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Abstract—This paper presents a state bin transition
(macro)model for a large homogeneous population of thermo-
statically controlled loads (TCLs). The energy use of these TCLs
is coordinated with a novel bottom-up asynchronous, anonymous,
and randomizing control paradigm called Packetized Energy
Management (PEM). A macro-model for a population of TCLs
is developed and then augmented with a timer to capture the
duration and consumption of energy packets and with exit-
ON/OFF dynamics to ensure consumer quality of service. PEM
permits a virtual power plant (VPP) operator to interact with
TCLs through a packet request mechanism. The VPP regulates
the proportion of accepted packet requests to allow tight tracking
of balancing signals. The developed macro-model compares well
with (agent-based) micro-simulations of TCLs under PEM and
can be represented by a controlled Markov chain.

Index Terms—Packetized energy management, state bin transi-
tion model, controlled Markov chain, thermostatically controlled
loads, modeling.

I. INTRODUCTION

At high levels of renewable penetration, the current operat-
ing paradigm for reliably managing the variability of wind and
solar generation requires having more fast-ramping conven-
tional generators online. However, that leads to more genera-
tors idling, burning fuel, and increasing harmful air-emissions.
Therefore, there is a need to move away from this traditional
form of ensuring reliability to consider an active role for
flexible and controllable net-load energy resources, e.g., plug-
in electric vehicles (PEVs), thermostatically-controlled loads
(TCLs), energy storage, and distributed generation at the
consumer level [1]. Indeed, there is a growing consensus that
balancing supply and demand in power systems with large
amounts of variable renewable energy will require an active
role for flexible distributed energy resources (DERs). While
the core concepts underlying modern demand-side manage-
ment (DSM) have existed for decades [2], the technology for
coordinating DERs is nascent.

This paper presents preliminary analysis for a model of the
aggregate system response (i.e., a macromodel) of a population
of homogeneous TCLs operating under a novel bottom-up
load coordination framework, packetized energy management

(PEM) [3], [4]. PEM leverages the packet-based strategies
from random access communication channels which have pre-
viously been applied to the distributed management of wireless
sensor networks [5]. In particular, PEM may be thought of as a
multi-channel, multi-receiver version of Aloha [6] or RTS/CTS
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(request/clear to send) [7]. Under PEM, the delivery of energy
to a load is accomplished using multiple “energy packets,” just
as digital communication networks break data into packets.

With the proposed PEM architecture, the grid operator or
aggregator only requires a two-dimensional measurement from
the collection of loads: aggregate power consumption and
an aggregate request rates. This represents a significant ad-
vantage over aggregate model-estimator-controller state-space
approaches in [8], which require an entire histogram of states
from a collection of homogeneous loads to update a bin
transition macro-model (similar in spirit to the one employed
herein). In [8], estimation is addressed through an observer
design to estimate the histogram based on aggregate power
consumption; however, in some cases, the model may not
be observable [9]. Recent work has extended [8] to include
higher order dynamic models and end-user and compressor
delay constraints [10] and stochastic dynamical performance
bounds [11]. Specifically, the modeling of packet duration in
this paper was inspired by the compressor lock-out method
utilized in [10]. A mean-field approach to direct load control is
developed for heterogenous TCL populations in [12]. Similarly
to the PEM paradigm, the mean-field approach developed
in [9], [13] maintain quality of service (QoS) through exit-
ON/OFF mechanisms and inject randomization based on lo-
cal state variables, which limits synchronization effects and
promotes equitable access to the grid. In contrast to those
prior works, PEM does not have the coordinator broadcast
the control signal (in top-down fashion).

The most closely related work on energy packets is found
in [14], where a distributed (binary information) version of a
packetized load controller is proposed that also requires only
(binary) packet request information from the loads. Unlike the
proposed PEM scheme, [14] assumes that the exact number of
participating packetized loads at any given time is known, the
allocation of packet requests from the queue is synchronized,
and the queue stores packet requests if the packets cannot
be allocated, which creates delays in service. Instead, the
work herein extends the authors’ previous packetized energy
results for managing PEVs [15], [16]. Specifically, this paper
builds on the novel PEM paradigm for TCLs developed in [4]
to present the first macro-model of TCLs under PEM. The
specific contributions of this paper are three-fold:

i. Presentation of a novel macromodel that captures the mean-
field response of resistive water heaters under PEM and is
shown to be a controlled Markov chain.
ii. Explicit consideration of end-consumer QoS guarantees in
the macro-model by including opting-out mechanics.
iii. Simulation-based validation of the PEM macro-model
with agent-based micro-simulations.



