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Abstract—This paper presents a method for the optimal control
of discrete and continuous devices in an unbalanced three-
phase distribution network with significant renewable generation.
A hierarchical control scheme is presented where the discrete
mechanical assets are dispatched at a slow time-scale as a mixed-
integer program (MIP) and the continuous DERs are controlled
at a fast time-scale as a convex program. The optimization
programs are operated at two time scales as they manage
controllable grid resources with different levels of responsiveness
and flexibility. The MIP optimizes slow mechanical assets to
position voltage robustly against uncertain net-load and a three-
phase SOCP program is used to solve the fast loss-minimization
optimization for the continuously operated DERs while providing
corrective control against the intermittent and variable renewable
net-load generation. The scheme is presented on the IEEE-13
node test feeder.

Index Terms—Distributed energy resources, distribution sys-
tem optimization, energy storage, loss minimization, voltage
regulation.

I. INTRODUCTION

The rapid growth in renewable generation over the past
decade has underscored the importance of large-scale in-
tegration of feeder and substation automation technologies,
energy storage, demand response, and energy management
programs [1], [2]. With the energy flexibility inherent to many
DERs, future grid operational paradigms must dispatch them to
engender and maintain optimal network conditions, even under
significant renewable (but intermittent) generation. The opti-
mal power flow (OPF) is a useful tool to coordinate the grid
resources subject to power balance constraints. Traditionally,
DistFlow algorithms based on branch flow power models are
used to solve the OPF problem in distribution networks [3].
However, these methods assume a balanced network model,
which is not the case when 3-phase distribution networks with
significant small-scale renewable generation are considered.
Distribution systems are often unbalanced and it becomes
necessary to study the three-phase model of the system for
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accurate analysis and control [4]. The distribution grid is also
made up of many different types of discrete and continuous
operated devices. These devices operate at different time
scales, which necessitates the use of separate optimization
loops to coordinate them. Furthermore, the mechanical assets
also have operational constraints on tap changes per hour to
limit wear and tear, which necessitates separation. Heuristics
have been proposed to solve this problem, but given the
large number of devices encountered in practical systems,
they represent a computational challenge [5]. The flexibility
offered by inverter-based energy storage devices can make
them an integral part of distribution system operations. In fact,
optimized energy storage dispatch will play an important role
in cost-effective integration of solar PV with grid operations
[6]. However, the addition of storage leads to the coupling of
different time-steps, which complicates the OPF models. This
requires solving a multi-period optimization problem based on
the prediction of load and solar generation.
The power flow equations relate the voltages in the network
with the power injections. The solution space of the power
flow equations is generally non-convex due to their non-
linear nature [7]. The aim of the optimal power flow (OPF)
problem is to attain certain distribution system objectives while
satisfying all the network and device constraints. Recently,
there have been efforts to use convex optimization techniques
to solve the OPF problem [8], [9]. Previous works in literature
have shown that for certain (e.g. radial) network topologies,
the convex relaxations, such as second order cone programs
(SOCP) and SDP can be exact [10], [11]. In [8] the necessary
and sufficient conditions for a zero duality gap, i.e., the primal
and dual solutions have the same optimal value, is given. It
is shown that the zero duality gap holds for many practical
IEEE systems after adding resistance to every transformer
and when load over-satisfaction is allowed. However, these
methods only deal with the balanced single phase equivalent
models. Furthermore, SDP solvers are still not numerically
robust [12].
Linear approximate models can also be powerful when they
are sufficiently accurate. One particular approximation is an
extension of the DistFlow model to three-phase unbalanced



power flows, Dist3Flow, that is obtained by linearization and
certain assumptions on the per-phase imbalances [13], [14].
Discrete devices like the capacitor/reactor banks and line reg-
ulators (ON/OFF) and load-tap-changing (LTC) transformers
are an integral part of the distribution management system.
Due to the discrete state of these devices, including them into
an optimization problem renders the problem NP-hard [15].
Previously, McCormick relaxation and linearization techniques
have been used to incorporate these devices into the OPF
problem for a balanced network [16]. This paper builds upon
these works but leverages the notion that discrete devices and
continuous DERs can offer their flexibility at different time-
scales and, hence, can be optimized in separate loops.
Distribution networks are inherently unbalanced which makes
it necessary to study the full three-phase models of these
networks. In [17], [18] the authors use SDP rank constraint
relaxation to the three phase model of a distribution network.
However, the inclusion of storage devices’ state-of-charge
(integrator) dynamics require multi-period optimization. The
authors in [19], [20] have used multi-period SDP relaxation
techniques to solve this problem in transmission networks,
whereas in [21], the authors have utilized an AC-QP algorithm
that is initialized with an SOCP relaxation. However these
multi-period OPF formulations neglect the non-unity charge
and discharge efficiency of the battery, which can create
unrealizable solutions to the OPF problem in the form of
simultaneous charging and discharging of the battery.
• In this paper, the authors present a novel hierarchical OPF

