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Abstract— Quasilinear Control (QLC) is a set of methods
used for analysis and design of systems with nonlinear ac-
tuators and sensors. It is based on the method of stochastic
linearization, which replaces a nonlinearity by an equivalent
gain and bias. Here, we leverage QLC to systematically design
an optimal droop controller for primary frequency control
of power systems with asymmetric generator saturation and
renewable penetration. The droop parameters are found by
solving an optimization problem wherein the cost function is a
combination of the change in frequency and the actuator input.
Simulation studies show that the combined output and control
cost is improved compared to a baseline design, and that the
systematic design process provides an appropriate response to
any change in input or system parameters.

I. INTRODUCTION

Control of frequency in power systems is vital to ensure
reliable operation. In a power system, the frequency can
deviate from the nominal value when there is a mismatch be-
tween supply and demand, which could result from changes
in demand, tripping of generators, or isolation of areas
with large generation capacity. A poorly controlled power
system would result in a low quality of supplied electrical
energy that can lead to power system collapse. Hence, power
systems are typically equipped with an automatic frequency
control system that nullifies any change in frequency.

An automatic frequency control system is generally imple-
mented in three parts: primary, secondary and tertiary control
[1]–[3]. Primary Frequency Control (PFC), or droop control,
which is the focus of this paper, serves to bring the frequency
back to an acceptable value locally in a power system area,
although leaving a steady state error in frequency due to
the purely proportional droop controller. This control task
is shared by all generators in the area, irrespective of the
location of the disturbance.

The proportional droop controller used in primary control
can be chosen optimally. This can ensure, for example, a
minimal change in frequency with reduced control effort.
Optimized droop control has been studied in the literature.
For example, Mallada et. al [5] propose an optimal load-
side frequency control mechanism to maintain the grid
within operational constraints. In [6] and [7] averaging-
based distributed controllers, using communication among
the generation units to ensure economic optimization, are
explored. A distributed real time frequency control scheme,
using reverse and forward engineering, is discussed in [8].
In [9], dynamic droop controllers that improve the dynamics
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Fig. 1. Effect of actuator saturation on droop control - A highly saturated
actuator (α=10) leads to oscillations in the frequency deviations from the
nominal for a step change in load power. A less saturated actuator (α =
100) leads to less oscillations. With negligible saturation (α = 1000), the
response is overdamped. Note that a small steady state error is present in
this case, although not visible to the naked eye. This is for illustration only,
with system parameters taken from [4].

without affecting the steady state solution are proposed. In
[10], the tracking of an operating point subject to power
balance over the network is optimized. Delays in frequency
dependent flexible loads are investigated in [11].

These references, however, do not systematically incor-
porate the issue of generator power saturation, which can
take place when, for example, the gate or valve position
that influences the flow of steam into a turbine is restricted,
leading to specific output power limits. By systematically, we
mean a design process that explicitly considers all the system
parameters including saturation limits and, at the same time,
does not lead to overly complex controllers. While neglecting
saturation leads to simplification in the controller design and
analysis, the results obtained may not accurately reflect the
performance when saturation is present.

We illustrate this fact using a simulation analysis, where
the same droop controller is used with varying levels of satu-
ration (we used the system given in [4]). As shown in Fig. 1
by the orange dashed line, an unsaturated actuator leads
to a well-behaved droop response - a momentary change
in frequency, caused due to a step change in load power,
is brought back to a constant value without oscillations.
However, when there is significant generator saturation, the
frequency change shows an underdamped response before
being nullified, as shown by the solid line.

The above example motivates the systematic design of
an optimal droop controller to account for generator satu-
ration in power systems. In general, actuator saturation is
a nonlinearity that cannot be linearized in the traditional



Fig. 2. Stochastic Linearization - the method used in Quasilinear Control.
Here, E[·] is the expectation operator, and u0 is the zero-mean part of u,
i.e., u0 = u− E[u].

sense because large inputs saturate the actuator. While plants
are also nonlinear, they can usually be linearized around an
operating point if the control system is well-designed.

Quasilinear control (QLC) is a set of methods that can
be applied to analyze and optimize such nonlinear systems
[12]–[14]. It employs a mathematical technique referred to
as stochastic linearization [15]–[18], which uses statistical
properties of stochastic inputs to linearize the system, as
shown in Fig. 2. This contrasts with classical describing
function analysis [19], which replaces the nonlinearity by
a describing function whose gain is a function of the (de-
terministic) sinusoidal input amplitude. In [20], for example,
the method of QLC has been applied to control a wind farm
power output. Each turbine has been modeled by a linear
plant preceded by an asymmetric saturation nonlinearity
accounting for the limited availability of wind, which acts
as a random input.