II. PEM FUNDAMENTALS

PEM is illustrated in Fig. 1 and by the following events:

1. A TCL measures its local energy state (e.g., temperature).
2. If the state exceeds its limit, the TCL exits PEM, reverts to
conventional hysteretic TCL control until the state is returned
to within limits, and returns to Step 1. Else, based on the
state, the TCL stochastically requests energy from the grid for
a pre-specified epoch (an energy packet) and goes to Step 3.
3. The aggregator (or Virtual Power Plant, VPP) either accepts
or denies the TCL’s request, depending on system conditions,
such as binding constraints or power tracking error. If denied,
immediately return to Step 1. If accepted, the TCL consumes
energy for an epoch and returns to Step 1.

By employing a probabilistic automata at each TCL that
is capable of exiting PEM to guarantee consumer Quality of
Service (QoS), we inject randomization to the load requests
based on local state variables, which prevents synchronization,
guarantees consumer QoS, and promotes fair access to the
grid. Fig. 1 illustrates the closed-loop system under PEM.
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Fig. 1. Closed-loop feedback system for PEM with Pref(t) provided by the
Grid Operator and the aggregate net-load Pdem(t) measured by VPP.

The TCL load type of interest is electric water heaters
(EWHs). The following presents a first-order single-heating-
element thermodynamic model motivated by [17] but modified
to consider a uniform thermal mass and hot-water withdrawal
by the consumer in liters/min rather than as a fixed energy
loss. Thus, consider the hybrid ON/OFF dynamics of the
temperature of TCL n at time t, Tn(t):

Ṫn(t)=
P rate
n zn(t)

cρLnη
−

Tn(t)− Tamb

τn
−

Tn(t)− Tin

60Ln

wn(t) (1)

where c = 4.186 [kJ/kg-◦C] and ρ = 0.990 [kg/liters]
represent specific heat capacity and density of water close to
50◦C. Ln [liters] represents the total capacity of the EWH.
The input power when ON (i.e., binary zn ≡ 1) is P rate

n [kW],
heat-transfer efficiency η is assumed as 1.0, ambient losses are
described by time-constant τn, and the uncontrolled hot-water
withdrawal rate (i.e., noise) is wn [liters/min]. The terms Tamb

and Tin are, respectively, the ambient and inlet temperatures
[◦C], which are considered constant in this paper.

In the discrete-time implementation of PEM, the probability
that TCL n with local temperature Tn[k] and (homogeneous)
dead-band [Tmin, Tmax] requests access to the grid during
time-step k (over interval ∆t) is defined by the cumulative ex-
ponential distribution function P (Tn[k]) := 1− e−µ(Tn[k])∆t,
where rate parameter µ(Tn[k]) > 0 is dependent on the
local temperature. This dependence is explicitly stated by the
following PEM rate parameter:

µ(Tn[k]) =







0, if Tn[k] > Tmax,
Tmax−Tn[k]
Tn[k]−Tmin

mR, if Tn[k] ∈ (Tmin, Tmax],

∞, if Tn[k] ≤ Tmin,

(2)

where mR > 0 [Hz] is a design parameter that defines the
mean-time-to-request (MTTR). For example, if one desires a
MTTR of 5 minutes at T set

n := Tmin+Tmax

2 then mR = 1
600Hz.

Within the PEM scheme displayed in Fig. 1, the VPP tracks
a balancing signal by responding to individual downstream
asynchronous and stochastic load access packet requests with
“YES” or “NO” notifications based on the output error be-
tween actual aggregate output, Pdem(t), and the VPP’s ref-
erence signal, Pref(t): e(t) := Pref(t) − Pdem(t). The VPP
is similar to a relay controller in the sense that it accepts a
request (“YES”) if e(t) > 0, otherwise, “NO.” However, unlike
standard relay control of a single plant, the VPP responds to
asynchronous requests from many plants, which overcomes
common drawbacks associated with relay control (e.g., switch-
ing causing oscillations) and allows accurate tracking.

