemma B.2. If line (i, j) ∈ E is predicted to exceed its
temperature limit, then the absolute value complementarity
relaxation is tight for all previous time-steps. That is, if
l ∈ {0, . . . ,M − 1} such that ∆T̂ij [l + 1] > 0 then
θ+
ij [κ] θ−ij [κ] = 0, ∀κ ≤ l.

Proof. Let ∆T̂ij [l + 1] > 0, choose arbitrary κ ≤ l, and
consider the following two cases:

1) Suppose
∑S
s=1 θ

PW
ij (s)[κ] = 0, then from (17b), θ+

ij [κ] =

θ−ij [κ] = 0 and θ+
ij [κ] θ−ij [κ] = 0.

2) Suppose
∑S
s=1 θ

PW
ij (s)[κ] > 0, then ∃s ∈ {1, . . . , S}

such that θPW
ij (s)[κ] > 0, so µs

4
= 0. Using Lemma B.1

and (39), and re-arranging gives:

0 < β∆T̂ij [l + 1]ϕij,l−κ ≤
−µs3
αij(s)

− λ1

αij(s)
. (42)

Since µs3 ≥ 0 this implies λ1 < 0. From (41), one or
both of µ

5
, µ

6
> 0, which implies that one or both of

θ+
ij [κ], θ−ij [κ] = 0, and hence θ+

ij [κ] θ−ij [κ] = 0. Because
0 <

∑S
s=1 θ

PW
ij (s)[κ] = θ+

ij [κ]+θ−ij [κ], only one of θ+
ij [κ]

and θ−ij [κ] can be zero.
Since κ was arbitrary, it has been proven that for positive
temperature overload at time l+1, the absolute value relaxation
is locally tight for all κ ≤ l.

Next, the goal is to prove that adjacency conditions are
upheld in the relaxed formulation for all time-steps κ ≤ l
if ∆Tij [l + 1] > 0. Chose arbitrary κ. To improve readability
of the following argument, the notation “[κ]” will be dropped,
though all notation is with respect to time-step κ.

Suppose θPW
ij (s) > 0 for some s > 1. Then KKT condition

(39) has µs
4

= 0 and µs3 ≥ 0, and so:

µl7ϕij,l−κ + ζij,κ ≤ −
λ1

αij(s)
. (43)

In order to establish a contradiction, suppose θPWij (s − 1) ∈
[0,∆θ). If θPWij (s− 1) = 0, then µs−1

3 = 0 and µs−1
4
≥ 0, so

(39) implies that,

µl7ϕij,l−κ + ζij,κ ≥ −
λ1

αij(s− 1)
> − λ1

αij(s)
, (44)

where the last strict inequality derives from strict monotonicity
of αij(s) > 0 over s, and the guarantee that λ1 < 0
from Lemma B.2. This contradicts with (43). The proof that
θPWij (s − 1) /∈ (0,∆θ) is similar. Hence, θPW

ij (s) > 0 ⇒
θPW
ij (s−1) = ∆θ. Since κ was arbitrary, adjacency conditions

are upheld for all κ ≤ l. Thus, the convex relaxation is locally
tight for all time-steps prior to a line’s temperature exceeding
its limit.
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