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Abstract—The novel cascade-mitigation scheme developed in
Part I [1] is implemented within a receding-horizon model
predictive control (MPC) scheme with a linear controller model.
This present paper illustrates the MPC strategy with a case-study
that is based on the IEEE RTS-96 network, though with energy
storage and renewable generation added. It is shown that the
MPC strategy alleviates temperature overloads on transmission
lines by rescheduling generation, energy storage, and other
network elements, while taking into account ramp-rate limits and
network limitations. Resilient performance is achieved despite
the use of a simplified linear controller model. The MPC scheme
is compared against a base-case that seeks to emulate human
operator behavior.

Index Terms—Cascade mitigation, convex relaxation, energy
storage, modeling, model predictive control, power system oper-
ation, receding horizon, thermal overloads.

I. INTRODUCTION

THis paper complements Part I [1], which established a
novel model-predictive bilevel control scheme for miti-

gating the effects of large disturbances and cascading failures
in electric power systems. Fig. 1 provides an overview of the
bilevel hierarchical operation of the system. This bilevel con-
trol scheme is designed to combine both economic and security
objectives. Level 1 computes an economically optimal set-
point schedule xsp, usp, which establishes a reference trajectory
for Level 2. Level 2 is implemented using model predictive
control (MPC) in a receding-horizon fashion. It achieves
security by bringing conductor temperatures below limits,
and returns the system to optimal economic performance. In
particular, it is proven in [1] that a convex relaxation of line
losses is tight exactly when line temperatures exceed their
limits. This is a necessary condition for the MPC scheme to
alleviate unacceptable temperature overloads on transmission
lines. The MPC scheme can be summarized as follows:

1) At time k and for the measured system state xmeas
k and

updated reference signals from Level 1, xsp and usp,
solve an optimal control problem over fixed interval
[k, k + M ] taking into account current and future con-
straints. This yields a sequence of optimal open-loop
control actions: {u[l|k]}M−1

l=0 .
2) Apply the first instance of the open-loop sequence:

u[0|k].
3) Measure the system state reached at time k + 1, xmeas

k+1.
4) Set k = k + 1 and repeat step 1).
In order to fully explore the MPC scheme, this paper

presents a case-study that is based on the IEEE RTS-96
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Fig. 1. Overview of the proposed control scheme showing Level 1 (economic)
and Level 2 (corrective) interaction.

network [2], with renewables and energy storage (ES) devices
added. It highlights practical aspects of the MPC scheme and
the role of energy storage in providing improved reliability
and economic performance. Specifically, the RTS-96 network
is subjected to a large disturbance (i.e. line outage) and the
MPC response is analyzed.

The paper is organized as follows. Section II summarizes the
MPC model developed in [1]. The representation of the actual
power system and the line outage methodology are described
in Section III. Section IV formulates a reasonable base-case
to emulate the performance of a human operator, explores
in detail the case-study and highlights the practicality of the
proposed MPC scheme. Concluding remarks are presented in
Section V.

II. CONTROLLER MODEL SUMMARY

The controller model is developed in detail in Part I. For
the sake of completeness though, a summary is provided here.
The Level 2 MPC controller utilizes a sufficient approximation
of the non-convex AC power system that is amenable to
a quadratic programming (QP) optimization framework. The
index l denotes discrete time-steps, and the MPC scheme is
employed with prediction and control horizon M . That is, let
l ∈ {0, 1, . . . ,M − 1} =M.

Remark II.1. (Prediction and control horizons.) Even though
this paper uses identical prediction and control horizons (i.e.
Mp = M = Mc), it is straightforward to consider the effect
of varying either horizon, provided Mc < Mp.

A power system network can be described in a graph-
theoretic sense as consisting of a set of nodes and edges,
(i.e. edge (i, j) ∈ E for nodes i, j ∈ N , graph G = (E ,N )).
Electrical transmission lines have prescribed power flow limits
to prevent dangerous sagging and permanent damage (e.g.
annealing). These limits are related to the thermal capacity



of the conductor and the current flowing through the line.
Generally, there is an inverse relationship between the current
in a line and the time that may elapse before the line must be
taken out of service. In most common overload scenarios, the
time-response is on the order of 10-20 minutes [3].

To ensure secure line flows, it is usual for operators to
maintain flows within MVA limits. While it is feasible to take
such limits into consideration when determining longer-term
energy management schedules (i.e. Level 1), it is unrealistic
to expect such constraints to be valid immediately after a
significant disturbance (e.g. line outage). This is because
flows depend on the physics of the network and (unlike
many digital systems) cannot be directly guided, which means
that line flows may exceed their limits post-contingency. A
more appropriate measure of line overload is the conductor
temperature. Therefore, the MPC controller seeks to alleviate
temperature overloads.