Unlike the authors’ prior heterogeneous micro-simulation
work presented in [4], this paper will focus on a homogeneous
population of EWHs with constant parameters. Upon aggrega-
tion of thousands of EWHs, state augmentation is intractable.
Therefore, we seek to develop a suitable state bin transition
macro-model for the homogeneous population.

III. ANALYSIS OF HOT-WATER WITHDRAWAL RATES

In this section, we describe the stochastic modeling of the
uncontrolled hot-water withdrawals, wn(t). To clarify notation,
we will omit subscript n as this section focuses on a single
TCL. Assume that there exists an appropriate probability space
(Ω, P,F), where Ω is the set of events, F a filtration, and P
the probability measure of elements in F . For this purpose,
a Poisson rectangular pulse stochastic differential model is
employed [18]. That is,

dw(t) = (v(t)− w(t)) dN1(t)− w(t) dN2(t), (3)

where v(t) is an exponentially distributed random variable
with mean λ representing the intensity of hot-water with-
drawals for all t and N1, N2 are independent stationary
Poisson point processes with constant rate parameters λ1, λ2,
respectively, representing the distribution of the duration of
hot-water withdrawal events. Thus, it follows that the random
variable N1 initiates a hot-water event (i.e., increases the with-
drawal rate) while N2 ends a hot-water event (i.e., decreases
the withdrawal rate).

Computing the average TCL water consumption profile
given λ, λ1 and λ2 (for the entire population) is critical for
studying the aggregated behavior. This is made more clear
in Section IV when the transition probabilities are computed
for an aggregated system of electric water heaters in steady
state. Denote the expected value of a random process by
x̄(t) := E[x(t)]. Due to the independence of the processes
∆N1, ∆N2 and v in time, one can compute the expected
water consumption for each TCL as

dw̄(t)

dt
= (v̄(t)− w̄(t))λ1 + w̄(t)λ2. (4)

Note that v̄(t) is constant since its distribution is known for
all times. The solution of (4) when w(0) = 0 is

w̄(t) = v̄
λ1

λ1 + λ2
(1− exp(−(λ1 + λ2)t))



The expected water draw reaches steady state as t goes to
infinity. Hence, the steady state water consumption is

w̄sst := lim
t→∞

w̄(t) = v̄
λ1

λ1 + λ2
. (5)

The constant value w̄sst computed in (5) is used in Section IV
to estimate the state transition probabilities of the aggregate
EWH temperatures from (1).

IV. PEM CONTROLLED MARKOV MODEL

A macro-model for a large population of TCLs is developed
in this section as an abstraction of the augmented (agent-
based) dynamic micro-models. Specifically, consider the TCL
population dynamics over a discretization of the temperature
state space and employ a state bin transition model, such
that the macro-model approaches the behavior of the micro-
model as the number of devices increases [19]. The transitions
between these bins are determined by the dynamical system
equations of the homogeneous TCLs as discussed below.

A. Conventional Thermostatic Control

The macro-model utilizes a finite set X = {x1, . . . , xN},
where each element is called a state. Recall the probability
space (Ω,F , P ) introduced in Section III. Then, random vari-
ables {Xk}k≥0 are defined as Xk : Ω → X . Let xj ∈ X and
denote qj [k] = P (Xk = xj) as the probability of Xk = xj ,
k ≥ 0. The column vector q[k] := (q1, . . . , qN )T then gives
the probability mass function of the random variable Xk. Also,
if one denotes the transition probability of an homogeneous
Markov chain as pij = P (Xk+1 = xi|Xk = xj), it then
follows that

q[k + 1] = Mq[k], (6)

where M = {pij}1≤i,j≤N [20]. Given an initial distribution
q[0], one can solve for (6) and find the distribution at time k
as q[k] = Mkq[0].

Conventional thermostatic control of an EWH is based on
keeping the local state variable (e.g., temperature) within a
deadband [Tmin, Tmax] by switching the device ON (when
T ≤ Tmin) or OFF (when T ≥ Tmax). More precisely,
the interval [Tmin, Tmax] is divided into N consecutive bins.
Since (1) includes hybrid ON/OFF dynamics, the state space
for the system consists of two discrete state spaces: Xon and
Xoff. That is, the full state space is given by X = Xon ∪ Xoff.
At time k, the probability mass function of the system is
q⊤ = (q⊤on, q

⊤
off) with qon = (q1on, · · · , q

N
on)

⊤ and qoff =
(q1off, · · · , q

N
off)

⊤. Note that q contains the percentage of the
population in each state of X . For instance, if R is the total
number of EWHs and Ri

on is the number in state xi
on, then

Ri
on = qionR. Similarly, the total ON-population is given by

y = c⊤q for c = (1⊤
N , 0 · · · 0)⊤ ∈ R

2N , (7)

and 1N = (1, . . . , 1)⊤ ∈ R
N . The transition rates are com-

puted by considering how the temperature bin corresponding
to a particular state is altered by the hybrid dynamics in (1).

