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Abstract—This paper further extends the class of energy
hubs that can be modeled with a concise system description
and in a computationally efficient optimization framework to
permit rapid analysis of multi-energy systems. The new hub
models are then embedded in the multi-energy system analy-
sis tool Hubert and solves the multi-period optimal dispatch
(MPOD) problem for a broad class of energy hub systems.
Specifically, this paper presents recent improvements developed
for Hubert, including the use of piece-wise linear modeling to
capture nonlinear converter efficiencies, limits on hub component
outputs to reflect physical limits of converters, and hub emission
limits. These developments enable appropriate modeling of multi-
energy micro-grids and cities and are illustrated with a multi-
energy model of The University of Vermont’s campus under
different capital planning scenarios and modeling assumptions.
Interestingly, the shortcomings of using a traditional constant-
efficiency hub converter model are illustrated with an energy
storage sizing application for multi-energy systems. It is shown
that the traditional hub models can significantly undersize energy
storage as compared to the more accurate piece-wise linear
energy hub formulation.

Index Terms— coupled energy infrastructures, energy hubs,
piece-wise linear modeling, multi-period optimal dispatch, opti-
mization, energy storage.

I. INTRODUCTION AND MOTIVATION

The emphasis on integrating renewables, coordination of
building loads, the marked change in generator fleet make-up,
and emissions have placed a renewed focus on the reliability
and optimality of energy supply systems [1]. Such systems
involve interconnections between the electrical networks and
various energy carriers, such as natural gas, water, heating,
and cooling. For example, electricity produced from thermal
generators involves large amounts of water and, in Australia,
a drought negatively affected the electric production capabili-
ties [2]. Similarly, extreme winter temperatures in Northeastern
US constrained natural gas pipeline networks and resulted in
lower-than-expected electrical operating reserves by the ISO
[3]. At the scale of cities and large manufacturing facilities
(e.g., “Virtual Power Plants”), the demand takes on a multi-
energy form: electricity, heating, and cooling and requires
multiple applications of lossy energy conversion and storage
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processes [4]. Such interconnected energy systems motivate
the concept of the energy hub [5]. Energy hub concepts
provide a modeling framework for extending beyond specific
energy carrier combinations and allowing analysis and opti-
mization of an arbitrary array of energy systems. Modeling
the coupled systems may reveal minimum cost solutions, and
also vulnerabilities, that are not apparent when each system is
treated separately.
Related Works: The formal combination of multi-energy
carriers with processes was performed under the nonlinear
modeling framework of the “energy hub” [6], [7]. The en-
ergy hub framework enabled innovative studies in: distributed
predictive control of energy hub systems, impact of hybrid-
electric transportation, integration of energy storage, and
multi-energy analysis of buildings [8]–[10]. An equivalent, but
linear formulation of energy hubs was developed to create
a modeling and optimization tool for general energy hub
systems: Hubert, which is detailed in [11] and utilized herein.
Hubert’s original constant efficiency and linear power-flow
assumptions permitted investigations into large-scale multi-
period optimal dispatch of energy hub networks and the
role of energy storage in mitigating multi-energy cascade
failures [12], [13].

More recently, the energy hub formulation has gained
traction in modeling of residential and industrial multi-energy
systems (e.g., heating, cooling, electric) [14]–[18]. However,
when the focus of analysis is on dispatching converters in
individual energy hubs rather than across large multi-carrier
networks, it is important to validate assumptions made on the
efficiency of energy processes. For example, in the case of ma-
terial inflow and outflow rates, lossless flows are natural [19].
However, heating and cooling processes in an industrial setting
(e.g., steam boilers and vapor-compression chillers) rarely
exhibit constant efficiency over any meaningful range of oper-
ation [20]. In fact, the relationship between energy input and
output is often not even convex (i.e., the efficiency increases
and decreases across the operating range). As a result, nominal
or averaged efficiency values can lead to poor representative
models for energy conversion processes as efficiency tends to
decrease rapidly at part-load. In addition, constant efficiency
results in hub dispatches that under-estimate required fuel
costs and resulting emissions.