The states and inputs associated with the proposed formu-
lation of an MPC cascade mitigation scheme for an electric
power system are outlined below:
Dynamic states (x): there are three types of dynamic states:

• ∆T̂ij , line (i, j) conductor temperature overload with
respect to limit T lim

ij .
• En, state-of-charge (SOC) for energy storage (ES) de-

vice n.
• fGn, power output level for generator n.

Control inputs (u): the formulation employs six types of
control inputs:

• ∆fGn, change to conventional generator n output level.
• f spill

GWn, wind spilled from nominal, for wind turbine n.
• f red

Dn, demand response (reduction) from nominal, for
load n.

• fQc,n, fQd,n, charge (c) and discharge (d) rates for ES n.
• ψij , transformer phase shift (rads), for line (i, j).

Uncontrollable inputs: there are three types of forecast
(uncontrollable) inputs (i.e. exogenous disturbances):

• f nom
GWn, nominal available power from wind turbine n.

• f nom
Dn , nominal demand, for load n.

• dij , ambient temperature and solar gain, for line (i, j).

Algebraic states (z): models require nine types of algebraic
states:

• fij , real power flowing through line (i, j).
• f loss

ij , real power losses for line (i, j).
• θij , phase angle difference between nodes i and j.
• θ+

ij , θ
−
ij , absolute value approximation of |θij |.

• {θPW
ij (s)}Ss=1, S-segment PWL approximation of |θij |2.

• fGWn, real power injected by wind turbine n.
• fDn, real power consumed by load n.
• fQn, total power injected or consumed by ES n.

Suppose that controls u(t) are step-wise with constant step-
width Ts, such that u(t) := u[k] for t ∈ [kTs, (k + 1)Ts]. All
discrete dynamics are the result of forward Euler discretization
with sample time Ts. For each time k, the dynamic states
xmeas
k are measured and represent the initial state of the MPC

system model. Then, the full MPC formulation is defined as

a quadratic programming (QP) problem:

min
u[l]

∣∣∣∣x[M ]− xsp
k+M

∣∣∣∣
SM

+

M−1∑

l=0

L (x[l], u[l]) (1a)

s.t.

∆Tij [l + 1] = τij∆Tij [l] + ρij∆f
loss
ij [l] + δij∆dij (1b)

En[l + 1] = En[l] + Tsηc,nfQc,n[l]− Ts
ηd,n

fQd,n[l] (1c)

fGn[l + 1] = fGn[l] + ∆fGn[l] (1d)

∆T̂ij [l] = max{∆Tij [l], 0} (1e)
0 = fQc,n[l] fQd,n[l] (1f)

0 = aijx
2
ijf

loss
ij [l]−∆θ

S∑

s=1

(2s− 1)θPW
ij (s)[l] (1g)

0 = θ+
ij [l] + θ−ij [l]−

S∑

s=1

θPW
ij (s)[l] (1h)

0 = θ+
ij [l]− θ−ij [l]− (θij [l]− ψij [l]) (1i)

0 = Γi

(
fij [l], f

loss,est
ij,k , fGn[l], fDn[l], fQn[l], fGWn[l]

)
(1j)

0 = aijxijfij [l]− (θij [l]− ψij [l]) (1k)

fDn[l] = f nom
Dn [l]− f red

Dn[l] (1l)
fQn[l] = fQc,n[l]− fQd,n[l] (1m)

fGWn[l] = f nom
GWn[l]− f spill

GWn[l] (1n)

x[l] ∈ X , u[l] ∈ U , z[l] ∈ Z (1o)
x[M ] ∈ Tx (1p)
x[0] = xmeas

k (1q)

for all l ∈ M, where x[l], u[l], and z[l] represent the
dynamic state, control input, and algebraic state variables,
respectively, at predicted time k+l given initial measured state
at time k, xmeas

k . This notation has been adopted for clarity of
presentation. The more precise forms, x[l|k], u[l|k], and z[l|k],
appear in [1]. The terms in the summation of the objective
function (1a) are defined by:

L(x[l], u[l]) = ||x[l]− xsp
k+l||Q + ||u[l]− usp

k+l||R, (2)

where ||y||B ≡ y>By, SM � 0, Q � 0 are non-negative
definite weighting matrices, and R � 0 is a positive definite
weighting matrix.