Together with discrete sampling time and temperature bin
widths, the hot water withdrawal rate w, described in Sec-
tion III, is one of the main factors affecting these transition
rates. For example, consider two realizations a, b of the water
profiles generated by (3) with identical parameters except for
the water withdrawal intensities of the random variable v

Fig. 2. Transition rates calculation for on and off populations.

Fig. 3. Abstraction for (a) conventional thermostatic control and (b) PEM
control, where self-loops are not visualized.

(λa 6= λb). An ON TCL with λa (< λb) at temperature Ti

reaches temperature Ti+1 faster than realization b, which draws
more hot water on average and increases the time required to
reach Ti+1. Nevertheless, since the hot water draw profiles
in the population are assumed to be statistically identical, the
average of these profiles reaches steady state (5) when t → ∞.
Thus, the state transition rates for the large population are
calculated considering the evolution of (1) with respect to the
average hot water draw of the population. The transition rates
for the ON and OFF populations are computed next. Dropping
the subscript n in (1), it follows that the solution with steady
state consumption w = w̄sst and T (0) = T0 is

T (t) = ΦT0
(t) = e−at

(

T0 −
b(z)

a

)

+
b(z)

a
, (8)

where a = 1
τ
+ w̄sst

60L and b(z) = Tamb

τ
+ Tin

60L w̄sst +
P rate

cρLη
z.

In particular, define Φon
T0
(t) = ΦT0

(t) | z=1 and Φoff
T0
(t) =

ΦT0
(t) | z=0 . For the ON population, the dynamics imply

forward transitions, i.e., from xi
on to xi+1

on as shown in Fig. 2.
First, take the boundaries of the temperature bin Ti−1 and Ti

corresponding to state xi
on and compute T ′

i−1 = Φon
∆t(Ti−1)

and T ′
i = Φon

∆t(Ti). Note that in this case Ti < T ′
i . Thus, the

percentage of water heaters that remain in xi
on and move to

xi+1
on , respectively, are given by

pon
ii =

Ti − T ′
i−1

T ′
i − T ′

i−1

and pon
i(i+1) =

T ′
i − Ti

T ′
i − T ′

i−1

.

Note that pon
ii + pon

i(i+1) = 1, as expected. Transition rates for



the OFF dynamics are determined similarly, but are reversed,
i.e., from xi+1

off to xi
off since T ′

i = Φoff
∆t(Ti) < Ti. Thus,

poff
ii =

T ′
i+1 − Ti

T ′
i+1 − T ′

i

and poff
i(i−1) =

Ti − T ′
i

T ′
i+1 − T ′

i

.

The previous analysis was purposely restricted to state
transitions between contiguous states. Using (8), one can
compute an upper bound for ∆t such that any EWH in state
xi

on only transitions to xi+1
on and any EWH in xi+1

off only
transition to xi

on for all i. Define

ton
i = a−1 log

(

Ti −
b(z)
a

Ti+1 −
b(z)
a

)

∣

∣

∣

∣

z=1

(9)

as the time that an EWH takes to go from Ti to Ti+1. Observe
that if an EWH at Ti is kept ON for t > ton

i seconds, then
T (t) > Ti+1. This implies that some EWHs in xi

on will
transition to xi+2

on and skip xi+1
on . Similarly, toff

i is defined as in
(9) but z = 0 and the transitions are in a reverse direction. The
condition on the discretization time step ∆t for contiguous

transitions is then formulated as ∆t < mini{t
on
i , toff

i }. For
instance, a choice of N = 30 for the simulation in this paper
means that ∆t < 60.27 seconds.

