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Abstract— Because of their internal energy storage, elec-
trically powered, distributed thermostatically controlled loads
(TCLs) have the potential to be dynamically managed to
match their aggregate load to the available supply. However,
in order to facilitate consumer acceptance of this type of load
management, TCLs need to be managed in a way that avoids
degrading perceived quality of service (QoS), autonomy, and
privacy. This paper presents a real-time, adaptable approach
to managing TCLs that both meets the requirements of the
grid and does not require explicit knowledge of a specific
TCL’s state. The method leverages a packetized, probabilistic
approach to energy delivery that draws inspiration from digital
communications. We demonstrate the packetized approach
using a case-study of 1000 simulated water heaters and show
that the method can closely track a time-varying reference
signal without noticeably degrading the QoS. In addition, we
illustrate how placing a simple ramp-rate limit on the aggregate
response overcomes synchronization effects that arise under
prolonged peak curtailment scenarios.

I. INTRODUCTION

Fast-ramping generators have provided reliable operating
reserves for decades. However, power systems with high
penetrations of renewable energy challenge this operating
paradigm. Indeed, there is a growing consensus that balanc-
ing supply and demand in power systems with large amounts
of variable renewable energy will require an active role for
flexible distributed energy resources (DERs) in addition to
balancing services from conventional power plants [1]. While
the core concepts underlying modern demand-side manage-
ment (DSM) have existed for decades [2], [3], the technology
for coordinating the activities of DERs is maturing rapidly.

To overcome common privacy, convergence, and quality-
of-service (QoS) concerns and enable large-scale penetration
of renewable energy, the work herein proposes a novel
bottom-up load coordination framework, packetized energy
management (PEM), that regulates the aggregate power
consumption of distributed energy resources (DERs) (e.g.,
electric water storage heaters, the focus of this present effort)
by building on methods used to manage data packets in
communication networks. Specifically, the delivery of energy
to a load is accomplished using multiple “energy packets” or
“packetized energy”, just as digital communication networks
break data into data packets. In fact, by leveraging internet-
like protocols for distributed control, PEM inherits certain
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“fairness” properties with regard to providing statistically
identical grid access to each load.

With the proposed PEM architecture, the grid operator
or aggregator only requires a two dimensional measure-
ment from the collection of loads: aggregate power con-
sumption and an aggregate request process. This repre-
sents a significant advantage over aggregate model-estimator-
controller state-space approaches in [4], which requires an
entire histogram of states from the collection of loads to
update a state bin transition model. In [4], this is addressed
through an observer design to estimate the histogram based
on aggregate power consumption; however, in some cases,
the model may not be observable [5]. Recent work has
extended [4] to include higher order dynamic models and
end-user and compressor delay constraints [6] and stochastic
dynamical performance bounds [7]. Similar to the mean-field
approaches in [5], [8], [9], this work guarantees QoS through
opt-out mechanisms and injects randomization based on local
state variables, which limits the duration of synchronization
effects and promotes equitable access to the grid. However,
in contrast to those prior works, PEM does not have the
load coordinator broadcast the control signal (in top-down
fashion). Instead, PEM is designed to have each load request
an energy packet from the coordinator stochastically (in
bottom-up fashion) based on the load’s local state variables.
The coordinator then responds in real-time to each packet
request based on grid or market conditions.

The most closely related work on energy packets is found
in references [10], [11], where an omniscient centralized
packetized direct load controller (PDLC) is developed for
TCLs. The average controller performance and consumer
QoS is analytically investigated and queuing theory is em-
ployed by the authors to quantify the centralized controller’s
performance. In [12], a distributed (binary information) ver-
sion of PDLC is proposed that requires only (binary) packet
request information from the loads. Unlike the proposed
PEM scheme, the distributed PDLC assumes that the exact
number of participating packetized loads at any given time
is known, the allocation of packet requests from the queue
is synchronized, and the queue stores packet requests if the
packets cannot be allocated, which creates delays in service.
Instead, the work herein extends the authors’ previous pack-
etized energy results for managing the near-optimal charging
of PEVs [13], [14] and presents the first application of
this anonymous, asynchronous, and randomized bottom-up
control scheme for TCLs.



