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Abstract— Increased penetration of renewables
will require significant regulating reserves, so there
is a need to re-think the traditional operating
paradigm: supply follows demand. Recent work has
expanded the role of flexible and controllable energy
resources, such as energy storage and dispatchable
demand, to regulate power imbalances and stabilize
grid frequency. However, as shown in this paper, the
large-scale deployment of dispatchable (i.e., control-
lable) loads needs to carefully consider the existing
regulation schemes in power systems, i.e., generator
droop control. That is, this paper illustrates with
a standard linearized model, the complex nature
of system-wide frequency stability from time-delays
in actuation of dispatchable loads and the effect of
different network topologies. Interestingly, we show
that delay-induced instability can be stabilized by
injecting additional delay into load controller.

Index Terms— dynamics, load control, swing equa-
tion, frequency droop, time delay.

I. INTRODUCTION

The quality of delivered electrical power and
safety of electrical facilities are related to the
nominal system frequency (e.g., 60 Hz in the U.S.).
Small frequency deviations from nominal is gener-
ally caused by active power imbalances between
generation and demand and is regulated through
local (proportional) adjustments in the generator’s
governor (i.e., primary frequency control or PFC).
PFC events generally take less than 30 seconds to
stabilize the system frequency [1]. However, with
energy policy rapidly increasing the penetration of
intermittent and low-inertia renewable generation,
e.g., PV solar and wind farms, frequency devia-
tions from nominal power imbalances are increas-
ing [2], [3], which raises concerns over the ability
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of PFC to operate well in a future power system
with significant penetrations of renewable energy.
As such, partial automated participation of flexible
loads (e.g., energy storage and demand) in response
to system frequency represents an alternative.

Previously, load “control” (i.e., load shedding)
was employed when severe imbalances threatened
system integrity. More recently, active consumer-
side participation has led to some revision on the
former demand side control logic [4]. The concept
of active consumer load coordination (i.e., aggrega-
tion) of air conditioners, radiators, plug-in electrical
vehicles and other home appliances to balance the
supply and demand has been discussed widely as
means to reduce needed power reserves [5], [6], [7].
In fact, grid-scale distributed load frequency con-
trol algorithms have been proposed for stabilizing
system frequency [8], [9]. However, due to pha-
sor measurement units’ (PMUs’) communication
channels that transmit data to the actuators or load
coordinators (i.e., an aggregator), actuators or coor-
dinators processing the PMU data, and the physical
characteristics of the actuators and aggregators,
significant constant or variable time-delays can be
observed in power systems1[10]. Prior work has
focused on designing generator control loops (i.e.,
PFC and AGC) that are robust against uncertain
time-delays [11], [12], [13], but little (if any) work
has considered the effect of time-delays on load
coordination algorithms and system-wide effects.
Therefore, to maximize the potential of fully auto-
mated load aggregation (at the MW-scale), the role

1Note: the delays considered herein are assumed to include
the time for actuators or coordinators to compute desired
control signals from PMU data and for the underlying loads to
physically provide expected change in dispatch. That is, we do
not only consider the small delays in load control associated
with PMU communication delays.



of time-delayed load dispatch in power networks
and its interaction with PFC schemes must be fully
investigated.

To this effect, we present herein preliminary
results on the system-wide effects of time-delays
in flexible frequency-dependent loads. Specifically,
we investigate through simulation-based analysis
how different transmission network structures, dis-
patchable scenarios, and delays affect performance
and stability of load coordination schemes.

The paper is organized as follows. Section II
details the dynamical system model. In Section III,
the simulated test systems and performance metrics
are defined. Section IV discusses simulation results
and conclusions are provided on Section V.

II. DYNAMIC SYSTEM MODEL

Consider a graph G = (V, E) with a set of
buses V and lines E . Then, the balanced N -bus
transmission system with E lines will have buses
divided into two sets: generator buses and load
buses. A bus with a generator is called a generator
bus, while all other buses are called load buses
(even if the load is zero).