In addition, the OFF-to-ON (pon
off) and ON-to-OFF (poff

on )
transition rates must be computed to capture the jump to a
transitory state that automatically transitions to x1

on and xN
off,

respectively. The complete Markov chain for conventional
thermostatic control is shown in Fig. 3a. It is important to
observe that the transient effects on temperature caused by
stochastic hot water withdrawals are not captured since the
transition rates assume a steady state (mean) consumption
of hot water. The Markov transition matrix M associated to
conventional thermostatic control is then given as

M =







































pon
11 0 · · · 0 poff

on · · · 0 0

pon
12 pon

22

. . . 0 0 · · · 0 0

0 pon
23 · · · 0 0 · · · 0 0

.

.

.

.

.

.
. . .

.

.

.

.

.

. · · ·

.

.

.

.

.

.

0 0 · · · pon
NN 0 · · · 0 0

0 0 0 poff
11 · · · 0 0

.

.

.

.

.

. · · ·

.

.

.

.

.

.
. . .

.

.

.

.

.

.

0 0 · · · 0 0
. . . poff

(N−1)(N−2) 0

0 0 · · · 0 0 · · · poff
(N−1)(N−1) poff

N(N−1)

0 0 · · · pon
off 0 · · · 0 poff

NN







































. (10)

Observe that the Markov chain associated to M is irreducible
since one can reach any state from any arbitrarily initial state.
It follows then that this abstraction possess a unique invariant
distribution as well since X is finite dimensional. Nonetheless
the conventional model lacks the flexibility inherent to PEM.

B. PEM Markov model

Recall from Section II that, under PEM, an EWH can only
switch ON for an epoch if its packet request is accepted by the
VPP coordinator. That is, given the aggregate request rate, the
VPP selects the proportion of EWHs that will receive a packet
and switch ON for each time-step. To capture the unique nature
of PEM’s fixed packet duration and VPP’s role, we leverage
prior literature on fault tolerant recovery logic [21] and TCL
modeling with compressor lockout periods [10]. Specifically, a

fixed timer is added to the state bin transition model to track
the population with accepted packet requests. The objective
of this section is to present a macro-model describing PEM
control as a controlled Markov chain.

Definition 1 (Controlled Markov Chain from [20]): Let
{uk}k≥0 be a sequence of real valued functions taking values
on a set U . A Markov chain {Xk}k≥0 is said to be a controlled

Markov chain (CMC) if its transition matrix M = M(u) :=
{qij(u)}1≤i,j≤N satisfies

P (Xn+1 = xin+1
|Xn = xin , . . . , X0 = xi0 , un, · · · , u0)

= P (Xn+1 = xin+1
|Xn = xin , un) = pin+1in(un).

The definition also implies that M(u) for a CMC must be a
(column) stochastic matrix for any choice of u ∈ U . Assuming
that all states of the CMC are observed, one can define a
control policy: u = X → U , and, thus, M = M(u(x)). The
probability mass function of a CMC is computed similarly
using q[k+1] = M(u[k])q[k] given an initial distribution q[0]
and control input u[0].

In what follows, PEM control will be introduced in the
context of CMCs. The underlying Markov transition matrix
over which PEM is implemented is given by (10), but with
pon

off = poff
on = 0 and pon

NN = poff
11 = 1. That is, x1

off and
xN

on are absorbent states indicating that ON states can not
be reached from OFF states and vice-versa. VPP control,
therefore, becomes the interface between these two modes of
operation. The mechanics of switching EWHs ON and OFF
under PEM control are described next.

Suppose q[k] ∈ R
2N is the probability distribution

of the PEM macro-model population at time k, βon =
diag{β1

on, . . . , β
N
on} with βi

on ∈ [0, 1] the percentage of the
OFF-population in state xi

off that is switched ON by the
VPP, and βoff = diag{β1

off, . . . , β
N
off} with βi

off ∈ [0, 1] the
percentage of the ON-population in state xi

on that is switched
OFF. The action of switching ON and OFF on q is given by
the transformation:

q̄[k] = M̄(βon[k], βoff[k]) q[k], (11)

where

M̄(βon, βoff) =





IN−βoff βon

βoff IN−βon



 , (12)

and IN denotes the N -dimensional identity matrix. Once
M̄(βon, βoff) has switched some EWHs ON and some other
OFF, the underlying transition matrix M acts on q̄. This
provides the dynamics

q[k+1] = MM̄(βon, βoff)q[k]. (13)

The next theorem simply says that the sequence {Xk}k≥0

associated (13) is a CMC.
Theorem 1: Let βon[k], βoff[k] ∈ R

N×N be defined as in (11)
for all k ≥ 0. The sequence {Xk}k≥0 of random variables Xk

taking values in X and probability distribution satisfying (13)
is a controlled Markov chain as described by Definition 1 with
input u[k] = (1⊤

Nβon[k],1
⊤
Nβoff[k])

⊤ ∈ R
2N .