The specific contributions of this paper are two-fold:
1) Presentation of novel distributed coordination of TCLs

under imperfect information and consumer QoS con-
straints.

2) Performance of the proposed PEM paradigm is inves-
tigated with an electric water heater case study under
reference tracking and prolonged peak curtailment
scenarios.

The remainder of this paper is structured as follows. Sec-
tion II describes the adaptation of PEM to asynchronous and
anonymous coordination of TCLs. In Section III, we present
a case-study with simulation results for 1000 packetized
TCLs under different PEM schemes with a baseline control
case to illustrate QoS constraint management. Section IV,
concludes the paper and provides future research directions.

II. PACKETIZED ENERGY MANAGEMENT

Figure 1 illustrates the cyber-physical interactions needed
to realize PEM in a power system. We will separately
describe the functions of the grid operator (e.g., a utility),
the coordinator (e.g., DER management system or a virtual
power plant - VPP), and the packetized energy controller,
which is connected to the VPP via a Wi-Fi-enabled TCL and
can interact directly with its load to beget the “packetized”
behavior. Owing to the proposed bottom-up approach, we
will first introduce the concept of a packetized load.
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Fig. 1: Cyber-physical infrastructure needed to realize PEM.

A. Packetized Load
As noted, PEM has previously been proposed for co-

ordinated charging of electric vehicles. In this earlier
work [13], [15], [14], PEVs asynchronously request the
authority to charge with a specific probability according to
their logic state in a probabilistic automaton. For example,
for a three-state finite-state machine (e.g., Fig. 2(right)), the
probability to request access to the grid from state i is Pi
and P1 > P2 > P3. If there is capacity in the grid, the
PEV is granted authority to charge, but only for a fixed
duration of time (e.g., 15 minutes), referred to as the control
epoch and a state transition takes place: Pi → Pi−1, which
reduces the mean time-to-request (MTTR). In contrast, if
the PEV is denied authority to charge, the mean time-to-
request increases with transition Pi → Pi+1. Herein, we
adapt the PEM concept for the purpose of managing TCLs by
specifically leveraging the TCL’s local temperature to drive
the randomization of requests.

1) TCL modeling: The TCL load type of interest is
hot-water heaters (HWHs). The following presents a first-
order single-heating-element thermodynamic model moti-
vated by [16], [17] but modified to consider a uniform
thermal mass and hot-water withdrawal by the consumer in
liters/min rather than as a fixed energy loss. Thus, consider
the dynamics of the temperature of TCL n at time t, Tn(t).

cρL
dTn(t)

dt
= un(t)− dn(t)− wn(t) (1)

where c = 4.186 [kJ/kg-◦C] and ρ = 0.990 [kg/liters]
represent specific heat capacity and density of water close to
50◦C1. L [liters] represents the total capacity of the HWH.
The heat input u, ambient losses d, and uncontrolled hot-
water consumption w are defined by the following physical
relations:

un(t) =
P rate
n

ηn
zn(t) (2)

dn(t) = cρL
(Tn(t)− Tamb(t))

τn
(3)

wn(t) = cρ
vn(t)

60
(Tn(t)− Tinlet(t)) (4)

where P rate
n , ηn, and zn are the heating element power

transfer rate [kW], heat transfer efficiency, and the binary
ON/OFF state of HWH n (⇒ zn = 1/0), respectively. The
terms Tamb, τn, Tinlet and vn are the ambient temperature
[◦C], time-constant due to ambient insulation losses [s],
inlet temperature [◦C], and hot water withdrawal rate by
consumer n in [liters/min], respectively. Next, to derive the
discrete-time model, suppose that the control input zn and
disturbances dn, wn are step-wise with step width ∆t [s],
such that zn(t) := zn[k] for t ∈ [k∆t, (k+ 1)∆t]. Similarly,
define dn[k] and wn[k], in which case, (1) becomes:

Tn[k + 1] = Tn[k] +
∆t

cρL
(un[k]− dn[k]− wn[k]) (5)

where Tn[k] := Tn(k∆t). By substituting for un, dn, wn,
it is straightforward to see that for numerical stability, the
sampling period is required to satisfy:

∆t <
120L

60L
τn

+ vn[k]
, (6)

which through simple analysis implies that for conservative
vn[k] < 60, L > 100, and τn > 24 hours, sampling faster
than every 200 seconds satisfies numerical stability condi-
tions. We will use ∆t = 10s in all simulations presented in
Section III.