Expressions (1b), (1c) and (1d) represent the linear
(discrete-time) dynamics associated with conductor temper-
ature for line (i, j), SOC for energy storage device n, and
the power supplied by generator n, respectively. The thermal
conductor model is based on the IEEE standard describing the
temperature-current relationship in overhead conductors [4].
Temperature dynamics in (1b) are linearized with respect to
the conductor temperature (T lim

ij [◦C]) obtained for steady-state
ampacity (I lim

ij [A]), and conservative ambient parameters.
Accordingly, ∆Tij = Tij − T lim

ij and ∆f loss
ij = f loss

ij Sb/3Lij −
Rij(I

lim
ij )2, where Sb [VA] and Lij [m] are the three-phase

per-unit power base and conductor length, respectively, and
Rij [Ω/m] is the resistance per unit length. Appendix A
describes the relationship between temperature limit T lim



and ampacity-rated (I lim)2R-losses. Also, ∆dij = dij − d∗ij
describes deviations from representative exogenous conditions,
ambient temperature T ∗amb and solar heat gain rate q∗s , with qs a
function of conductor diameter and solar conditions. However,
it has been assumed for these studies that ambient temperature
and solar heat gain rates remain fixed over the period of
interest (i.e. ∆dij = 0).

Constraint (1e) enables the main objective of alleviating
temperature overloads while not incentivizing under-loading
of lines. That is, MPC should compute control actions that
only consider lines with ∆Tij [l] > 0. Keeping in mind the QP
formulation, the implementation of this temperature objective
can be relaxed to the linear formulation:

0 ≤ ∆T̂ij [l] (3a)

∆Tij [l] ≤ ∆T̂ij [l]. (3b)

Because the objective function penalizes ∆T̂ij , this relaxation
will always be tight.

The complementarity condition (1f) ensures that energy
storage devices cannot simultaneously charge and discharge.
As discussed in Part I, exact implementation of complemen-
tarity would considerably increase computational complexity.
Therefore, the algorithm described in Appendix A of Part I
has been adopted for (approximately) enforcing (1f).

A convex piece-wise linear (PWL) approximation of
line losses is described by algebraic relations (1g), (1h),
and (1i). This PWL relaxation utilizes S segments of width
∆θ = θmax/S and is modeled using the algebraic states
θ+
ij , θ

−
ij , {θPW

ij (s)}Ss=1. In Part I, it was proven that if a line
experiences a temperature overload at predicted time l + 1,
then for all prior time-steps (i.e. κ ≤ l) the convex relaxation
will be locally tight. When the relaxation is locally tight, the
controller has a meaningful and relatively accurate model of
line losses, and hence of line temperature. This allows MPC
to compute control actions that relieve line overloads.

Equations (1j) and (1k) denote nodal power balance con-
straints (∀i ∈ N ) and DC power flows, respectively. Power
balance is implied by Kirchhoff’s law: power flowing into
node i must equal the power flowing out plus/minus that
injected/consumed. Note that the term f loss,est

ij,k in (1j) is a
constant estimate of line losses at time-step k. It is shown in
Part I that by decoupling this loss term from f loss

ij , the PWL re-
laxation inherits crucial tightness properties. The “DC” power
flow presented in (1k) reflects application of the “Unified
Branch Model” developed in [5]. This unified model provides
a consistent formulation for in-phase (IPT, ψij = 0) and phase-
shifting (PST, aij = 1) transformers, and transmission lines
(aij = 1, ψij = 0).

Algebraic equations (1l), (1m), (1n) establish the relation-
ship between control inputs, namely demand response, storage
injection/consumption, and wind curtailment, and the power
balance of (1j).

The sets defined in (1o) and (1p) are convex polytopes. In
particular, X is closed and U is compact:

X =
{
x
∣∣E[l] ∈ [0, E]; fG[l] ∈ [fG, fG]; ∆T̂ [l] ≥ 0

}
(4)

Z =
{
z
∣∣θij [l] ∈ [−θmax, θmax] ⊂ (−π/2, π/2);

θ+
ij [l], θ

−
ij [l] ≥ 0; θPW

ij (s)[l] ∈ [0,∆θ]
}

(5)

U =
{
u
∣∣f red
Dn[l] ∈ [0, αred

n ]; f spill
GWn[l] ∈ [0, αspill

n ];

∆fGn[l] ∈ [−TsRdown
n , TsR

up
n ];ψij [l] ∈ [−αP , αP ];

fQc,n[l] ∈ [0, fQc,n]; fQd,n[l] ∈ [0, fQd,n]
}

(6)

with bounds defined by appropriate parameters. The sets
contain the Level 1 reference trajectories xsp ∈ X , usp ∈ U .
Finally, the set Tx represents the convex polytopic terminal
constraint set and is defined by:

Tx =
{
x
∣∣∆T̂ [M ] = 0 ∧ x[M ] ∈ X

}
⊂ X . (7)

Remark II.2. (Terminal constraint and feasibility.) The ad-
dition of the terminal constraint Tx limits the magnitude of
predicted temperature overloads by ensuring that all lines have
acceptable temperatures by the end of the horizon. However,
terminal constraints may impact the feasibility of the QP
problem if the chosen prediction horizon M is too short. In
this work, M is appropriately chosen to ameliorate concerns
of feasibility.