In this paper, we leverage the method of QLC to sys-
tematically design an optimal droop controller that will
dynamically adapt to the system parameters. Numerical
simulations show that the resulting optimal QLC controller
reduces the combined state and control costs by as much
as 17% compared to a baseline design from the literature.
Since QLC depends on all the parameters of the system, any
change in a parameter leads to a systematic redesign of the
optimal controller to meet performance requirements.

The organization of the paper is as follows. In Section II,
the system model is described and the optimization problem
formulated. The description of the QLC design procedure is
given in Section III. Section IV illustrates the design process
using numerical simulations. Section V concludes the paper
with a summary and topics for future research.

II. MODELING AND PROBLEM FORMULATION

A. Primary Frequency Control in Power Systems

Consider a simple two-area power system, which appears
in [4] and is shown in Fig. 3. This is a simplified model to
represent the dominant behavior of a large, interconnected
power system having many control zones. It consists of
two single-bus systems Σ1 and Σ2, each characterized by
six parameters and connected with a tie-line in between
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Fig. 3. Block diagram of primary frequency control of a two-area
interconnected power system

them. The block diagram of system Σi is shown in Fig. 4a.
Here the parameter Tti represents the effective time constant
of the governor/turbine dynamics, and Hi the total inertia
constant of the area, which is rated at the base power Sbi.
The parameter DLi models the motor loads and W0i the
frequency-dependent loads. Finally, the parameter Si, also
known as speed regulation or droop, determines the effective
steady-state speed vs. load characteristic of the generating
units. Modifying this parameter affects the proportional
droop controller gain 1/Si, thereby regulating the change in
frequency from the nominal value of f0. The block satβi

αi
(ui)

models the saturating actuator and is explained in II-B. Each
individual control area Σi has effectively two inputs, the
mechanical power set-point Pm0i and the effective change
in load power Pdi, which acts as a power disturbance. The
change in frequency ∆fi is the controlled output. As shown
in Fig. 3, any mismatch in frequency between the two areas
gives rise (through the block modeled by the parameter
P̂t related to the tie-line reactance) to a power flow ∆Ptie
between the two areas. This power, when combined with
the local load power disturbance ∆PLi and fed back as the
effective change in load power Pdi to each area, regulates
the frequency to a new steady state value, according to the
following equations:

Pd1 = ∆PL1 + ∆Ptie and Pd2 = ∆PL2 −∆Ptie

B. Nonlinearity in the Actuator

In the block diagram of Fig. 4a, it is assumed that the
turbine output ui, which is the change in mechanical power,
is saturated by an asymmetric saturation nonlinearity, shown
in Fig. 5. This situation can arise, for example, when the
position of the gate or valve controlling the flow of steam
into the turbine is restricted, resulting in specific power
limits. The saturation is assumed to be asymmetric, with
an upper bound βi > 0 and a lower bound αi < 0, such
that |αi| > |βi|. This is a reasonable assumption since a
turbine nominally produces mechanical power P0 close to
its designed capacity, P0 + βi. In the event of a frequency
deviation, it can thus produce an output power between
P0+αi < P0 and P0+βi > P0. Since this model is linearized
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Fig. 4. Droop Control System

around the nominal power P0, the change in mechanical
power output vi of turbine is restricted between αi and βi,
as modeled by the asymmetric saturation. Note that in this
paper, vi does not refer to voltage, but we are using this
notation to be consistent with earlier works in the literature
of QLC.

C. Problem Statement

The problem is to design optimal droop parameters S1, S2

that would improve the combined frequency and actuator
input performance of the power system, compared to a
baseline design, should any frequency deviation take place.
This involves using stochastic linearization to find an equiv-
alent quasilinear system, selecting a suitable cost function
to minimize and then optimizing over an admissible region
to find the optimal droop parameters. These are done in the
sections to follow.