scheme for distribution systems operations that separates out
the slow mechanical (into a discrete control scheme) and
fast power-electronic (into a continuous control scheme) grid
assets on two different timescales.

• For the continuous control scheme, the Service Transformer
Layer (STL) elements are dispatched optimally using multi-
period three-phase SOCP convex relaxation techniques ap-
plied to radial distribution networks for fast corrective
control.

• The phenomenon of simultaneous charging and discharging
of batteries in a convex model of 3-phase system is also
analyzed and conditions are provided under which this can
be avoided.

The rest of the paper is organized as follows. Section II pro-
vides the MILP formulation of the outer loop to optimize the
operation of mechanical control assets. Section III provides the
convex formulation of the inner loop to reduce the distribution
network losses. Conditions under which the complementarity
constraint is enforced in the convex formulation of the inner
loop are analyzed in Section IV. Test case results on the
IEEE-13 bus system are presented in Section V and finally
the conclusions and future work are presented in Section VI.

II. OUTER LOOP FORMULATION: VOLTAGE POSITIONING

The outer loop of the formulation is designed to operate
the discrete control assets of the distribution network like on-
load tap change transformers, capacitor banks, etc. Since these
devices operate by mechanical switching, to reduce wear and

Figure 1. Flowchart showing the hierarchical time-scale control algorithm.
Based on the hourly forecast net load, the MILP model dispatches the
mechanical assets. Fixing the mechanical assets and based on minute by
minute net load forecasts, the SOCP model determines the dispatch of STL
flexible resources. The control inputs are then fed to a 3-phase non-linear
model of the system.

tear, their values are updated at a slower time scale of the
order of an hour. In this optimization loop, the aim is to
minimize the voltage deviation from a nominal set-point using
the operation of these discrete assets. In addition to scheduling
mechanical assets, the outer loop also positions energy of the
STL elements (i.e., schedules active power exchanges) to take
into account the variability of solar PV generation and forecast
energy demands (and, possibly, energy market interactions).
Note that the reactive capability of STL elements is reserved
for corrective control in the inner loop.
Since discrete decision variables only take integer values, the
outer loop problem turns into a mixed-integer problem, which
is NP-hard. Branch and bound techniques can be effective
on mixed-integer programs if their continuous versions are
convex. In order to reduce the computational complexity of
the outer loop, a three-phase linearized model of the network
is used and the problem is reduced to a mixed-integer linear
program (MILP) [13]. This problem is solved in a receding
horizon fashion where the 24 hr ahead solar and load forecasts
are used to obtain the operation of discrete assets.

For the model, consider an unbalanced three-phase network
with N nodes and L feeder segments, where each node and
segment has φ = 1, 2, 3 phases. The system has an STL
element at nodes G ⊂ N , transformers between nodes on
segments T ⊂ L and capacitor banks at nodes C ⊂ N . The
STL elements are composed of distributed generation, such
as solar PV and battery storage as shown in figure 2. These
STL elements are capable of four quadrant operation (i.e.,
can supply and/or consume active and reactive power). The
optimization horizon runs from k = 1, ...,K − 1,K.

Let Un,k ∈ R|φ| represent the square of the per unit voltage
magnitude at node n at time instant k (i.e., Un,k = |Vn,k|2)
and Unom,n ∈ R|φ| represent the square of the per unit nominal
voltage magnitude at node n. The MILP problem is then
formulated as:

min

K∑
k=ko

|φ|∑
φ=1

N∑
n=1

(Un,k − Unom,n)2 (1)

subject to: Power balance (neglecting losses):
Pn,k =

∑
m

Pm,k + PLn,k −WN
n,k,∀n ∈ G, k (2)



Pn,k =
∑
m

Pm,k + PLn,k,∀n ∈ N/G, k (3)