Proof: The proof is straightforward since (10) and (12) are
stochastic matrices for arbitrary βi

on, β
i
off ∈ [0, 1] for all i, and

the product of stochastic matrices is a stochastic matrix.

An important aspect of PEM control is that only EWHs that



are OFF request a packet and do so as a function of the (local
temperature) bin, which implies that not all OFF EWHs will
turn ON. Therefore, define

q̂[k] := M̂q[k] =





IN 0N

0N Treq



 q[k] =





qon[k]

q̂off[k]



 ,

where Treq = diag{preq1 , . . . , preqN } and preqi := 1−
e−µ(Tm

i )∆t is the request probability assigned to xi
off by (2)

with respect to the mid-point of temperature bin i, Tm
i . Note

that q̂ is not a probability mass function since 1
⊤
N (qon+q̂off) <

1. The aggregate request rate, i.e., the population that can be
switched ON, is now given by:

nr[k] := 1
⊤
N q̂off[k]. (14)

Under PEM, the VPP determines the rate of accepting packets,
β[k]. The resulting EWHs instantly switch ON when packet
requests are accepted. The population of devices that switch
from OFF to ON, q+, is a function of β and qoff. That is,

q+[k] :=





0N β[k]Treg

0N −β[k]Treg



 q[k] = M+
β[k]q[k] (15)

In contrast, to model the population of EWHs that switch
from ON to OFF requires information on the rate of expiring
packets. In other words, let δ [secs] be the duration of a packet
epoch, then the EWHs that have been ON for δ seconds will
turn OFF. This requires keeping track of how many EWHs
were turned ON δ seconds ago and, essentially, constitutes
a delayed system. However, one can augment states to the
system dynamics to account for the needed memory, which is
equivalent to having a timer. That is, given δ, the time step
∆t, and the vector of augmented (timer) states xp ∈ R

np with
np = ⌊δ/∆t⌋, the timer dynamics is given by

xp[k+1] =Mpxp[k]+Cpq
+
on[k] and yp[k] = xp[k], (16)

where Mp ∈ R
np×np is a zero matrix except for its first

lower diagonal whose components are 1 and Cp ∈ R
np×N is

responsible for allocating the newly switched ON population
into the timer states. Note that there exists a temperature Tp

such that Φon
Tp
(δ) = Tmax. Therefore it is necessary for Cp

to interrupt packets to prevent exceeding temperature limits.
Specifically, if Ti+1 < Tp, Cp allocates all requesting EWHs
from bin [Ti, Ti+1] into the timer state x1

p. Otherwise, it

allocates EWHs with Tj > Tp in the timer state xj
p with

j = ⌊(δ−tj)/∆t⌋ and tj is the time it will take to increase
the EWH’s temperature from Tj to Tmax. Note that since
the macromodel considers only binned (rather than exact)
temperatures, the allocation of requests assumes that the mass
function in each state is uniformly distributed.

Observe that the timer states are internal to and inform the
VPP of the distribution of total ON population in PEM (i.e.,
1⊤Nqon) across all packet intervals, xp. As in (15), one can
define the population of EWHs that just completed their δ-
second packet and will turn OFF instantly as

q−[k] :=





β−[k]IN 0N

−β−[k]IN 0N



 q[k] = M−

β−[k]q[k], (17)

where β−[k] := y
np

p [k]/(1⊤
np
yp[k]). One can now formulate

the ON/OFF switching events for the entire population as:

q̄[k] := q[k]+q+[k]−q−[k] = (I+M+
β[k]−M−

β−[k])q[k],

which yields the EWH population dynamics:

q[k+1] = M(I+M+
β[k]−M−

β−[k])q[k]

= M̄(βon[k], βoff[k])q[k], (18)

where βon[k] = β[k]Treq and βoff[k] = β−[k]IN . Note that
there is no order in which EWHs are switched ON or OFF
since both happen simultaneously. Fig. 3b shows the state
diagram of the population model under PEM control.