III. QLC BASED DROOP CONTROLLER DESIGN

In this section, the method of QLC is leveraged to design
the optimal droop controller. It is appropriate to do so in
this context since the load disturbance in power systems is
stochastic in nature and QLC requires that all exogenous
inputs to the system be random processes. The change in load
power is thus first modeled accordingly. The nonlinear actua-
tor block is then replaced by the corresponding stochastically
linearized block for further analysis. The design process is
explained below.

satβα (u)

u
β

α

βα

Fig. 5. Asymmetric Saturation Nonlinearity
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Fig. 6. Modeling the change in load power

A. Modeling the Load Power Disturbance

The change in load power ∆PLi in area i is modeled as a
wide sense stationary Gaussian white noise with mean µLi
and standard deviation σLi. The Gaussian distribution is a
reasonable modeling assumption for a power system load
disturbance having small temporal scales due to the central
limit theorem and has been used in [20] to model wind farm
power disturbance. Similar reasoning can be applied in solar
applications. The noise ∆PLi is modeled as a standard white
Gaussian noise wi, as shown in Fig. 6, passed through a
coloring filter FΩd

(s) of bandwidth Ωd, multiplied by a gain
σLi, and added to a bias µLi. To ensure a realistic disturbance
signal, the filter bandwidth is chosen to equal the closed loop
bandwidth of the control area for the system to be able to
detect the change in load power. Also, by choosing the filter
such that its H2-norm equals unity, the final signal ∆PLi is
ensured to have mean µLi and standard deviation σLi.

B. Stochastic Linearization of the Nonlinear Actuator

To analyze the system and determine the optimal droop
parameters, the nonlinear actuator needs to be linearized. The
method of stochastic linearization leveraged here utilizes the
statistical properties of the disturbance signal to linearize the
system. As shown in [12], this is superior to the usual method
of Jacobian linearization for this class of nonlinear systems.
This is because the stochastically linearized block depends on
all elements of the closed loop system. The method of QLC
thus provides a more faithful picture of the entire system,
contrary to Jacobian linearization, where the linear block
depends only on the nonlinear element and the operating
point.

Stochastic linearization considers a nonlinear system de-
scribed by the following input-output relationship:

v (t) = f (u (t))

where u (t) is the input random process, v (t) is the output
and f (·) is a piecewise differentiable function. Stochastic
linearization [13], [21] reduces this system to an equivalent



linear system described by (see also Fig. 2):

v̂ (t) = Nu0 (t) +M

where u0 (t) = u (t) − µu is the zero-mean part of the
input u (t), µu the mean of u (t) and v̂ (t) the new output.
Here the parameter N is called the quasilinear gain and M
the quasilinear bias. They are calculated using the follow-
ing equations, which minimize the mean square difference
E[(v − v̂)

2
]:

N = E

[
df (u)

du

∣∣∣∣
u=u(t)

]
(1)

M = E [f (u (t))] (2)

Leveraging the method of stochastic linearization, the
nonlinear system of area i described by Fig. 4a can be
reduced using equations (1) and (2) to an equivalent linear
system shown in Fig. 4b, where the nonlinearity satβi

αi
has

been replaced by an equivalent quasilinear gain Ni and a
bias mi = Mi −Niµûi such that Mi is the quasilinear bias
and µûi the mean of actuator input. Here,

Ni =
1

2

[
erf
(
βi − µûi√

2σûi

)
− erf

(
αi − µûi√

2σûi

)]
(3)

and
Mi =

αi + βi
2

+
µûi
− βi
2

erf
(
βi − µûi√

2σûi

)

−µûi
− αi
2

erf
(
αi − µûi√

2σûi

)
− σûi√

2π

{
exp

[
−
(
βi − µûi√

2σûi

)2
]

− exp

[
−
(
αi − µûi√

2σûi

)2
]}

(4)

where σûi is the standard deviation of ûi, ûi is the actuator
input in the stochastically linearized system, and

erf (x) =
2√
π

∫ x

0

e−t
2

dt

is the error function. Recall that αi and βi are the generator
saturation limits in area i. For more details, please refer to
[12], [20].

As seen from equations (3) and (4), calculation of N1, N2,
M1 and M2 requires knowledge of µû1 , µû2 , σû1 and σû2 .
Since the system is interconnected, these values depend on
each other. For the sake of illustration, we assume that the
disturbance in load power takes place only in the first area,
i.e., ∆PL2 = 0. Considering that the system is operating
in the stationary regime, the values of σû1

and σû2
can be

found using the transfer function T1 (s) from the change in
load power ∆PL1 to the actuator input û1:

σû1 = ‖FΩd
(s)T1 (s)‖2 σL1 = f1 (N1, N2, S1, S2) (5)

where ‖ · ‖2 is the H2-norm. Similarly, using the transfer
function T2 (s) from the change in load power ∆PL1 to the
second actuator input û2:

σû2
= ‖FΩd

(s)T2 (s)‖2 σL1 = f2 (N1, N2, S1, S2) (6)

The values of µû1 and µû2 can be found by first finding
the transfer functions from Pm01, Pm02, µL1, m1 and m2 to
û1 and û2 and then evaluating the DC gains, which leads to:

µû1
= Pm01 +

L

S1
= f3 (M1,M2, S1) (7)

µû2 = Pm02 +
L

S2
= f4 (M1,M2, S2) (8)

where:
L =

DL1DL2

DL1 +DL2
(µL1 −M1 −M2) (9)

The values of N1, N2, M1 and M2 can thus be found by
substituting (5)-(9) into (3) and (4), which results in a system
of four transcendental equations in the four unknowns N1,
N2, M1 and M2. MATLAB’s fsolve command provides
a convenient way to solve this numerically.