2) Traditional control of TCLs: The vast majority of
existing traditional TCLs operate in a binary (ON/OFF)
manner and are already controlled by simple state machines
– thermostats that change state based on temperature thresh-
olds. Locally, a TCL is controlled to maintain a desired
temperature set-point, T set

n , within a temperature dead-band,

1Physically, c and ρ vary with temperature, but this relationship is ignored
in this paper as it does not affect the results or conclusion of PEM’s local
decision making.



T set
n ± T set,DB

n /2. This yields the standard TCL hysteretic
temperature response according to local discrete-time control
logic:

zn[k] =





1, Tn[k] ≤ T set
n − T set,DB

n /2
0, Tn[k] ≥ T set

n + T set,DB
n /2

zn[k − 1], otherwise.
(7)

We will refer to the aggregate response under the above
fully decentralized control logic as the “no-control” case.
The proposed PEM scheme requires only the replacement
of the existing state machine with a more sophisticated one
(i.e., the equivalent of a firmware upgrade) that interacts with
a coordinator/aggregator.

Tlow

Recover

HEAT

OFF

HEAT

OFFThigh

Te
m

pe
ra

tu
re

PEM
mode

Recover

Shorter epochsLonger epochs

R N R N R R DR DNNDD X R

P1(T )
P2(T )

P3(T )

ta

tb

tc

td

P1(T ) > P2(T ) > P3(T )
Pi(T ) ! 1 as T ! Tlow

Pi(T ) ! 0 as T ! Thigh

Fig. 2: Water heater managed by PEM. The left figure shows a
sequence of events. At time ta, when grid resources are uncon-
strainted, loads stochastically request (R) or do not request (N)
energy. At tb, the system approaches a period of constrained supply,
in which the system aggregator mostly denies requests (D) and
reduces the epoch length. As a result, the automaton transitions to
a lower probability state (e.g., P1 → P2). At tc, the temperature hits
the QoS bound and the load exits (X) from PEM and rapidly seeks
to recover temperature to within the QoS bounds, which occurs at
td. The right figure shows the state machine that changes its request
probabilities (Pi(T )) and its epoch lengths, based on responses the
local temperature state. Also embedded in the automaton is the
epoch lengths between state transitions/making requests.

3) Adaptation of PEM for TCLs: Figure 2(right) illus-
trates a TCL automaton under PEM. When the local temper-
ature of the TCL, T , is between its upper and lower temper-
ature limits for PEM operation, the TCL’s time-to-request is
driven by an exponential distribution whose mean is inversely
proportion to T relative to the upper limit. That is, TCLs with
temperatures very close to the lower threshold will make
requests with near certainty (i.e., Pi(T → Tlow) ≈ 1) and
those near the upper limit in temperature will make requests
with low probability (i.e., Pi(T → Thigh) ≈ 0). Upon
transmitting a request and, if there is capacity in the grid, the
TCL will be given the authority to turn ON for a fixed control
epoch length δt (i.e., zn(t) = 1 for t ∈ (t0, t0 + δt)), and
a state transition occurs: Pi(T ) → Pi−1(T ). If the request
is denied, the TCL finite state machine transitions to a state
with lower MTTR, Pi(T )→ Pi+1(T ), but will immediately
resume requesting with temperature-dependent probability. If
access is denied repeatedly, T reaches Tlow, which causes the
TCL to exit (i.e., opt-out of) the PEM scheme to guarantee
that temperature bounds are satisfied. An illustrative ON/OFF
cycle of a packetized water heater is illustrated in Fig. 2(left).