Given the complete controller model description provided
by (1)-(7), the state and input vectors can be defined by:

x = col{∆T̂ , E, fG} (8a)

u = col{∆fG, f spill
GW

, f red
D , fQc, fQd, ψ} (8b)

z = col{θ, θ+, θ−, θPW , f, f loss, fD, fGW
, fQ}. (8c)

Based on the state and input definitions in (8), the weighting
matrices in (1a) are given by:

Q = diag
{
poI,

pe
10M2

I,
pg

10M2
I
}
� 0 (9a)

SM = diag
{
poI, peI, pgI

}
� 0 (9b)

R = diag
{
prI, pwI, psI, pqI, pqI, ppI

}
� 0 (9c)

where I represents identity matrices of appropriate dimen-
sions, p♦ > 0 are weighting coefficients for states and inputs,
and diag{·} denotes a block-diagonal matrix. Note that the
terminal cost matrix SM penalizes deviations from economical
references for storage SOC and conventional generation states
more severely than does the weighting matrix Q. This is
because MPC does not care how these reference signals are
tracked, only that they are being considered at the end of the
horizon.

III. PLANT (ACTUAL SYSTEM) REPRESENTATION

Over the timescale of interest, the (nonlinear) AC power
flow provides an accurate representation of the actual physical
power system (i.e. the plant). Therefore, the control actions
recommended by MPC, which utilizes the strictly linear model
described in Section II, are applied to an accurate AC model of
the system at each time-step. In addition, the losses given by
the AC power flow are utilized in the nonlinear IEEE standard
conductor temperature model to accurately capture the effects
of MPC recommendations on the actual system.

Excessive line temperature (resulting in unacceptable sag)
may culminate in line-tripping. The higher the temperature, the
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Fig. 2. Probabilistic line outage model. Tripping times above 100 minutes
have been truncated for graphical purposes.

more likely line tripping becomes. This inverse relationship
between temperature and mean time-to-trip (i.e. mean time-
to-failure) is captured in the representation of the actual
system by use of the exponential time-to-failure probability
density, parameterized by the temperature overload. Thus,
given ∆Tij [k] > 0, the probability of line (i, j) tripping
during time-step k (over interval Ts) is defined by the resulting
cumulative distribution function:

P
(
line (i, j) trips at k

)
= 1− e−λ(∆Tij [k])Ts , (10)

where rate parameter λ(∆Tij [k]) > 0 is dependent on the
temperature overload. That dependence has been established
using the short-term (15-minute) emergency (STE) line rating.
That is, given an STE rating (e.g. 1.25 × nominal rating),
the method presented in Appendix A is deployed to compute
an associated STE temperature, from which an appropriate
λ(∆Tij [k]) is chosen. It has been found experimentally that
λ(∆Tij [k]) = (∆Tij [k]/15)6 gives a realistic line-tripping
characteristic, as shown in Fig. 2.

Furthermore, considering over-current protection on trans-
mission lines (for large overloads), an additional condition is
added to the probabilistic line-tripping model:

P

(
line (i, j) trips at k

∣∣∣∣∣
|facij [k]|
f lim
ij

≥ Ω

)
= 1 (11)

where facij is the line flow of the actual system (given by the
AC power flow), and Ω is an upper bound on the allowable
relative instantaneous overload. For example, if Ω = 3, then
a line flow of 300% of the nominal thermal limit f lim

ij would
immediately trip line (i, j).

IV. CASE STUDY: IEEE RTS-96

A. Overview

The hierarchical control scheme developed in Part I [1]
and summarized in this paper was applied to an augmented
version of the IEEE RTS-96 power system test-case, which
is described in full details in [2]. For completeness, a brief
overview of this test-case is included here.

The RTS-96 system consists of 138 kV and 230 kV sub-
systems. The network is organized into three interconnected
physical regions, as illustrated in Fig. 3. It consists of 73 nodes

TABLE I
NETWORK MODEL PARAMETERS USED IN CASE-STUDY.

Model Parameter Value Units

Sampling Time, Ts 60 s
3-phase power base, Sb 100 MVA
Energy storage base, Eb 100 MWh
Monetary unit base, Mb 10,000 $
Storage SOC limits, Ei 2 pu
Storage power limits, fQc, fQd 0.25 pu
Nominal wind power, fnom