The voltage phase angle of bus i with respect
to the rotating framework at nominal frequency is
denoted ✓i and let the angular frequency deviation
of bus i from nominal frequency wnom

i be denoted
�!i := !i � !nom

i . Then, their relationship is:

˙✓i(t) = �!i(t) 8i 2 V (1)

From the swing equation, we relate changes in
frequency to instantaneous power imbalances:

Mi�!̇i(t) = �Pm
i (t)��P e

i (t) (2)
�Di�!i(t)��di(t)

�P e
i (t) =

X

j2⌦N
i

�Pij(t) (3)

�Pij(t) = bij (�✓i(t)��✓j(t)) (4)

where �Pm
i ,�P e

i ,�di,�Pij are the changes
in injected generator mechanical power, generator
electrical power output to neighboring buses of
i (i.e., ⌦

N
i ), controllable net-load, and line flow

between buses i and j from nominal steady-state.
Mi is the generator inertia constant and Di is
the damping coefficient accounting for mechani-
cal rotational losses (of generators and motors at

bus i). Also, the generator’s droop behavior at bus
i is described by the dynamics of the turbine and
governor:

�

˙Pm
i (t) =

1

⌧Ti

(�P v
i (t)��Pm

i (t)) (5)

�

˙P v
i (t) =

1

⌧Gi

(�Pref,i ��P v
i (t)�

1

ri
�!i) (6)

where �P v
i is the change in turbine output power

from nominal, �Pref,i is the change in reference
power of generator i, and ⌧Ti

, ⌧Gi
, ri are time-

constants of turbine, governor, and speed-regulator,
respectively.

In the case when there is no generator at bus i
(i.e., i is a load bus), Mi = 0 and we have the
following algebraic equation describing net-flow
into bus i:

Di�!i(t) = ��P e
i (t)��di(t), (7)

which through differentiation can be re-written as
a dynamic state:

Di�!̇i(t) = �
X

j2⌦N
i

�

˙Pij(t)��

˙di(t). (8)

Finally, (4) is transformed into a dynamic equa-
tion through differentiation:

�

˙Pij(t) = bij (�!i(t)��!j(t)) . (9)

An overview of the system model for lines and
buses is provided in Table I. The controllable inputs
are �di,� ˙di and represent the control of flexible
energy resources such as demand and storage. That
is, in addition to the governor response of the
generators, the controllable loads in the system re-
spond to the imbalances through sensed frequency
deviations and is implemented with proportional
(Pi > 0) control as follows:

�di(t) = Pi�!i(t� td) 8i 2 V, (10)

where td � 0 is the time-delay in load response.
Note that the dynamic system model described
by Eqs.(1)-(10) represents a closed-loop system
with generator droop and (delayed) load control
reacting to changes in sensed local frequencies.

The continuous-time dynamic model is imple-
mented in MATLAB in discrete-time via Modified
Euler with sampling time h = 0.001s, which has
(global) accuracy on the order of O(h2) [14].



TABLE I: Power system model overview

Variable Type Variables
Dynamic states �!i, ✓i,�Pm

i ,�P v
i

Control inputs �di,� ˙di
Constant Parameters Mi, Di, bij , ⌧Ti

, ⌧Gi
, ri

Remark II.1 Since the delay is applied to the
(measured) state in the controllable load’s closed-
loop description in (10), the time delay is in-
ternal to the closed-loop system, which is more
challenging to analyze than the case of external
(input/output) delays in the open loop. For example,
an internally delayed system with input disturbance
v(t) can be described by ẋ = Ax+Adx(t� td) +
Wv(t) and y = Cx(t). Then, the transfer matrix
is given by:

H(s) =
Y (s)

V (s)
= C

�
sI �A�Ade

�tds
��1

W.

The poles of transfer function [H(s)]ij determine
stability of output i with respect to disturbance j.

III. SIMULATION SETUP

In this section, we describe the different N -bus
networks and the controllable load delay scenarios
to be investigated.

A. Test networks

We consider three small 4-bus networks (see
Fig. 1) with different interconnections (e.g., radial
and meshed) and two standard IEEE test cases: 9-
bus and 30-bus systems. Network parameters for
the 4-bus system are based on [15] and provided
in Table II. For simplicity, a generator and load
is connected to each bus. Note that controllable
loads provide regulation at the scale of the damping
coefficients, which is an order of magnitude smaller
than generator inertias.
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Fig. 1: Three different 4-bus networks.