In addition to the TCL receiving an “Yes/No” response
to a request, the TCL may also receive an updated (global)

control epoch length, δt, thus enabling tighter tracking in the
aggregate, which is helpful during ramping events. Clearly,
while the TCL is ON, it does not make requests. Further-
more, we require δt ≥ ∆t.

Remark II.1 Since all TCLs operate in this manner, the
DER aggregator granting (“Yes”) or denying (“No”) the
authority to turn on does not require any knowledge/tracking
of a particular TCL. Furthermore, the aggregator does not
even track which TCL is making a particular request. As
each TCL runs the same automaton logic and its ability
to turn on depends only on the real-time system capacity,
any TCL making a request at the same point in time will
be treated the same by the aggregator. As such, the PEM
approach inherently maintains privacy while still being fair
to its customers.

4) The stochastic request rate with PEM: In the discrete-
time implementation of PEM, the probability that TCL n
with local temperature Tn[k] in automaton state i requests
access to the grid during time-step k (over interval ∆t) is
defined by the cumulative exponential distribution function:

Pi(Tn[k]) := 1− e−µ(Tn[k],i)∆t

where rate parameter µ(Tn[k], i) > 0 is dependent on the
local temperature and the probabilistic automaton’s logic
state i. This dependence is established by considering the
following boundary conditions:

• Pi
(
TCL n requests access at k |Tn[k] ≤ Tmin

i

)
= 1

• Pi (TCL n requests access at k |Tn[k] ≥ Tmax
i ) = 0,

which give rise to the following natural design of a PEM
rate parameter:

µ(Tn[k], i) =





0, if Tn[k] > Tmax
n

Tmax
n −Tn[k]
Tn[k]−Tmin

n
Mi, if Tn[k] ∈ (Tmin

n , Tmax
n ]

∞, if Tn[k] ≤ Tmin
n

(8)

where Mi > 0 [1/sec] is a design parameter that depends
on the TCL’s automaton state i and defines the MTTR. For
example, if one desires a MTTR of 5 minutes, Mi = 1

600 Hz.

Remark II.2 If we consider a symmetric dead-band, i.e.,
Tmin
n , Tmax

n := T set
n ∓ T set,DB

n /2, then the mean time-to-
request (MTTR) for TCL n with Tn[k] = T set

n is exactly
described by 1/Mi (in seconds), which represents a useful
parameter for design of the finite-state machine. Figure 3
illustrates a TCL’s stochastic request rate for a three-state
automaton, where P1(Tn[k]) > P2(Tn[k]) > P3(Tn[k]) are
defined by the bold blue, red, and green lines, respectively.
In the case of asymmetric dead-band, Mi can still be
an effective design parameter by generalizing the middle
condition of Eq. (8):

µ(Tn[k], i) =

(
Tmax
n − Tn[k]

Tn[k]− Tmin
n

)(
T set
n − Tmin

n [k]

Tmax
n [k]− T set

n

)
Mi.
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Fig. 3: Illustrating the effect of local temperature on the stochastic
access request rates (bold) and MTTR (dashed) of a three-state TCL
under PEM. For graphical purposes only, the mean time-to-request
have been truncated to 40 minutes.

5) Quality of service under PEM: With the stochastic
nature of TCLs under PEM, it is entirely possible that a
disturbance (e.g., a large hot water withdrawal rate) can
drive Tn[k] below Tmin

n . Therefore, to maximize QoS to the
consumer (i.e., avoid cold showers), a TCL under PEM can
temporarily exit (i.e., opt-out of) PEM and operate under
traditional TCL control (e.g., turn ON and stay ON). This is
illustrated in Fig. 2(left) at event tc and with automaton states
HEAT and OFF in Fig. 2(right). That is, once a TCL under
PEM exceeds temperature bounds, the traditional control
logic is employed temporarily to bring the local temper-
ature within PEM “recovery bounds” T set

n ± T set,PEM
n /2

with T set,PEM
n < T set,DB

n when PEM control logic is
reinstated (i.e., TCL opts back into PEM). The recovery
bounds are helpful to avoid excessive exit/re-entry cycling
at the min/max bounds. While cold showers are undesirable,
overheating HWHs is dangerous to consumer and damaging
to TCL. As such, a TCL under PEM will never actuate if
Tn[k] > Tmax

n .