GW
Fig. 4 pu

Nominal loads, fnom
D Week 1, day 1 in [2] pu

Overcurrent protection limit, Ω 3 -

Ambient Temperature, Tamb 35 ◦C
Wind speed, angle, vw∠θw 0.61,π/2 m/s, rads

Line-to-line base voltage, Vb 138 230 kV
Thermal rating, f lim

ij 1.05 3.00 pu
Conductor diameter, Dij 15.5 23.5 mm
Heat capacity, mCp,ij 383 916 J/m-◦C
Ampacity, I lim

ij 439 753 A
Resistance per unit length, Rij [103,118] [55,66] µΩ/m
Temperature limit, T lim

ij [62,64] [67,71] ◦C
Temperature coefficient, τij 0.796 0.888 -
Loss coefficient, ρij 0.157 0.066 ◦C-m/W
Ambient coefficient, γij 0.193 0.104 -
Solar heat gain rate, qs,ij 14.4 21.9 W/m

and 120 branches, of which 15 branches are IPTs, one is
a PST, and the remainder are overhead transmission lines
(138 and 230 kV). Buses are denoted with three digits: the
first digit indicates the area while the latter two are intra-area
designators. Bus types are indicated by color: generator (blue),
load (yellow), and zero-injection (white). Edges represent
transmission lines (black) and transformers (aqua/gray). The
disturbance is displayed with stars: lines 113-215 and 123-
217 were tripped. Note that the three underground cables in
the original RTS-96 system have been replaced by equivalent
overhead lines to enable application of a single thermodynamic
model. Transformer temperature overloading is not considered
in this paper, as their thermodynamic models differ from those
presented here.

The aim of this case study is to explore the contingency
management achievable with the proposed hierarchical con-
trol scheme. Unfortunately, the RTS-96 system is designed
as a highly reliable system, with unusually high thermal
ratings for lines. To bring the system closer to its limits
and engender worthwhile scenarios, thermal ratings f lim

ij were
reduced by 40%, yielding line temperature limits in the range
of 60-70◦C. Furthermore, ramp-rates have been reduced by
82.5% to highlight Level 2 performance and enhance the role
of storage in congestion management. For the temperature
dynamics, the RTS-96 system data only specifies per-unit
resistance, reactance and line length, but not the conductor
types (i.e. diameter, heat capacity). Therefore, this case-study
employed ACSR conductors, 18/1 Waxwing (138 kV) and
26/7 Dove (230 kV), which represent reasonable choices given
the reduced line ratings. The parameter values for Dove and
Waxwing conductors, along with other system parameters, are
provided in Table I. Values in brackets represent ranges.
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Fig. 3. Modified IEEE RTS-96 network with storage (E) and wind (W) included. Note that storage and wind resources are associated with buses, as indicated
in the figure, but the respective edges do not represent transmission lines.

B. Base-case

To benchmark the performance of the proposed MPC
scheme, a base-case controller was developed. This base-case
was meant to provide an indication of human operator behavior
during a system emergency (disturbance). Clearly, modeling
a human operator is non-trivial as standard emergency proce-
dures vary broadly across utilities. Furthermore, the experience
of a human operator is not amenable to an implementable (and
repeatable) algorithmic framework. However, the formulation
presented here captures the underlying goals of the operator:

1) alleviate thermal overloads by rescheduling or curtail-
ing generation, while considering ramp-rate limits and
incremental generator cost curves,

2) employ sensitivity-based methods, such as power trans-
mission distribution factors (PTDFs), generation shift
factors (GSFs), and transmission loading relief (TLR)
procedures to make quick control decisions to relieve
thermal overloads [6],

3) shed load as an absolute last resort, and
4) ignore energy storage.

Mapping the above operator response into an MPC-like
framework serves as the base-case, and can be implemented
as follows:

• Replace ∆T̂ij [k] with a relative overload metric:

ôij [k] = 10 max{0, |facij [k]|/f lim
ij − 1} (12)

That is, if a line is 25% overloaded, ôij = 2.5.
• Consider PTDF, GSF, and TLR implicitly as a 1-step

MPC process akin to Level 2 (i.e. set M = 1) and include
overloads ôij [0|k], ôij [1|k] in the objective and terminal
costs.

• Heavily penalize load shedding and adjustment of energy
storage levels.

• Remove terminal constraints on overloads, Tx.
• Set weighting matrices Rbase = R, Qbase = SM ,
SM,base = SM .
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Fig. 4. Hourly wind power profiles for 8 wind turbines in the RTS-96 network
over a 24-hour horizon.

TABLE II
OBJECTIVE FUNCTION COEFFICIENTS FOR Q, R, SM MATRICES FOR MPC

AND BASE-CASE SYSTEMS.

Model po pe pg pr pw ps pq pp

Level 2 1 200 200 [0.05,1] 0.15 250 0.2 0.01
Base Case 1 0.01 0.01 [0.01,0.1] 0.5 500 1000 0.1

C. Optimization implementation

The objective function weighting factors utilized in MPC
Level 2 and the base-case are presented in Table II. Note
that for the base-case, the overload coefficient po weights
the thermal power overload, ôij , and not temperature. Also,
the storage control coefficient for the base-case, pq = 1000,
reflects the fact that this resource is not available for decision-
making. Generator control actions, ∆fG, are weighted using
cost curve parameters1, with pr = max{0.05, an/maxn{an}}
for Level 2, and pr = 0.1 max{0.1, an/maxn{an}} for the
base-case. The cost-curve parameters (an, bn) utilized in this
case-study are from [7, Table 1], and are repeated in Table III
for completeness. Note that the generator IDs in this table
specify their upper output limit, with an ID of Uxx implying

1Recall that the generator cost curves used in Level 1 are of the form:
Cost(fGn[k]) = an(fGn[k])2 + bnfGn[k].