Qn,k =
∑
m

Qm,k +QLn,k − ξn,kUn,kqnom,n,∀n ∈ C, k (4)

Qn,k =
∑
m

Qm,k +QLn,k,∀n ∈ N/C, k (5)

where Sn,k = Pn,k + jQn,k ∈ C|φ| is the complex power at
node n at time k, SLn,k = PLn,k + jQLn,k ∈ C|φ| is the complex
load at node n at time k, WN

n,k ∈ C|φ| is the STL generated
power at node n at time k, ξn,k ∈ Z|φ| is the number of
capacitor banks operated at node n at time k and qnom,n ∈
R|φ| is the nominal ratings of each capacitor bank connected
at node n.
Voltage square magnitude relation (neglecting losses):
Un,k = Um,k +MP

n,mPm,k +MQ
n,mQm,k,∀n ∈ N/T, k (6)

Un,k = (1 + τnζn,k)2Um,k,∀n ∈ T, k (7)
where MP

n,m ∈ R|φ|×|φ| and MQ
n,m ∈ R|φ|×|φ| are obtained

from the impedance matrices of the feeder segments [13]
connecting nodes n and m, τn ∈ R|φ| is the tap step at node
n and ζn,k ∈ Z|φ| is the integer representing the tap positions
of the transformer at node n and time k.
Voltage square magnitude constraint:

Umin,n ≤ Un,k ≤ Umax,n,∀n ∈ N, k (8)
where Umin,n ∈ R|φ| and Umax,n ∈ R|φ| represent the
minimum and maximum allowable voltage magnitude square
at node n and time k.

Substation voltage set-point:
U0,k = ynom,∀k (9)

where ynom ∈ R|φ| is the fixed feeder voltage
Line power flow constraint:

P 2
n,k +Q2

n,k ≤ S2
max,n,∀n ∈ N, k (10)

where Smax,n ∈ R|φ| is the maximum allowable complex
power flowing into node n.

Node power relations:
WN
n,k = WS

n,k + P dn,k − P cn,k,∀n ∈ G, k (11)

where WS
n,k ∈ C|φ| is the solar power generated at node n and

time k, P dn,k ∈ R|φ| and P cn,k ∈ R|φ| are the battery discharge
and charge power respectively at node n and time k.

Battery state of charge and complementarity con-
straints:

Bn,k+1 = Bn,k + ηc,nP
c
n,k∆t−

P dn,k
ηd,n

∆t, ∀n ∈ G, k (12)

Bmin,n ≤ Bn,k ≤ Bmax,n,∀n ∈ G, k (13)

zn,kPmax,n ≥ P cn,k ≥ 0,∀n ∈ G, k (14)

(1− zn,k)Pmax,n ≥ P dn,k ≥ 0,∀n ∈ G, k (15)

zn,k ∈ 0, 1,∀n ∈ G, k (16)
where Bn,k ∈ R|φ| is the state of charge of the battery at
node n and time k, ηc,n ∈ R|φ| and ηd,n ∈ R|φ| are the
charging and discharging efficiencies respectively at node n,

Bmin,n ∈ R|φ| and Bmax,n ∈ R|φ| are the minimum and
maximum state of charge of the batteries at node n, Pmax,n ∈
R|φ| is the maximum allowable power from the battery at node
n, zn,k ∈ Z|φ| is either 0 or 1, and ∆t ∈ R is the time between
two intervals k and k + 1.

Transformer tap and Capacitor bank constraint:
Nmax,n ≥ ζn,k ≥ Nmin,n,∀n ∈ T, k (17)

Qmax,n ≥ qtn,k ≥ Qmin,n,∀n ∈ C, k (18)

where Nmin,n ∈ Z|φ| and Nmax,n ∈ Z|φ| are the minimum
and maximum allowable tap positions of the transformer at
node n, Qmin,n ∈ Z|φ| and Qmax,n ∈ Z|φ| are the minimum
and maximum number of allowable capacitor banks that can
be used at node n.