TABLE II: Parameters for 4-bus system

Parameter Value Unit

M1,M2,M3,M4 4, 40, 35, 10 pu�s2

rads
D1, D2, D3, D4 3.7, 1, 2, 2.7 pu�s

rads
⌧T1

, ⌧T2
, ⌧T3

, ⌧T4
5,10,20,10 s

⌧G1
, ⌧G2

, ⌧G3
, ⌧G4

4,25,15,10 s

r1, r2, r3, r4 10,15,10,12 rads
pu�s

b12,13,14,23,24,34 2.5, 2, 2, 1.5, 2.5, 2 pu

Pi=4,Pi 6=4 3, 0 pu�s
rads

B. Determining baseline controller gain

Before investigating the effect of time-delays,
we need to design the nominal load controller’s
gain, Pi. The design of stabilizing P-controllers
is achieved via closed-loop eigenvalue analysis of
the multi-input/multi-output dynamical system and
proportional gains are provided in Table II. For
example, the sets of closed-loop eigenvalues of
the network 1(a) is illustrated in Fig. 2 for P4 2
[1, 100]. Clearly, for all P4, the poles are stable in
the left-hand plane.
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Fig. 2: Closed-loop poles for network 1a as a function
of P4. Red dot denotes P4 = 1 and blue dot represents
P4 = 100.

C. Time-delay

Since we are interested in the interaction be-
tween delays in load control and generator gov-
ernors, we limit delays to td  30s. Delay td is
then applied to the frequency-responsive load at
bus i = 4 for the 4-bus system, buses i = 8, 9 for
the 9-bus system, while five loads are automatically
controlled (but subjected to identical delays) in the
30-bus system: buses i = 26� 30.



IV. SIMULATION RESULTS & ANALYSIS

This section illustrates the non-periodic behavior
of system stability for increasing delays and the
effects of network structure on this stability. In-
terestingly, we show that delay-induced instability
can be re-stabilized by injecting additional delay
into load controller. The networks described in the
previous section are initially in nominal steady-
state until a +0.1 pu step-disturbance in the load
at bus 1 occurs at t = 10 seconds.

For each applied delay td, the simulations cap-
ture performance (and stability conditions) through
the settling time Ts,i of the nodal frequency at bus
i (�!i) and is defined as the time after which the
frequency enters and remains within specified dead-
band, ✏:

Ts,i = min

t
{|�!i(t

⇤
)| < ✏, 8t⇤ � t}.

Due to the finite nature of computing, we limit
simulations to consider Ts,i  1000 seconds. That
is, the closed-loop response is unstable if Ts,i =

1000s for any i (even if Ts,i does not exist) and
stable if Ts,i < 1000s.

A. The small 4-bus systems

The 4-bus systems in Fig. 1 are simulated ac-
cording to the setup description. Note that for each
td, we get data pair (td, Ts,i). Figure 3a illustrates
all pairs (td, Ts,i) for network 1a.

Clearly, when td < 2s, the system is stable
and the system frequency settles in less than 15
s. However, by increasing td at bus 4, the closed-
loop system becomes unstable (e.g., see Fig. 4a
for td = 5s) but then additional delay actually
recovers stability and further delay again beget in-
stability, etc. These stable-unstable-stable patterns
repeat periodically as the load controller delay
increases (e.g., see Fig. 4b for td = 17 > 5s).
To validate the numerical simulations, a 10th-order
Padé approximation is applied to the internal delay
etds and the resulting poles are computed from
the closed-loop transfer function �!2(s)/d1(s) for
each td  25. The real part of the (complex
conjugate) pole-pair traces is illustrated in Fig. 5
and confirms the stable/unstable/stable behaviors
observed in numerical simulations. For each time
delay td, the poles of the transfer function are
given by a vertical slice over all traces. Note
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(a) Network 1a: effects of td at bus 4 on stability. System
is initially stable (td < 2s). At Point A (td,A) the system
is unstable, yet stable again at Point B, where: td,B =

17s > td,A = 5s.
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(b) Network 1b: effects of td at bus 4 on stability.
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(c) Network 1c: effects of td at bus 4 on stability.
Fig. 3: Closed-loop system behaviors of the 4-bus sys-
tem under different network configurations.

that generally Ts,i increases with td. Ts,4 is most
sensitive to td due to load controller on bus 4.