TABLE III
GENERATOR RAMP-RATE AND COST PARAMETERS.

Generator # of Ramp rate Cost-curve parameters
ID units (pu/hr) an ($/h-pu2) bn ($/h-pu)

U12 15 0.105 2.87 1.57
U20 12 0.315 2.1 1.66
U50 18 0.105 0.01 0.11
U76 12 0.210 0.07 0.19

U100 9 0.735 0.22 1.36
U155 12 0.315 0.01 0.182
U197 9 0.315 0.09 1.39
U350 3 0.420 0.01 0.179
U400 6 2.10 0 0.062

Line 

outage 

model OutputLevel 1 
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MPC 
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Fig. 5. Interaction of Level 2 MPC with the grid.

fGn[k] ≤ fGn = xx MW.

Remark IV.1. (Extension to Unit Commitment (UC).) Since
no minimum generator outputs are specified in [2], lower limits
of fGn = 0 have been assumed. Consequently, there is no role
for UC in this paper. In a more complete setting, UC could
be introduced as a Level 0 process which establishes the set
of available generators.

An overview of Level 2 operation is displayed in Fig. 5.
Since the early stages of a cascade evolve relatively slowly,
significant computation can be performed during that pe-
riod. Therefore, immediately following a disturbance, Level 1
computes new optimal set-points and passes that updated
information to Level 2. This interaction is discussed in detail
in Part I.

Note that base-case interactions with the grid have the same
form as shown in Fig. 5, except with the Level 2 MPC
controller replaced by the MPC-like framework described in
Section IV-B.

D. Simulation results

The case-study was simulated using Matlab to implement
Level 1, Level 2 and the base-case. Initially the system was
operating economically according to Level 1. However, at
hour 18 (low wind, high demand), a double-line outage tripped
lines 113-215 and 123-217. Transient (short-term) stability
was assumed. Performance and behavior of the Level 2 MPC
(with horizon lengths of M = 5, 10, 20, 30, and 45) and the
base-case are discussed below.

The double-line outage caused the remaining inter-area
transmission line 107-203 to become severely overloaded
(greater than 1.25f lim

ij ). The Level 2 MPC scheme alleviated
the temperature overloads and brought the system safely to the
updated economic set-points provided by Level 1. In contrast,
the base-case underwent a cascading failure, with line tripping
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Fig. 6. Base-case operation: voltages undergo cascading failure, resulting in
voltage collapse.

bringing the system to a voltage collapse after 29 minutes, as
exemplified by non-convergence of the AC power flow. The
base-case cascading failure evolved as follows:
• k = 3: line 107-203 tripped at ∆Tij [3] = 13.5 ◦C.
• k = 16: line 114-116 tripped at 8.14 ◦C.
• k = 26: line 113-123 tripped at 11.4 ◦C.
• k = 28: lines 103-109 and 112-123 tripped at 16.8 ◦C

and 20.7 ◦C respectively.
• k = 29: voltage collapse “Blackout”.

This process is illustrated in Fig. 6, where it can be seen that
the minimum voltage magnitude fell below 0.87 pu.

The maximum line temperatures for the base-case and MPC
are illustrated in Fig. 7a. Note that MPC is able to avoid
excessively high temperatures, and in fact drives all line
temperatures below their respective limits by around minute
k ≈ 75. Later, a few lines hover slightly above their temper-
ature limits. However, this is due to model inaccuracy arising
from MPC’s use of an approximate linear temperature model
and the DC power flow. In particular, over that latter phase, the
largest temperature deviations above limits are associated with
138 kV lines that exhibit X/R = 3.83 < 4. This relatively low
X/R ratio engenders errors in the DC approximation of the
nonlinear AC network equations. The DC model incorrectly
informs the controller that losses are sufficiently low, implying
that negligible control action is required for the temperature
to drop below its limit in the next time-step. But the actual
power system, described by the AC power flow, has higher
than predicted losses, and the temperature stays slightly above
the limit. The controller repeats these incorrect estimates of
losses until control action is required for other reasons, or load
patterns autonomously reduce line loadings below limits.

The ability of MPC to eliminate line overloads can be
observed in Fig. 7b, which shows the maximum of the normal-
ized line loadings, maxij{(apparent power)ij/f limij }× 100%.
For k > 50, all line loadings are less than 5% above their
thermal ratings, which is within expected error levels [8], [9].
These results suggest that despite the presence of approximate
models, the MPC scheme is able to reject the disturbance
through feedback and return the system to an acceptable state.
Further discussion of the impact of model approximations is
provided in Section IV-E.