C. Selection of Suitable Cost Function

To find an optimal controller, a suitable cost function is
required. It is desirable to have small change in frequency
and low actuator input. Several possible objective functions
were plotted as a function of the droop parameters S1 and S2,
which are the optimization variables. In each case, actuator
saturation was neglected, as it mainly serves to impose
constraints and does not change the nature or shape of the
cost function. Also, no change in load power of area 2 was
assumed, i.e., ∆PL2 = 0.

An objective function defined as the sum of variances of
frequency deviations in the two areas, i.e., σ2

∆f̂1
+ σ2

∆f̂2
,

results in a surface shown in Fig. 7. Note that ∆f̂i are
the outputs of the stochastically linearized system shown in
Fig. 4b. For plotting this surface, the values of σ∆f̂1

and
σ∆f̂2

were calculated using the following equations, similar
to equations (5) and (6):

σ∆f̂1
= ‖FΩd

(s)T3 (s)‖2 σL1

σ∆f̂2
= ‖FΩd

(s)T4 (s)‖2 σL1

where T3 (s) and T4 (s) are the transfer functions from ∆PL1

to ∆f̂1 and ∆f̂2 respectively.
The surface has an infimum at zero, leading to infinite

gain in the proportional controller, as the control action is
not penalized. A surface similar to that of Fig. 7 results when
the objective function is defined as the sum of variances of
frequency deviations: ∆f̂1 and ∆f̂1, and also the variances
of rate of change of frequency (ROCOF): d

dt

(
∆f̂1

)
and

d
dt

(
∆f̂2

)
. Unlike the surface in Fig. 7, the surface shown

in Fig. 8, which is generated using the objective function
defined as the sum of variances of changes in frequency
and lowly penalized variances of actuator inputs, is more
suitable for implementation. This is because the surface has
a specific minimum leading to a finite controller gain unlike
the other. Hence, this surface is chosen for formulating
the optimization problem, as explained in the following
subsection. This is also consistent with standard practice in
optimal control, for example in designing a linear quadratic



Fig. 7. Surface contour plot of objective function σ2
∆f1

+σ2
∆f2

neglecting
actuator saturation. The surface can be seen to have an infimum at the origin.

Fig. 8. Surface contour plot of objective function σ2
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+
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)
neglecting actuator saturation. The non-zero minimum

of this surface allows for the design of a finite controller gain compared to
the surface of Fig. 7.

regulator (LQR), which optimizes the combined state and
control costs for a system.

D. Optimization Problem

Using the surface explained in the previous subsection, the
optimization problem is formulated as:

min
S1,S2

σ2
∆f̂1

+ σ2
∆f̂2

+ ρ
(
σ2
û1

+ σ2
û2

)
subject to (3)–(8) and S1, S2 > 0 (10)

where ρ > 0 is a sufficiently small scalar. Since this problem
is non-convex, with transcendental constraints (3) and (4), it
cannot be solved analytically. However, it can be approached
numerically, for example, using MATLAB’s lsqnonlin
command.

IV. PERFORMANCE EVALUATION AND DISCUSSION OF
RESULTS

To evaluate the performance of the designed optimal
controller, the two-area power system in Fig. 3 was simulated
for a sufficiently long time, first with droop parameters from
the baseline design of [4], and then with the designed optimal
QLC controller. The value of ρ for the optimization was
1.27 × 10−8, which was selected by analyzing the Pareto
optimal front discussed below. The system parameters of
area 2 were chosen to equal those of area 1, as in Table

TABLE I
PARAMETERS AND THEIR VALUES USED FOR SIMULATION

Parameter Value
H1 = H2 5 s
Sb1 = Sb2 10 GW

f0 50 Hz
Dl1 = Dl2

1
200

Hz/MW
W01 = W02 0 MW/Hz
S1 = S2

1
5000

Hz/MW
P̂t 533.33 MW

I, so that both areas were of the same size. In both cases,
the load power change in area 1 was modeled as a zero-mean
white Gaussian noise with a standard deviation of σL1 =200
MW, passed through a 3rd-order Butterworth filter FΩd