Figures 3b and 3c illustrate all pairs (td, Ts,i)
for networks 1b and 1c. As can be seen, the per-
formance of the 4-bus system under delays depends
on the interconnection of buses. For example, pairs
(10, Ts,i) illustrate this the across 4-bus networks.
Thus, the 4-bus system, while simple to describe,
shows the complex manner in which closed-loop
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(a) Closed-loop response: Point A in Fig. 3a: td = 5s.
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(b) Closed-loop response: Point B in Fig. 3a: td = 17s.
Fig. 4: Closed-loop and frequency responses for point
A in Fig. 3a: td = 5s.

stability and instability depends on the nature of de-
lay in actuation of frequency sensitive loads. In the
next section, we investigate larger systems, which
are shown to exhibit the same type of behavior.

B. The larger 9-bus and 30-bus systems

In this section, the analysis is extended to the 9-
bus and 30-bus IEEE standard test cases and con-
siders more than one controllable load to contrast
with the results of the simple 4-bus networks. The
settling time of the system is now defined as the
maximum settling time across the N buses:

Ts := max

i
{Ts,i}

The IEEE 9-bus test case is simulated with load
controllers at bus 8 and bus 9:

�di(t) = Pi�!i(t� td) 8i 2 {8, 9}
Figure 6 illustrates all pairs of (td, Ts) for IEEE

9-bus test case. For Ts < 1000s the system is stable
while the system is unstable when Ts = 1000s.
The stable-unstable behaviors illustrated in the 4-
bus system occur also in the 9-bus case. That is,
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Fig. 5: The traces of the real parts of the closed-
loop (complex conjugate) pole-pairs for increasing time-
delays in Fig. 1a are approximated with a 10th order
Padé approximation. When any pole has positive real
part, the system is unstable (in red), which confirms the
numerical simulation results from Fig. 3a. Note that for
any given td, the dominant pole-pair is the trace with
the largest real part and is highlighted in blue.

with increasing delay on the load controller, the
settling time increases.

5 10 15 20 25
0

200

400

600

800

1000

Load Controller Delay(sec)

S
e

tt
lin

g
 T

im
e

 (
se

c)

Fig. 6: Effects of td for controllable loads at buses 8
and 9 on closed-loop stability of 9-bus test case.

For the 30-bus network, two load control scenar-
ios are investigated:

(i) a single controllable load at bus 30.
(ii) five controllable loads at buses {26� 30}.
Figure 7 shows all pairs of (td, Ts) for the IEEE

30-bus test system under scenarios (i) and (ii).
The stable-unstable behavior is also present in the
closed-loop but depends on how many loads are
controlled.

Remark IV.1 As the delay increases, the periods
of instability become longer, until a delay, t⇤d, is
reached beyond which the system remains unstable
for all td > t⇤d and the periods of stability ex-
hibit increasing settling times (i.e., the dominant
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Fig. 7: The 30-bus system experiences the same sta-
ble/unstable/stable patterns for different delayed load
control scenarios.

poles move closer to imaginary axis as shown
in Fig. 5. Furthermore, the stable/unstable/stable
patterns illustrated in this paper are expunged if
the generators do not utilize droop control. This
indicates that the underlying behaviors are a result
of generator and load controllers fighting against
each other. Ongoing work is focusing on analyti-
cally characterizing this conflict and developing an
improved load control scheme.

V. CONCLUSION AND FUTURE DIRECTION

This paper presents preliminary results on the
effects of delay in frequency-dependent load con-
trol schemes with droop-controlled generators and
investigates how delays affects settling time and
stability of the system frequency in transmission
networks. It is shown that the closed-loop perfor-
mance of the system is stable/unstable as delay
increases. Specifically, we show that the patterns
of stable/unstable/stable depends on the network
topology and parameters.

Future work will focus on developing analyt-
ical expressions for stability and controllability
of system frequency as a function of available
energy resources and salient network properties. To
accomplish this, we seek to leverage recent results
from linear delay differential equations where the
Lambert W function has been utilized in describing
stability of linear delay differential equations [16].
Designing controllers that are aware of actuator
saturation is also being pursued. The end-goal is to
develop load coordination schemes that are robust
against a broad class of uncertainties, including
unknown time-delays.
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