Remark II.3 Clearly, if TCLs exit PEM en-masse, the avail-
able flexibility can be greatly reduced and, therefore, will
impact ability of a coordinator to track a given reference
balancing signal. Hence, an on-going effort is focused on
optimal design of the finite-state machine to reduce the need
for opting out and to improve ramping capabilities.

B. Coordinating TCLs under PEM: Virtual Power Plant

As shown in Fig. 1, a packetized energy controller en-
ables bidirectional Wi-Fi communication between a load and
the virtual power plant (VPP). The VPP receives balanc-
ing dispatch signals akin to Automatic Generation Control
(AGC) from a grid operator and coordinates flexible energy
resources to track the balancing command2. Within the
proposed PEM scheme, the VPP tracks the balancing signal
by responding to individual downstream asynchronous and
stochastic load access requests (i.e., pings) with “Yes” or

2While the VPP needs to estimate and predict the aggregate flexibility
from available loads, this paper will focus on the tracking control problem
as the estimation problem represents ongoing research

“No” notifications based on real-time output error between
actual aggregate output, y(t), and the VPP reference signal,
r(t): e(t) := r(t)−y(t). This is illustrated in Fig. 4. The VPP
is similar to a relay controller in the sense that it accepts a
request (“Yes”) if e(t) > 0, otherwise, “No.” However, unlike
standard relay control of a single plant, the VPP responds
to asynchronous, stochastic requests from N plants, which
overcomes common drawbacks associated with relay control
(e.g., oscillations) and permits accurate tracking.
Input: Balancing reference signal, asynchronous request;
Output: Yes/No access notification to individual load.

Load 
Coordinator

(VPP)

Randomized

access request

Yes/No
∑r(t) y(t)e(t)

Uncontrollable 
Net-load

Load 1

Load N

..
.

Fig. 4: The closed-loop feedback system for PEM with the reference
r(t) provided by the Grid Operator and the aggregate packetized
TCL output response y(t) measured by VPP.

C. Providing grid-level service with PEM

The transmission (e.g., ISO New England) or distribution
utility system operator (e.g., the DSO Control Room in
Fig. 1) is able to measure or estimate the states of the grid,
such as voltage, frequency, and power flows. Under scenarios
with high penetration of renewable energy, the grid operator
will find it ever more difficult to balance demand and supply
and, therefore, seeks to leverage the flexible packetized
DERs sitting in customer homes and industrial/commercial
facilities. This is achieved by signaling individual balancing
requests to VPPs across the grid in near real-time akin to
Automatic Generation Control (AGC) signals, which are
transmitted every 4-5 seconds today.
Input: Grid states and net-load forecasts;
Output: Balancing request signal;

In summary, by managing the anonymous, fair, and asyn-
chronous pings of packetized loads via a VPP that receives
grid or market-based balancing signals from the grid opera-
tor, PEM represents a bottom-up distributed control scheme
that has been adapted for TCLs in this paper. The next
section implements and provides numerical analysis of a VPP
tracking various balancing signals.

III. CASE STUDY: TRACKING WITH PACKETIZED TCLS

Next, we simulate the response of N = 1000 packetized
electric hot water heaters under PEM over a period of
Tsim = 6 hours in accordance with (5). PEM employs
a 3-state automaton for each HWH with opt-out capabil-
ity as described in Fig. 2 and with mean time-to-request
(MTTR) defined by (8) and set to 300 seconds for all
logic states. Table I summarizes the simulation, where the
bracket notation [a, b] denotes randomly distributed values



over the closed interval [a, b]. Note that the TCLs represent a
heterogeneous population. The ambient conditions for TCLs
are heterogenous, as well, but considered constant over the
time of the simulation. To capture hot-water consumption
profiles of TCL n, wn[k] is given by the following simplistic
stochastic process:

• Choose the average number of hot-water (HW) events
per hour, HWhr

avg .
• For each TCL, uniformly distribute the total number of

HW events with mean 2TsimHW
hr
avg .