The mixed-integer program given in (1)-(18) is non-linear
due to the capacitor bank and transformer tap relations in (4)
and (7). The capacitor bank relation of (4) is linearized by
using McCormick relaxation [22]:

Qn,k =
∑
m

Qm,k +QLn,k − qn,kqnom,n,∀n ∈ C, k (19)

qn,k ≥ Un,kQmin,n + qtn,kUmin,n −Qmin,nUmin,n (20)

qn,k ≥ Un,kQmax,n + qtn,kUmax,n −Qmax,nUmax,n (21)

qn,k ≤ Un,kQmax,n + qtn,kUmin,n −Qmax,nUmin,n (22)

qn,k ≤ Un,kQmin,n + qtn,kUmax,n −Qmin,nUmax,n (23)

where qn,k ∈ R|φ|
The non-linear transformer tap relation in (7) is first linearized
as in [16] by neglecting the quadratic term.

Un,k = Um,k + 2τnxn,t,∀n ∈ T, k (24)
The modeling error is no worse than about ±1 tap position.
Then a similar McCormick relaxation is applied. With these
changes, the outer loop problem is simplified to a mixed-
integer linear program (MILP)

III. INNER LOOP FORMULATION: CORRECTIVE OPF

The aim of the inner loop is to minimize the real power
losses in the distribution network and track a power reference
signal from the transmission level, while keeping the system
within its operational bounds. This program optimizes the
Service Transformer Layer (STL) elements, over the fast
timescale.

Figure 2. Service Transformer Layer (STL) architecture. The STL elements
are controlled through a four quadrant control scheme and can supply and
consume both real and reactive power. Each STL element is composed of a
renewable source of energy such as solar power and some form of storage
like a battery bank.



This corrective optimization loop is required to be fast
(order of a minute). A three-phase second order cone program
(SOCP) is used to solve the optimization problem. SOCP’s are
numerically more robust than SDP’s and also have a shorter
solve time. A branch flow model (BFM) is used to represent
the power flow equations of the three-phase network. Branch
flow models are generally more numerically robust then branch
injection models (BIM) [18]. Thus, let BFM be defined as:[

Wn,t Sl,t
SHl,t Il,t

]
=

[
Vn,t
il,t

] [
Vn,t
il,t

]H
(25)

where Vn,t ∈ C|φ| is the voltage at node n and time t,
il,t ∈ C|φ| is the current in line l at time t.

The inner loop optimization problem can then be formulated
as:

min

T∑
t=t0

|φ|∑
φ=1

(diag(S0,t)) +

L∑
l=1

T∑
t=t0

|φ|∑
φ=1

(diag(RlIl,t)) (26)

subject to:
Power balance (BFM):
diag(Sl,t)− diag(ZlIl,t) +WN

n,t − SLn,t =
∑
p

(diag(Sp,t))

(27)
where Rl ∈ R|φ|×|φ| is the resistance of line l and Zl ∈
C|φ|×|φ| is the impedance of line l.
Power flow equations(BFM):

Wn,t = Wm,t − (Sl,tZ
′
l + ZlSl,t) + ZlIl,tZ

′
l (28)

Line power flow constraints:
|diag(Sl,t)| ≤ Smax,n,∀l, t (29)

Relation between Wn,t, Il,t, Sl,t and Vn,t, in,t is then:
|Wn,t(i, j)|2 = Wn,t(i, i)Wn,t(j, j),∀i 6= j (30)

|Il,t(i, j)|2 = Il,t(i, i)Il,t(j, j),∀i 6= j (31)

|Sl,t(i, j)|2 = Wn,t(i, i)Il,t(j, j),∀i, j (32)
Voltage constraint:

Umin,n ≤ diag(Wi,t) ≤ Umax,n,∀n ∈ N, t (33)
Solar PV constraint:

|WS
n,t| ≤ Gmax,n,∀n ∈ G, t (34)

where Gmax,n ∈ R|φ| is the apparent power limit of the solar
inverter at node n.
Node power relations:

real(WN
n,t) = real(WS

n,t) + P dn,t − P cn,t (35)

imag(WN
n,t) = imag(WS

n,t) + P qn,t (36)

where P qn,t ∈ R|φ| is the reactive power supplied by the battery
at node n and time t.
Battery state of charge and complementarity constraints:

(P dn,t − P cn,t)2 + (P qn,t)
2 ≤ H2

max,n (37)

Bn,t+1 = Bn,t + ηc,nP
c
n,t∆t−

P dn,t
ηd,n

∆t (38)

Bmin,n ≤ Bn,t ≤ Bmax,n (39)

zn,tPmax,n ≥ P dn,t ≥ 0 (40)