Few energy hub formulations and studies consider the
nonlinearity of hub converters. However, one particularly



interesting application of a detailed building-level energy hub
can be found in [10], where individual conversion-processes
are available in one energy hub and modeled with highly
nonlinear part-load efficiency curves. The resulting model
represents a nonlinear programming formulation for the energy
hub that is solved to a local optimum and for which few
numerically robust solvers exist. In addition, no energy storage
is considered, whose temporal coupling of decision variables
further complicates the formulation. For a detailed discussion
on multi-energy systems (MES) and energy hubs, see [1].
Contributions: This paper extends the modeling of energy
hubs to a more general class with nonlinear conversion pro-
cesses and illustrates these techniques with the energy hub
optimization tool “Hubert” to enable modeling of macro-
grid MES (e.g., transmission) and micro-grid MES (e.g.,
campus or city). Specifically, the paper develops a mixed-
integer piecewise linear programming formulation of a general
energy hub system that captures nonlinear energy conversion
processes, energy storage, and hub emission limits. This
paper overcomes the numerical difficulties associated with the
nonlinear energy hub model in [10] by explicitly considering
a piece-wise linear approximation of part-load input-output
curves of energy hub converters to capture the variable part-
load efficiency. This PWL approximation is then implemented
within Hubert to permit rapid analysis of general MES. The
flexible Hubert modeling framework is illustrated with a case
study on university campus MES and permits rapid analysis
of different investment scenarios for energy hub components
(e.g., storage and combined heat-and-power facilities). Finally,
the proposed piece-wise linear energy hub formulation is
employed to highlight the shortcomings of the traditional
constant-efficiency energy hub models with an energy-storage
sizing problem for MES.

Section II details the development of the piece-wise linear
energy hub modeling framework. In Section III, we outline the
automatic modeling tool Hubert while Section IV employs Hu-
bert to model an actual university campus. Finally, Section V
concludes the paper with discussion and future directions.

II. MODELING THE ENERGY HUB

Most general energy hubs can be constructed from in-
terconnections of five simple building blocks: input energy
sources, input energy storage, energy converters, output energy
storage, and output energy sinks. These five building blocks
are illustrated in Figure 1. In describing the flow of energy
from hub input to hub output, there is a need to consider the
flow between each of the five blocks of the hub.

A. Linear Hub Model

Let h ∈H be a hub from the set of available hubs, where
h has input sources i ∈ {1, 2, . . . , Nin} and output sources
n ∈ {1, 2, . . . , Nout}.

The main mathematical symbols used in this paper to model
the energy hub h are classified below for quick reference.
Pi - hub energy flow input i.
Qin
i - hub input-side energy storage flow from input i.

Ein
i - hub input-side energy storage state-of-charge at input i.

Interface Interface

Interface Interface

P1

Eout
Nout

Ein
Nin

Ein
1 Eout

1

Qout
1

Qout
Nout

Qin
Nin

Qin
1

1 → 1

1 → Nout

Nin → 1

Nin → Nout

PNin
LNout

L1

...
...

...

Input Storage StorageConverter Output

...
...

...

...

P̂11

P̂1Nout

P̂1j

P̂Ninj

Figure 1: A complete energy hub model illustrating all possible
energy-conversion paths and the five major hub building
blocks: input sources, input storage, converters, output storage,
and output sinks.

ηin
c/d,i - hub storage interface charge (c) / discharge (d) efficien-

cies at input i.
P̂ij - hub dispatch energy flow from input i directed to

converter j.
Cijn - efficiency of converting energy input i into output type

n through converter j.
Qout
n - hub output-side energy storage flow to output n.

ηout
c/d,n - hub storage interface charge (c) / discharge (d) efficien-

cies at output n.
Eout
n - hub output-side energy storage SOC at output n.
Ln - hub energy flow output n.

zin/out
i/n - binary hub storage operational status: charging (= 1) or

discharging (= 0).

Within the proposed energy hub modeling framework, en-
ergy conversion (P̂ ) and energy storage utilization processes
(Q) can be directly controlled (i.e., other variables are de-
pendent). Under the assumption of constant conversion and
storage efficiencies, previous work has shown that the energy
hub with storage can be modeled with a mixed-integer linear
formulation by using dispatch flows P̂ij [12]. The binary
integers arise because storage processes may not charge and
discharge simultaneously. Summarizing the previous results,
the energy flow from input i to output n is illustrated in Fig. 2
and described by the following relations:

Pi = Qini +

Ki∑

j=1

P̂ij (1)

∑

i

∑

j∈D(i,n)

CijnP̂ij = Qoutn + Ln (2)

where P̂ij ≥ 0 and Ki ≤ Nout is the number of dispatch flows
from input i and D(i, n) is the set of dispatch flows from input
i that can be converted to output n, and |D(i, n)| ≤ Ki.