As discussed in Section II, the control actions available to
Level 2 MPC for reducing line temperatures include: load



0 50 100 150 200 250
0

5

10

15

m
a
x i

j
{∆

T̂
ij
[k

]}
(C

)

Time after disturbance, k (min)

Base Case
MPC (M = 5)

MPC (M = 10)

MPC (M = 20)

MPC (M = 30)

MPC (M = 45)

(a) Maximum line temperature responses.

0 50 100 150 200 250

100

110

120

130

140

150

160

170

M
a
x

a
p
p
a
re

n
t

p
ow

er
:

m
a
x i

j

{ √
f
2 ij

+
q
2 ij

}
(%

)

Time after disturbance, k (min)

Base Case
MPC (M = 5)
MPC (M = 10)
MPC (M = 20)
MPC (M = 30)
MPC (M = 45)
Level 1 Ref

(b) Relative line flow response. “Level 1 Ref” implies line limit.

0 50 100 150 200 250
0

1

2

3

4

5

R
el

a
ti

v
e

lo
a
d

re
d
u
ct

io
n

(%
)

Time after disturbance, k (min)

Base Case
MPC (M = 5)

MPC (M = 10)

MPC (M = 20)

MPC (M = 30)

MPC (M = 45)

(c) Aggregate load control.
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(d) Aggregate energy storage charging and discharging.
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Fig. 7. Case-study simulation results for MPC and the base-case.

reduction, wind curtailment, and energy storage injections.
Figs. 7c and 7d illustrate the main controls employed to al-
leviate excessive temperatures for this case-study. Contrasting
MPC response with the base-case, it is clear that load and
energy storage controls were crucial immediately following
the disturbance. By initially reducing the aggregate load by
less than 5% (Fig. 7c) and curtailing energy storage discharge
(Fig. 7d), line temperatures were brought to within their limits.
For k ∈ [75, 240], storage discharge exceeded reference levels
in order to bring SOC back to economical reference levels.
Wind curtailment was employed as cheap control over the
longer term to bring and keep line temperatures below their
limits.

Fig. 7e illustrates that the objective function cost (1a), cal-
culated for each MPC run, decreased monotonically over time.
This does not prove stability, but highlights the Lyapunov-like

properties of the objective function [10] as MPC drives the
system back to the Level 1 (economically optimal) equilibrium
point.

Level 2 MPC performs a balancing act between ensuring
safety criteria and restoring economically optimal set-points.
This balance is highlighted in Fig. 7f, where the cost of
conventional generation is shown for both MPC and the base-
case. To ensure acceptable line temperatures, MPC initially
sacrifices economic optimality by deviating from the Level 1
set-points. For k > 120, the system returns to economically
optimal levels, with inaccuracy in the MPC model causing
some minor discrepancies. Interestingly, over the first 15 min-
utes or so, the generation cost achieved by MPC is actually less
than the optimal cost given by Level 1. Two factors contribute
to this apparent anomaly. Firstly, Fig. 7f shows the post-
disturbance Level 1 schedule, whereas the generators were



TABLE IV
AVERAGE QP SOLUTION TIME PER TIME-STEP k, FOR PREDICTION

HORIZON M .

QP with horizon M 5 10 20 30 45

Average Time (sec) 0.8 2.1 5.0 9.0 16

initially operating according to less-costly pre-disturbance set-
points. Secondly, the updated Level 1 reference schedule
enforces hard line-flow constraints, while MPC allows line
flows to temporarily exceed limits.

It is worth pointing out the effect on performance of varying
the prediction and control horizon M . Assuming the QP
problem remains feasible, employing the terminal constraint
Tx requires that MPC restore line temperatures to within their
limits by the end of the horizon. Therefore, as the prediction
horizon decreases, the MPC scheme utilizes more aggressive
control actions to alleviate overloads. This can be clearly seen
in the load-control trajectories of Fig. 7c.

Furthermore, with a shorter horizon M and the terminal
constraint requiring greater use of expensive load and storage
control, the MPC enjoys smaller departures in generation from
the Level 1 economic reference. Such an outcome is displayed
in the generation costs of Fig. 7f. In addition, it could be
argued that for M > 20, any performance improvement gained
by increasing M is negligible compared with the increased
computational cost of solving the open-loop QP problem.
Table IV gives average QP solution times for different values
of M .

Finally, Fig. 8 illustrates the locally tight nature of the
convex relaxation that underpins the controller model’s line
loss calculation. The figure presents the adjacency, absolute-
value and temperature conditions for MPC predictions over
the horizon l ∈M, with M = 30, and with initial conditions
corresponding to time-step k = 1. Notice how a predicted
temperature overload at a time l+ 1 yields a tight solution for
all previous time-steps κ ≤ l. For example, line 52 (207-208)
is predicted to have a temperature overload for l ∈ [19, 23],
so adjacency and absolute value relaxations are tight for all
l < 23. Note that when the temperature of line (i, j) is
predicted to remain at or below 0◦C for all subsequent time-
steps (l ≥ 23), fictitious losses can occur over those time-steps
but have no effect on the objective function. Since fictitious
losses are decoupled from the network model, these losses
have no effect on network power flows. Thus, fictitious line
losses cannot affect control actions when the line temperature
is no longer predicted to violate its limit.