• Randomly select hot-water events’ starting times from
available times, kHW0

• For each HW event, choose dura-
tion ∆kHW from normally distributed
min{max{N (700, 300)/∆t, 1}, 3600/∆t}.

• From the duration of each HW event, choose a con-
stant hot-water withdrawal rate vn[k] [liters/min]
based on the exponential distribution with mean
1200/(∆t∆kHW ), which is inversely proportional to
duration. A capacity of 30 liters/min is imposed on
vn[k], which represents a high residential flow-rate [18].

Figure 5 illustrates the resulting hot-water event distributions
of all TCLs for the case-study with N = 1000.
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Fig. 5: Distributions of the duration and the rate of hot-water
withdrawal events. These events form the random consumer usage
profiles.

Next, we show how PEM compares with the traditional
TCL control (i.e., “no control”) of HWHs and how PEM can
employ a coordinator to provide balancing in near-real-time
with no prediction and only limited and imperfect informa-
tion. Finally, we will discuss PEM under stressed operating
conditions and show how to avoid the synchronization of
TCLs under PEM.

A. Load Choreography with PEM

The N = 1000 TCLs are subjected to the hot-water
events described above and the overarching goal is now to
understand how well a packetizing VPP can track a balancing
signal from a grid operator by accepting/denying requests
from packetized TCLs. The following four control schemes
are compared:

TABLE I: Simulation parameters

Parameter Value Unit
Simulation period, Tsim 6 hours
Sampling period, ∆t 10 s
Control epoch length, δt 300,1800 s
Specific heat capacity (Water), c 4.186 kJ / (kg-◦C)
Water density, ρ 0.99 kg / liter
Ambient insulation losses, τn 150 hr
Heater Capacity, L [250,300] liters
Set-point temperature, T set

n [52, 58] ◦C
Dead-band temperature, T set,DB

n 0.12T set
n

◦C
PEM temperature bounds, T set,PEM

n 0.08T set
n

◦C
PEM request parameters {M1,2,3} 1

300
-

Input heat transfer rate, P rate
n [4.5, 5.5] kW

Heating efficiency, ηn 100 %
Initial temperature, Tn[0] [49,61] ◦C
Initial ambient temperature, Tamb[0] [14,18] ◦C
Initial remaining control epoch [0, δt] s
Initial automata state, i 2 -
Average HW events/hr, HWhr

avg 1 event/hr
HW event starting times, kHW0 [0, 5.83] hours
HW event duration, µHW , σHW 700, 300 secs
HW event magnitude, vn[k] [1, 30] liters/min
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Fig. 6: The evolution of 1000 TCLs under the four different control
schemes. Red is the reference, which is enabled after two hours and
tracked for four hours with PEM(5) and PEM(30) (T3 and T4).
The black and gray trajectories represent uncoordinated response
of TCLs under hysteretic and PEM control schemes (T1 and T2).

T1: Baseline “no control” - standard hysteretic TCL control
logic is employed as described in Section II.A.2.

T2: Uncoordinated PEM(5) - the 3-state probabilistic finite-
state machine with control epoch δt = 5 minutes
described in Table I. However, TCLs are uncoordinated
and unresponsive to the reference signals (i.e., every
request is accepted by VPP). That is, this case represents
a fully decentralized PEM.

T3: Reference-tracking PEM(5) - the VPP-coordinated 3-
state probabilistic finite-state machine with control
epoch δt = 5 minutes described in Table I.

T4: Reference-tracking PEM(30) - the VPP-coordinated
3-state probabilistic finite-state machine with control
epoch δt = 30 minutes described in Table I.

1) Comparing Uncoordinated PEM to traditional TCL
scheme: In Fig. 6, the uncoordinated schemes (in black
and gray) are unaware of the reference signal (red) and,
therefore, evolve stochastically according to their internal
plant dynamics rather than the reference tracking error. In the
case of the uncoordinated PEM(5) scheme, the stochasticity



is not only due to the random hot-water usage events (and
resulting stochastic consumer profiles), but also due to the
randomizing nature of PEM scheme, which is evident by
comparing Fig. 7(a) and (b). The standard TCL control logic
leads to long ON/OFF-periods. However, PEM(5) showcases
the TCLs’ availability throughout the period. This random-
ized flexibility is leveraged in the coordinated schemes to
tightly track a reference signal.