With regard to input and output energy storage devices, one
must consider multiple time periods since, for energy source p,
the state-of-charge (SOC) at time k + 1 (over a time interval
Ts), depends on the SOC and charge/discharge rate in the
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Figure 2: Energy hub model based on dispatch flows P̂ij .

previous time step k. To simplify notation, input and output
storage denotations, (.)in/out, are omitted here.

Ep[k + 1] = Ep[k] + Tsηc,pQc,p[k] +
Ts
ηd,p

Qd,p[k] (3)

Qp[k] = Qc,p[k] +Qd,p[k] (4)
(zp[k]− 1)Q

p
≤ Qd,p[k] ≤ 0 (5)

0 ≤ Qc,p[k] ≤ zp[k] Qp (6)

0 ≤ Ep[k] ≤ Ep (7)

where zp[k] ∈ {0, 1}, Qp and Q
p

are constant power ratings of
device p, and Ep is the energy rating of device p. Thus, when
zp[k] ≡ 0, storage device p is in discharging mode at time
k (as Qc,p[k] ≡ 0), while zp[k] ≡ 1 implies p is in charging
mode (with Qp,dis[k] ≡ 0) at time k.

1) Matrix notation for energy hub model: Consider discrete
time-steps k. The linear relations between inputs and outputs
can be written in a compact matrix form:

Ph[k] = Sinh Qin
h [k] + FhP̂h[k] (8)

Eh[k + 1] = Eh[k] + Nc,hQc,h[k] + Nd,hQd,h[k] (9)
Qh[k] = Qc,h[k] + Qd,h[k] (10)

Qc,h[k] ≤ zh[k]Qh (11)
(1− zh[k])Q

h
≤ Qd,h[k] (12)

Lh[k] = ChP̂h[k] + South Qout
h [k] (13)

for all h ∈ H where Sinh is the input storage coupling
matrix, Fh is the dispatch flow matrix, Ch is the converter
coupling matrix and South is the output storage coupling
matrix. Note that Nc,h = diag(ηc,1, . . . , ηc,N ) and Nd,h =
diag(1/ηd,1, . . . , 1/ηd,N ) are diagonal matrices of charging
and discharging efficiencies, respectively, and are independent
of the potentially complex internal hub structure (input-output
connections)

Furthermore, since each hub h is completely described by its
local matrices Sinh , Fh, Ch, and South , each hub is decoupled
and one can describe the entire set of hubs H by constructing
block-matrices from the h-specific matrices. For example, the
converter coupling matrix for the entire set H is defined by
C = diag{C1, . . . ,C|H |}.

Thus, the above presents a linear formulation of a general
energy hub. The linear model is amenable to straightforward
(mixed-integer) linear optimization and guarantees that opti-
mal solutions are globally optimal. In addition, the mixed-
integer formulation of the energy storage model can be relaxed
depending on the optimization problem and, therefore, the
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Figure 3: Typical steam boiler input-output curve with linear
and 4-segment PWL approximations.

linear hub formulation above enables a strictly linear and
continuous hub model. Having a linear model permits large-
scale simulations of multi-energy systems, which is explored
in [13], [21].

Remark 1. Notice that linearity rests on the assumption that
the coupling matrices are constant. Specifically, consider the
converter coupling matrix Ch (i.e., converter efficiencies). As
discussed in detail in [20], the efficiency of most energy
conversion processes depends on the part-load rating of device.
The nonlinear efficiency curve of a typical natural-gas-to-
steam boiler has maximum efficiency occur at around 90-95%
rated capacity. Since

efficiency = energy output / energy input
⇒ energy output = efficiency × energy input,

the relationship between converter input and output is nonlin-
ear, but monotonic as illustrated in Fig. 3. As such, we need to
investigate an input-output formulation that permits tractable
implementation of these nonlinear energy hub converters.