The next corollary follows directly from Theorem 1.
Corollary 1: The sequence {Xk}k≥0 of random variables

Xk taking values in X and probability distribution satisfy-
ing (18) is a controlled Markov chain with input u[k] =
(1⊤

Nβ[k]Treq,1
⊤
Nβ−[k]IN )⊤.

Fig. 4. PEM macromodel with exit-ON (⊕) dynamics. ON/OFF state
transitions are controlled by VPP and illustrated with gray and blue arrows.

C. Tracking with PEM Macromodel

In PEM, the input β is exogenous. Recall Pavg, Pref and
Pdem (see [4] for a list of the system parameters values) denote
the average, reference and demand power for the large scale
water heater system. Given nr in (14) and that PEM tracking
is activated (per Fig. 1), the input β[k] in Fig. 3b is generated
by the VPP at each instant of time k as

β[k] = min

{

1,
Pref[k]−Pdem[k]

Pavg nr[k]

}

when Pref > Pdem and 0, otherwise. Observe in the diagram
that the timer dynamics automatically releases the population
in x

np

p and transitions them all to the OFF states. Also, note
that if β[k] = 0 for all k then the state diagram becomes
reducible since there the states cannot transition from ON
to OFF. This last fact is undesirable given that x1

off ends up
accumulating the entire population when k goes to infinity,
which implies that every water heater becomes synchronized.
This short-coming is addressed by additional states that will
allow cold EWHs to turn ON even when the VPP sets
β[k] = 0. This exit-ON/OFF mechanism is augmented to the
PEM macro-model to ensure QoS as described next.



D. Exit-ON/OFF Dynamics

End-consumer QoS is of paramount importance when con-
trolling a large scale system of TCLs. Specifically, no one

likes to take a cold shower. Therefore, whenever an EWH’s
temperature falls outside the dead-band [Tmin, Tmax], it will exit
the packetized scheme and revert to conventional control until
a pre-specified PEM opt-in set-point is reached. Once the opt-
in set-point is reached, the EWH is allowed to re-enter the
packetized scheme.

The population of EWHs that are too cold and exit PEM
(to turn ON) join the exit-ON mode dynamics (denoted by
⊕). On the other hand if a water heater is too hot and has
to turn OFF, then it joins exit-OFF mode dynamics (denoted
by ⊖) at state x0

⊖ after which EWHs transition under M
naturally to the requesting states. These two PEM exit modes
of operations were introduced in Section II as they appeared
in [4]. Adding these modes of operation to the PEM macro-
model only requires a simple augmentation of states with their
corresponding transition rates as shown in Fig. 4. The updated
full population dynamics is given by (16) and

q[k+1] = Mexit(I+M+
β[k]+M−

β−[k])q[k], y[k] = c⊤q[k],

where Mexit := diag{Mexit-ON, M̄ ,Mexit-OFF}, Mexit-ON is a
matrix of zeros except for the main diagonal (p⊕11, . . . , p

⊕
N⊕N⊕

)

and the first lower diagonal (p⊕12, p
⊕
23 . . . , p

⊕
(N⊕−1)N⊕

),
Mexit-OFF introduces the probabilities to re-enter PEM from
xN

on to x0
⊖ and from x0

⊖ to xN
off with p⊖pem corresponding to

the exit-OFF mode, and M̄ is such that M̄ij = Mij except
for M(N+N⊕+1)N⊕

= p⊕pem, which describe the transition
probabilities to re-enter PEM from the exit-ON mode.

E. Simulation Results

Finally, the micro and macro simulations are compared
against each other. Fig. 5 shows a 16 hour simulation for
both the micro and macro models. Both simulations have been
accepting all requests (β = 1) long enough to show their
steady state and then PEM tracking was switched on with five
minute packets. The chosen time-step for both simulations was
∆t = 5 seconds. It can be observed that since the steady state
(no tracking is been performed) of both simulations agree on
average. Also in this simulation, the tracking error remains
within ±5%.
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Fig. 5. PEM control tracking.

V. CONCLUSIONS

A macro-model for PEM control was developed in terms of
a controlled Markov chain. Quality of service was considered
by introducing exit-ON/OFF modes of operation. Future work
involves further formalization of the macro-model and explore
different approaches to incorporate population heterogeneity.
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