(a) T1:
Standard
TCL control

Time (∆t=10s)

TCL
ID

TCL
ID

(b) T3:
Uncoordinated
PEM(5)

Fig. 7: The randomization of access is evident from the TCL
ON/OFF status. White means TCL is ON; Black means TCL is
OFF. Only every fifth TCL is displayed for graphical purposes.

2) Comparing closed-loop reference tracking PEM
schemes: In the case of the tracking PEM schemes, the
VPP accepts/rejects anonymous pings based on the real-time
difference between aggregate load draw and the reference
signal. The difference represents a power imbalance but the
VPP is unaware of the specific power rating from each
request. To make up for this lack of information, the VPP
uses only the estimated average power rating of TCLs (5kW)
to determine how many requests to accept each discrete-time
sampling period k.

Recall, if the local temperature conditions precipitate the
need to opt-out of the PEM scheme, the TCL will do so to
preserve quality of service. The evolution of the number of
TCLs that have their requests accepted and denied along with
those that have opted out and did not request is provided for
tracking PEM(5) in Fig. 8.

In terms of quality of service, we consider three metrics
(see Table II): average, ∆Tµ, and standard deviation, ∆Tσ ,
of the absolute deviation from temperature set-points for all
time after reference is enabled and the average cycling per
hour (ACPH). A cycle is considered any OFF-to-ON or ON-
to-OFF event. From the table, it is clear that T1 and T2 are
very similar except in terms of the ACPH. It is expected that
PEM with a 5-minute control epoch length will cycle more
often. However, as epoch length increases ACPH decreases
significantly as seen with T4. Interestingly, T3 deviates the
least from desired set-point of resistive water heater while
also tracking the reference signal. Notice that the average
temperature dead-band is ±3.3◦C, which results in 90% of
TCLs staying within their limits at all time for all four
schemes. Indeed, the results further indicate that the PEM
approaches (T2,T3,T4) do not negatively impact quality of
service when compared with standard TCL hysteresis control
(T1).
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Fig. 8: The evolution of TCL requests and opt-out decisions. Each
color represents a different sub-class of TCLs. Having a large
population of “request denied” is helpful for tracking control, while
a large “Opted-out (ON)” can interfere with tracking performance.
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Fig. 9: Examining PEM under extreme operating conditions reveals
in (a) a potential for oscillations due to local (in-time) synchroniza-
tion between different packetized TCLs. However, a 300kW/min
ramp-rate limit on the VPP alleviates synchronization concerns
and reduces the rebound effects as shown in (b)(No ramp limit -
MTTR= 30) and (c)(VPP Ramp limit - MTTR= 30). In (b) and (c),
TCLs under PEM that have not opted out and have been turned ON
for at least 30 seconds in the first three minutes after the change
in reference are considered synchronized. The green and blue lines
in (b) and (c) separate synchronized and unsynchronized groups.
From (b), the devices that are ON before the reference step-change
have clearly opted out and do not feature in the synchronizing
group.

As shown in Fig. 6, the coordinated PEM(5) and PEM(30)
schemes are both able to track the signal. With the
shorter control epoch length, PEM(5) is able to better track
large step-changes when the reference is first enabled at
minute 120 and faster ramping events, such as, at min-
utes 160, 280, and 340. The reason PEM(30) is unable to
track larger ramping events and step-changes in the reference
is due to the 30-minute control epoch length, which allocates
the TCLs in larger blocks of time. The average, EM , and
root-mean-square, ERMS , tracking errors are tabulated in
Table II for each control scheme.

Remark III.1 Note that PEM(5) and PEM(30) are able
to track the time-varying reference signal with an average
tracking error below 2% and an RMS of less than a handful



of water-heaters for over four hours without optimizing,
pre-positioning, or predicting the loads or the reference.
Furthermore, it should be emphasized that the TCLs are
coordinated with only anonymous pings sent to the VPP.