B. Piece-wise Linear Converters

Consider a single-input single-output energy hub with no
energy storage but a nonlinear converter. The hub equations
are then straightforward:

P = P̂ and L = fc(P̂ ) (14)

Where fc is the nonlinear (input-output) performance curve of
converter c, see Fig. 3. Our emphasis is then on the converter
input-output relation in Eq. (14). Now, select a set of S + 1
salient input values and evaluate fc at those points (e.g., fsc =
fc(P̂

s)):

{P̂ 1P̂ 2, . . . , P̂S+1} and {f1
c , f

2
c , . . . , f

S+1
c }.

Segment s is then the linear segment between input-output
pairs (P̂ s, fsc ) and (P̂ s+1, fs+1

c ) with αs defined as the slope
of segment s. Since additional input energy always begets
increased output energy (i.e., fc is monotonic), αs > 0,∀s.



Now, the piece-wise linear approximation of (14) can be
defined as:

L = fc(P̂ ) ≈ PWL[fc(P̂ )] =

S∑

s=1

αs∆P̂
s (15)

where a new dispatch flow variable, ∆P̂ s, is associated with
each PWL segment s and

P̂ =

S∑

s=1

∆P̂ s, ∆P̂ s ∈ [0, P̂ s+1 − P̂ s] =: [0,∆s
P ] (16)

However, since the efficiency curve need not be monotonic,
the rate at which fc increases is not monotonic, which implies
that fc is not a convex function. This condition requires
additional adjacency conditions1 to be enforced among the
S > 1 segment variables. Define binary adjacency variables
ym ∈ {0, 1} for m = 1, 2, . . . , 2(S − 2), then we have the
following S segment constraints:

For s = 1: ys∆
s
P ≤ ∆P̂ s ≤ ∆s

P (17)

For 2 ≤ s ≤ S − 1: y2s−2∆s
P ≤ ∆P̂ s ≤ y2s−1∆s

P (18)

For s = S: 0 ≤ ∆P̂ s ≤ y2s−2∆s
P (19)

where the 2(S − 1) adjacency variables ym are inter-related
via the following 2S − 3 adjacency constraints:

For m = 1:
{
ym+1 ≤ ym
ym+2 ≤ ym (20)

For m = 2, 4, 6, . . . , 2(S − 3):
{
ym+2 ≤ ym
ym+3 ≤ ym (21)

For m = 2(S − 2): ym+2 ≤ ym. (22)

Of course, if S = 1, there is no need for adjacency
conditions or variables ym and for S = 2 only constraints
(20) and (22) are necessary.

1) PWL Example: Consider a PWL converter approximated
with S = 4 segments as in Fig. 3, then for each time-step the
following 10 variables are added:

∆P̂ 1,∆P̂ 2,∆P̂ 3,∆P̂ 4, y1, y2, y3, y4, y5, y6

with the following 11 constraints:

y1∆1
P ≤ ∆P̂ 1 ≤ ∆1

P y2 ≤ y1

y2∆2
P ≤ ∆P̂ 2 ≤ y3∆2

P y3 ≤ y1

y4∆3
P ≤ ∆P̂ 3 ≤ y5∆3

P y4 ≤ y2

0 ≤ ∆P̂ 4 ≤ y6∆4
P y5 ≤ y2

y6 ≤ y4

To illustrate the adjacency condition, suppose that ∆P̂ 3 >
0 ⇒ y5 = 1 ⇒ y2 = 1 ⇒ y3 = 1 ⇒ ∆P̂ 2 = ∆2

P and y1 =

1⇒ ∆P̂ 1 = ∆1
P . Clearly, this satisfies adjacency condition.

The PWL formulation with S = 4 accurately captures
the nonlinear converter performance as shown in Fig. 3 and,
therefore, the underlying nonlinear efficiency at part-load
operation. The constant efficiency can greatly underestimate

1Adjacency implies that if ∆P̂ s > 0, then ∆P̂ l ≡ ∆l
P ∀l < s

the converter input (e.g., natural gas) needed to produce a
given output (e.g., steam) at part-load operating conditions.