(s),
with bandwidth Ωd chosen to be the same as the closed loop
bandwidth of one of the power system areas (around 0.56
Hz):

FΩd (s) =

√
3

Ωd

(
Ω3

d

s3 + 2Ωds2 + 2Ω2
ds + Ω3

d

)
,Ωd = 0.56 Hz

(11)
For illustration, the load power change in the second area
was assumed to be zero. For both areas, the value of α was
chosen to be -100 MW and β = 5 MW, so that the saturation
is asymmetric as explained in Section II-B.

The numerical optimization required trying several initial
conditions before converging to the global minimum. The
results, tabulated in Table II, show that the optimal droop
parameters reduced the objective function from 0.0197 to
0.0164, i.e., by 17%, compared to the baseline design. Note
that the optimization results in an increase in S2 (i.e., a
decrease in 1

S2
), which is reasonable, since the disturbance

does not dynamically affect the second area as much as it
does the first area. Although the sum of variances of changes
in frequency (i.e., the state cost) increased by 4% from
0.0152 to 0.0158, the control effort reduced by 88% from
34.74 × 104 to 4.05 × 104. Hence, this optimal controller
achieves a minimal combined state and control cost at the
expense of a slight increase in state cost.

To demonstrate the trade-off between state and control
costs, a Pareto optimal front was generated by varying the
control penalty from ρ = 10−10 to ρ = 10−5, computing
the quasilinear gains and biases for each ρ, and calculating
the resulting costs using the QLC equations. The result is
depicted by the curve in Fig. 9, where the optimal QLC gains
are shown to produce a reduced combined cost compared to
those in the baseline design of [4]. Note from Fig. 9 that,
in contrast to the data above, the QLC equations predict a
reduction in the state cost compared to the baseline design.
This discrepancy is due to the inaccuracy of stochastic
linearization for highly asymmetric systems [13], which
will be a topic of future investigation. Nevertheless, at the
optimum, the state cost of the nonlinear system is 0.0247,
while that of the stochastically linearized version is 0.0231,
indicating the high accuracy of stochastic linearization.

To illustrate the fact that QLC allows us to systemati-
cally redesign the controller upon parameter changes, we
performed the following experiment. We assumed that σL1 in



TABLE II
SYSTEM PARAMETERS BEFORE AND AFTER OPTIMIZATION

Parameter Baseline Optimal
S1 0.00020 0.0006
S2 0.00020 50.6705
N1 0.0694 0.1979
N2 1.0000 1.0000
M1 -44.1950 -37.9331
M2 0.0011 0.0000

σ2
∆f1

+ σ2
∆f2

0.0152 0.0158
σ2

∆f̂1
+ σ2

∆f̂2
0.0156 0.0160

σ2
∆f1

+ σ2
∆f2

+ ρ
(
σ2
u1

+ σ2
u2

)
0.0197 0.0164

σ2
∆f̂1

+ σ2
∆f̂2

+ ρ
(
σ2
û1

+ σ2
û2

)
0.0201 0.0166

the previous experiment increased from 200 MW to 300 MW
due to, for example, increased renewable penetration. If the
same QLC-based droop parameters are applied, the optimal
value of the cost function increases from 0.0164 to 0.0481.
This increase is reasonable, because a larger input forces
the system to operate closer to its limits, which constrains
achievable performance. However, if the droop parameters
are re-designed with the new information on σL1, the value
of the cost function is lowered to 0.0479, a decrease by
0.5%. Note that this decrease is small compared to that in
the previous case, since the optimization is being performed
on an already optimal QLC-based controller produced using
σL1 = 200 MW. This experiment illustrates the effectiveness
of QLC in systematically redesigning controllers based on
available information on system parameters, which can be
found out experimentally.

V. CONCLUSION
In this paper, the method of QLC has been applied to

design an optimal droop controller for primary frequency
control of power systems with generator saturation. Numer-
ical simulations show that the controller achieves a reduced
combined state and control cost, compared to a baseline
design, at the expense of a slightly increased state cost. Since
the process depends on the values of all the system param-
eters, the optimal controller can dynamically update itself
on change of parameters, for example, the load variability
or the saturation limits, to produce optimal performance.
Future work includes the application of QLC to saturation in
slew rate, the numerical stability and robustness of the QLC
design, application to power systems with more areas and
distributed renewable generation, and accuracy of stochastic
linearization.
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