E. Model approximations

Fig. 9 provides insights into the accuracy of the DC power
flow model used by MPC. The figure allows a comparison
between the line loadings predicted by the lossy DC line model
and the apparent-power loadings given by the accurate AC
model. The DC flow model is generally within ±10% of the
true value, though accuracy is reduced when reactive power
makes a relatively significant contribution to the line flow. This
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situation occurs mainly when active power flows are quite low
and lines are well below their ratings. These lines do not,
therefore, impact the actions of the DC-based control scheme.

It is also interesting to consider the impact of the constant-
loss approximation in (1j). This can be achieved by defining
the normalized error,

Errorij [l|k] =
|f lossij [l|k]− f loss,estij,k |

f limij
, ∀ l = 0, 1, . . . ,M−1,

(13)
for every line (i, j) and each time-step k. Fig. 10 shows
maxij{Errorij [l|k]} over the prediction horizon M = 20,
with each curve corresponding to a particular value of time-
step k. The shades indicate the progression of time, from
black representing k = 1 through to white for the final
time k = 250. It should be mentioned that only one line
(107-203) exhibits loss errors greater than 2.5%. This line
becomes heavily overloaded immediately upon the initial two-
line outage. With this large overload (and corresponding high
losses), MPC actively seeks to reduce the line’s losses, which
causes f loss,estij,k to overestimate losses by about 5%. However,
for k ≥ 3, Errorij [l|k] < 2.5% for all lines (i, j), all prediction
times l|k, and all time-steps k. Furthermore, it was found that
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Errorij [l|k] < 0.2%, (14)

for all l|k, and all k. This implies that the error introduced by
the constant-loss approximation is negligible for most lines.

V. CONCLUSIONS AND FUTURE WORK

Part I presented a novel model-predictive contingency man-
agement scheme that balances economic and security objec-
tives via a bilevel hierarchical control structure. This scheme
employs a receding-horizon model predictive control (MPC)
strategy that guides the post-disturbance system to a secure,
economic state. In determining optimal control decisions,
MPC exploits the thermal overload capability of transmission
lines. The characteristics of this MPC strategy have been
explored in Part II through a case study based on the IEEE
RTS-96 test system. This study showed that MPC made very
effective use of generation rescheduling, demand response,
energy storage adjustment and wind curtailment to eliminate
line overloads and restore economic operation. In contrast, a
base-case that emulated current operational practices exhibited
cascading line outages, and ultimately underwent voltage
collapse. The utility of the proposed MPC-based control
scheme is illustrated clearly via the case-study. Further work
is required, though, to adapt the scheme for larger networks,
and to incorporate a more detailed network model [11].

The proposed bilevel control structure separates the eco-
nomic set-point evaluation of Level 1 from the MPC tracking
control of Level 2. Whilst this arrangement is consistent with
standard MPC practice [12], the implied time-scale decoupling
between levels can limit performance. Economic MPC [13]
may offer a framework for systematically evaluating alterna-
tive structures. Furthermore, MPC control decisions are quite
dependent upon the tuning of the Q, R and SM weighting
matrices. For example, different load-control strategies could
be evaluated by adjusting the respective weighting factors.
More generally, an automated process for balancing the con-
trol objectives is desirable, with [14] offering an appealing
approach.

The bilevel control scheme can be used in an off-line mode
to evaluate economic and resiliency benefits of energy storage
and demand response. This approach offers valuable guidance
in assessing siting and sizing options for such resources,
particularly as uncertainty in renewable generation can be
taken into account.
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APPENDIX A
CALCULATING CURRENT AND TEMPERATURE LIMITS

Given the steady-state (continuous) thermal rating of a
three-phase transmission line, f lim [VA], and the base voltage,
Vb [V], line ampacity, I lim [A], is given by:

I lim =
f lim
√

3Vb
. (15)

Furthermore, given the per-unit-length series resistance R
and other physical conductor parameters, and representative
estimates of exogenous parameters (i.e. solar, wind, and air),
the per-unit-length heat loss and gain rates at steady-state give
the heat balance equation:

qs +R(I lim)2 = ηc(T − Tamb)

+ ηr
(
(T + 273)4 − (Tamb + 273)4

)
. (16)

This provides the temperature limit of the conductor, which
is denoted T lim. No closed-form solution exists for (16) as it
is quartic with respect to T , so numerical methods must be
utilized.
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