Remark 2. The PWL approximation of a nonlinear energy
hub converter with S ≥ 3 segments adds S continuous and
2(S − 1) binary variables and 2(S − 1) + (2S − 3) × 2 =
4S − 5 constraints (i.e., simple bound are not constraints in
this context) to the formulation and scales linearly with the
number of converters and time-steps.

2) Converter Limits: Another improvement in the energy
hub converter model is the addition of converter output limits
to represent finite capacity of converters (e.g., maximum boiler
output capacity) and also is the basis on which to effectively
dispatch (i.e. stage) multiple converters:

S∑

s=1

αs∆P̂
s[k] ≤ L. (23)

One can now replace the constant-efficiency model from (13)
with the PWL approximation described above (and general-
ized to multi-input/multi-output energy hubs). This yields the
following linear matrix representation of a broader class of
energy hubs:

P̂h[k] = FPWL
h ∆P̂h[k] (24)

Lh[k] = CPWL
h ∆P̂h[k] + South Qout

h [k] (25)

DPWL
∆,h yh[k] ≤ DPWL

h ∆P̂h[k] (26)

DPWL
adj,h yh[k] ≤ 0 (27)

Cout
h ∆P̂h[k] ≤ Lh (28)

∆P̂h[k] ∈ [0,∆h] (29)

for every hub h ∈ H. Again, no coupling exists between hubs,
so block diagonal versions of matrices (.)h represent all of H.

C. Energy Hub Emissions

The impact of underestimating the converter input leads to
inaccurate representation of costs and hub converter dispatches
as shown in the case study, however, it also underestimates
the emissions. This is because emissions is a linear function
of converter input (i.e., the dispatch flow, P̂ij).

Denote the emission output (e.g., CO2, NOx, or SOx) from
dispatch flow ij by êij and the rate at which input is converted
to emissions by βij (e.g., kg/MJ). Then, the relationship
between emissions and converter input is:

êij [k] = βijP̂ij [k]. (30)

Thus, if you underestimate P̂ij , you underestimate êij . In fact,
at low part-load operations, emission control systems are often
unable to satisfy emission standards.

With the PWL approximation of converter nonlinearities,
the converter input and (fuel) cost calculation is more accurate,
which improves not just dispatch of converters, but also cap-
tures emissions more accurately. This is a significant benefit
of the PWL approximation.



Combining the emissions from all converters in a single hub
(or a set of hubs), we can apply an emission limit over a single
hour or collection of hours (e.g., a 24-hour day). For example,

eh[k] =

Nin∑

i=1

Ki∑

j=1

êij [k] =

Nin∑

i=1

Ki∑

j=1

βhijP̂ij [k] =≤ eh,k, (31)

which is implemented in this work and has matrix notation:

Feβ,hP̂h[k] ≤ eh (32)

Remark 3. In the energy hub literature, emissions are often
included only in the objective function with a pre-defined
carbon-tax (e.g., $/kgCO2); however, in this work, emissions
are included as constraints to allow insight into the marginal
cost of emissions when constraints are binding. This is useful
information for city-planners and policy makers who are trying
to ascertain the “value” of CO2 under various emission policy
scenarios.

D. Network of energy hubs

Energy hubs are interconnected either directly (as in this
paper) or via adjacent energy supply networks. To describe
the flow of energy between hubs, it is generally necessary
to include power networks. A power network is a simple
graph with sinks (e.g., loads) and sources (e.g., generators)
and additional physical constraints corresponding to the spe-
cific nature of the network, e.g. balanced or unbalanced AC
electrical system or natural gas pipelines. Every network must
satisfy flow balance. That is, the sum of flows into and out
of node i must equal the flow injected or consumed at node
i. Additionally, with the inclusion of energy hubs, there is a
need to consider flows between energy hubs and networks at
each node. Thus, the flow balance equation can be generalized
to that of an interconnected system of energy hubs:

Af +HIP +HOL +GAfG +DAfD = 0 (33)

where f is the vector of directed network line flows, P is the
vector of all hub inputs, L is the vector of all hub outputs, fG
is the vector of all generator injections, fD is the vector of all
consumer energy demands, A is the node-arc incidence matrix,
HI is the hub input incidence matrix, HO is the hub output
incidence matrix, GA is the generator-node incidence matrix,
and DA is the load-node incidence matrix. For example, if
hub input Pl is connected to node i then HI(i, l) = 1, and if
generator fGk

is at node i then GA(i, k) = −1. Otherwise the
entries are all zeros. The other two matrices are defined in a
similar manner. Since no control over the network topology is
assumed, the matrices are constant parameters. Thus, we can
restate (33) in terms of function Λn for network n,

Λn(f , fG, fD,P,L) = 0. (34)

As shown in (34), the connection between energy hubs
and power networks only exists at hub inputs and outputs.
In addition, energy hubs provide the opportunity for coupling
multiple energy networks.