3) Rebound effects under PEM: A final investigation of
PEM performance entails operation under severe operating
conditions. More specifically, four versions of PEM(5) are
employed for a load reduction event to investigate the
rebound effect of packetized water heaters when all requests
over a 6-hour period are rejected. Figure 9(a) illustrates this
6-hour reduction event (minutes 180-540). After the six hours
of the VPP rejecting every request, the water heaters are
allowed full access to the grid (i.e., all requests are accepted
by VPP). Once the 6-hour period concludes, the VPP accepts
all requests as indicated by the reference3.

While the VPP declines all packet requests, the pack-
etized water heaters must opt out of PEM to maintain
QoS. Thus, the only power consumed during the 6-hour
period is from water heaters that have opted out (i.e., with
temperature below T set

n − T set,PEM
n = 0.92 × T set

n ). As
illustrated in Fig. 9(a), the aggregate opt-out consumption
stabilizes around 1000kW for minutes 360-540. However,
during this opt-out period, large groups of water-heaters
naturally become synchronized and, at minute 540, when
the reference abruptly changes, the VPP can experience large
MW-scale (damped) oscillatory ramping events as shown in
Fig. 9(a,b) for the “No ramp limit” cases where the VPP
just accepts all incoming requests (e.g., green and gray). The
large oscillations occur at a period equal to the control epoch
until the randomizing nature of PEM desynchronizes the
population. Note that shorter MTTR begets increased oscil-
lations as more frequent requests prevent desynchronization.
To prevent this large spike, the VPP is equipped with a ramp-
rate limit (e.g., 300kW per minute), which effectively limits
the number of packets that can be accepted during an interval
(e.g., ca. 60 packets per minute). As displayed in Fig. 9(a,c),
the VPP ramp-rate limit is clearly successful in mitigating the
rebound effect as it prevents re-synchronization of packetized
loads between control epochs and limits the initial rebound
peak by about 75%. The drawback of the VPP ramp-
rate limit is a longer recovery period, which could impact
future availability of PEM for tracking or additional peak
reduction services. Thus, synchronization effects that can
plague certain load control schemes does not seem a concern
in PEM. In fact, the tracking PEM(5) and PEM(30) from
Fig. 6 both employ the ramp-rate limited VPP during the
tracking periods without impacting tracking performance.

IV. CONCLUSION

This paper presents and demonstrates a novel and scal-
able distributed coordination scheme, known as packetized
energy management (PEM), for dispatching thermostatically
controlled loads (TCLs). This approach builds on core ideas
from digital communications theory, in which users of a

3This scenario can be thought of as an extreme peak reduction event by
a utility or load aggregator.

TABLE II: Performance metrics for control schemes

Scheme EM (%) ERMS (kW) ∆Tµ ±∆Tσ(◦C) ACPH

T1 23 231 2.02± 0.56 0.6± 0.3
T2 25 243 2.15± 0.40 5.0± 2.0
T3 0.6 15 1.91± 0.49 4.0± 1.6
T4 1.3 25 2.34± 0.41 1.4± 0.6

resource make probabilistic requests to access this resource.
Under the PEM scheme, each TCL asynchronously and
stochastically requests the authority to turn on for a fixed
amount of time (i.e., request an “energy packet”) and the
aggregate population is coordinated in the sense that if there
is a surplus of load, incoming requests are denied. The
anonymous load requests enable PEM to accurately track
an aggregate reference signal.

Simulation results for N = 1000 electric hot water heaters
are presented. To fully take advantage of PEM’s random-
ization and control flexibility, it is important to develop
an analytical framework wherein conditions on automata
design and VPP interaction can guarantee certain perfor-
mance. Thus, work is currently focusing on developing the
analytical underpinnings of PEM to understand the pack-
etized approach’s fundamental limitations in control and
stability [19]. Additional future work will also implement
packetized energy management on a physical test-bed and
to extend modeling efforts to other dynamic net-loads (e.g.,
flexible energy storage and compressor-driven loads).
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