E. Multi-Period Optimal Dispatch Formulation
Combining the PWL linear energy hub and network models

discussed in the previous sections, together with an objective
function one can form an appropriate optimization problem.
The optimization problem considers a prediction-horizon of
T time-steps, k = {0, 1, . . . , T − 1}. The objective function
maps systems states and control variables to a scalar cost and
the goal of optimization is to reduce the cost of operating the
multi-energy system (i.e. provide energy to satisfy demands at
lowest cost possible). This is similar to the economic dispatch
problem in electric power systems and, thus, the multi-energy
optimization problem is denoted the Multi-Period Optimal
Dispatch (MPOD) problem

min
P̂,fG,Q

T∑

k=0

F (P[k],L[k],E[k], fD[k], fG[k]) (35)

subject to
(8)− (12), (24)− (29), (32), and (34) ∀h, n, k
and bounds on all variables

Solving the MPOD problem is equivalent to solving a
multi-period mixed-integer quadratic (mathematical) program
(MIQP), which is NP-hard in general. However, state-of-the-
art solvers can efficiently find near-optimal feasible solutions.
Below, we leverage GUROBI 6.5.0 on a personal laptop
computer to solver the MPOD problems.

III. AUTOMATED ANALYSIS: HUBERT

In [12], we introduced Hubert, which is a flexible tool
that leverages a concise ASCII energy hub description for-
mat and interfaces with MATLAB and optimization solvers.
In our prior work, Hubert did not consider nonlinear or
output-constrained converters nor hub emission constraints
(because the focus was on large-scale multi-carrier networks
and not the dispatch of energy hub converters). However,
in the study of city-scale multi-energy systems, nonlinear
conversion processes are important to consider. Thus, this
paper improves Hubert by enabling the modeling of nonlinear
output-constrained hub converters and hub emission limits.
The nonlinearity is represented by a set of S + 1 salient
converter input-output pairs and Hubert takes care of forming
the proper matrices, constraints, and variables for solving the
resulting MPOD problem. Figure 4 illustrates the updated
“Hub” description, which is described in detail in [12].

IV. CASE-STUDY: MULTI-ENERGY UNIVERSITY CAMPUS

To illustrate the PWL energy hub formulation, we apply
the updated Hubert to University of Vermont’s (UVM’s)
heating/cooling/electric system, which can be represented as
a network of two interconnected energy hubs. UVM’s energy
plant currently consists of five large steam boilers (gas in; heat
out), two steam-driven compression chillers (heat in; cooling
out), a distribution-level transformer (electric in and out) and
heating, cooling and electric loads as shown in Fig. 5a. Local
gas and electric utilities supply the necessary input sources
(e.g., a ≈12MW electric peak).
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Figure 5: Modeling UVM energy system with energy hubs.

With system base values chosen as: 1pu=10MW;
1eu=MWh; 1mu=$10,000, the utilities’ daily rates can
be represented with constant hourly natural gas prices (0.1727
mu/pu) and time-of-use electric rates (0.7919-1.1546 mu/pu)
that include the effect of electrical demand charges. First,
we illustrate the impact of nonlinear and linear converter
models for a winter (heating) load scenario with the system
from Fig. 5a. Second, we will augment the system with
cogeneration (CHP), an electric chiller, and thermal energy
storage (TES) to better understand scalability of Hubert and
impact on savings – see Fig. 5b.

A. Hubert Simulations

For each of the nonlinear converters, we utilize a 10-
segment equispaced PWL approximation, which is excessive
but provides a measure of scale in the number of binary

Converter B1 B5 CS
1 CE

3 CHP(e)

Output limit (pu) 1.142 1.782 0.492 0.528 0.55
Constant eff (%) 80.0 80.5 145 900 38.0

TABLE I: Per-unit converter output limits. Note that chiller
efficiency greater than 100% is intended due to COP> 1.

variables. The per-unit input-output curve of each converter
is given by:
B1: out = −0.357in3 + 0.890in2 + 0.267in
B5: out = −0.155in3 + 0.587in2 + 0.267in
CS1 : out = 139.07in4 − 100.78in3 + 19.518in2 + 0.779in
CE3 : out = −3952.77in3 + 400.05in2 − 1.017in

chp-e: out = 0.1629in2 + 0.08in
chp-h: out = 0.40in

T: out = 0.92in
Boilers 2, 3, and 4 are identical to B1, except for a reduction
in efficiency of 2%, 4%, and 5%, respectively. Steam-driven
chiller 2 is identical to CS1 , except for a 5% reduction in
efficiency. The per-unit converter output limits are given by
Table I. The chilled-water TES has power/energy rating 0.50
pu / 4.0 eu and charge/discharge efficiency of 99%/95%.

1) Comparing Constant vs. Variable Efficiency: From the
input-output curves, the efficiency at rated output is chosen
as value in the constant-efficiency energy hub comparison
study and are provided in Table I. The base-case system
in Fig. 5a is then simulated in Hubert under constant and
variable efficiency assumptions. The boiler dispatch is shown
in Fig. 6. Unlike with constant efficiency converters, nonlinear
converters create a natural incentive to operate near optimum
efficiency, which discourages low part-load operation. This is
particularly clear in hours 4 and 14-18 where the boilers are
dispatched very differently. In fact, the 24-hour natural gas
cost of the constant efficiency dispatch is 2% higher (+$3,740)
than the dispatch with the nonlinear converters due to part-
load operation. These savings can be significant during a
long winter. The PWL formulation of the base system has
3048/2640 binary/continuous variables, 7270 constraints, and
solves to optimality in less than one second.

2) Comparing Augmented Systems: The augmented system
is now simulated in Hubert. As expected, low natural gas
prices and high electric rates make the CHP a wise investment
that drives down total energy costs by 30% (-$132,000)
In fact, the addition of the chiller and chilled-water TES
decreases costs by less than 1% in each case, but offers
other operational improvements (e.g., reliability through re-
dundancy). Again, the augmented systems’ constant-efficiency
converter case leads to a total dispatch cost that is ≈ 3%
higher (+$10,000) than the PWL converters. Interestingly,
the two augmented cases dispatch storage very differently,
as shown in Fig. 7. The PWL converter utilizes the highly
efficient TES as a buffer to keep converters near maximum
efficiency and charges/discharges the TES to make up the
difference with the cooling loads while the constant-efficiency
case leverages (fictitiously) efficient part-load operation. For
example, had the constant-efficiency hub system study been
used for sizing the TES, the TES would have been sized too
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Figure 6: Base-case optimal boiler dispatch.
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Figure 7: Optimal TES dispatch for augmented systems.

small. This further illustrates the benefit of PWL formulation.
The PWL formulation of the augmented system has 3984/3504
binary/continuous variables, 9598 constraints, and solves to
within a 0.15% optimality gap in 30 seconds.

V. CONCLUSION AND EXTENSIONS

This paper presents a computationally efficient model for
a broad class of energy hub systems that can be effectively
optimized with the simple description. Specifically, it has been
shown that a PWL energy hub formulation is tractable for a
meaningful system and provides superior performance over the
common constant energy converter models (w.r.t. costs and op-
timal dispatch). Furthermore, results highlight the significant
reduction in effects inherit to constant efficiency energy hubs
in supporting operational and capital planning decisions (e.g.,
converter sizing/siting problems). Hubert will be extended to
include unbalanced distribution systems, which are important
at the city-scale. With regards to converter models, we are
currently in the process of configuring real-time data gathering
capabilities at the UVM energy plant to improve converter

and emission models and seek to expand the hub system
to include additional multi-energy generation, networks, and
loads in support of operational and capital planning decision-
making. Long-term, we are interesting in exploring effect of
increased renewable penetration at city-level and effect of
emission standards, electrified transportation, and reliability
of supply in MES.
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