(1− zn,t)Pmax,n ≥ P cn,t ≥ 0 (41)

zn,t ∈ 0, 1 (42)
where Hmax,n ∈ R|φ| is the apparent power limit of the
battery inverter at node n.
The inner loop model from (26)-(42) is non-linear due to the
equality constraints in (30)-(32) and also mixed-integer due to
the integer constraints in (40)-(42). These constraints make the
problem NP-hard. The non-linear equality constraints in (30)-
(32) are relaxed by a second order cone relaxation to convert
the problem into an SOCP, as shown below:∣∣∣∣ 2Wn,t(i, j)

Wn,t(i, i)−Wn,t(j, j)

∣∣∣∣
2

≤Wn,t(i, i) +Wn,t(j, j) (43)∣∣∣∣ 2Il,t(i, j)
Il,t(i, i)− Il,t(j, j)

∣∣∣∣
2

≤ Il,t(i, i) + Il,t(j, j) (44)∣∣∣∣ 2Sl,t(i, j)
Wn,t(i, i)− Il,t(j, j)

∣∣∣∣
2

≤Wn,t(i, i) + Il,t(j, j) (45)

If the complementarity constraints in (40)-(42) are also re-
laxed, the inner loop model becomes convex and can be solved
in polynomial time.

IV. RELAXING COMPLEMENTARITY CONSTRAINT

The constraints in (40)-(42) ensure that the batteries in the
system do not simultaneously charge and discharge. But these
constraints make the second order cone program of the inner
loop non-convex. One solution to this problem would be the
use of mixed-integer SOCP as in the outer loop, but this would
increase the computation time substantially. As it is desired for
the inner loop to solve to (near) optimality within a minute,
this option would not be realizable. Thus, the approach is to
relax these constraints and analyze under which conditions the
optimal solution satisfies the complementarity constraint.

In [23], [24], the authors provide conditions under which
simultaneous charging and discharging can be avoided in the
optimal solution for an economic dispatch problem. In [24],
Karush-Kuhn-Tucker (KKT) conditions are analyzed for a
linear DC model of the economic dispatch problem and they
show that under realistic assumptions simultaneous charging
and discharging is avoided. In this paper, this analysis is
extended to a distribution system setting where the objective is
to minimize the network losses and also consider four-quadrant
battery operation.

A. Without penalizing SoC deviations from reference

Without the complementarity constraints in the SOCP
model, simulations in Fig. 3 clearly illustrate simultaneous
charging and discharging for battery connected at node 680
and phase b in the test feeder in Fig. 4 for the IEEE-13 node
system [25]. To overcome this battery modeling challenge,
the objective function of the optimization problem (network
objective) is modified to include a term that accounts for
the losses in the battery due to charging and discharging
effects. Since simultaneous charging and discharging results in



higher battery losses, the addition of this term in the objective
function overcomes the effect.
The addition of this battery power loss term in the objective
function does not affect the original network loss function.
The solutions have the same objective value and the battery
loss term restricts the feasible set to points that also enforce
the complementarity constraint. This is an improvement from
the standard method of avoiding simultaneous charging and
discharging by explicitly adding the battery power into the
objective function [26], which does mitigate the charging
issue, but yields a sub-optimal solution.
The modified objective function is given by:

F(N ) +

T∑
t=t0

|G|∑
n=1

|φ|∑
φ=1

P cn,t(1−ηc,n) +P dn,t

(
1

ηd,n
− 1

)
(46)

where F(N ) is given in (26) and the second terms minimize
the power losses due to battery inefficiency. The state of charge
tracking is removed from the objective and its effect will
be analyzed in the next section. With the modified objective
function, the SOCP optimization satisfies the complementarity
condition as shown in Fig. 3. Lemma IV.1 provides conditions
under which the inner loop SOCP enforces the battery’s
complementarity constraints and avoids simultaneous charging
and discharging.

Figure 3. Comparison of simultaneous charge and discharge in battery at node
680, phase a with and without battery loss term in objective. The reason for
simultaneous occurrence of charge and discharge is that the objective function
only has terms for the losses in the distribution lines and does not take into
account the losses in the battery due to charging and discharging (this is
different from [24] where the cost explicitly includes terms for battery power).
Thus, all solutions with the same value for P d − P c, are equivalent in the
optimization solution, which begets simultaneous charging and discharging.

Lemma IV.1. Since the SOCP optimization problem is convex
and Slater’s condition holds, the Karush-Kuhn-Tucker (KKT)
conditions are both necessary and sufficient. It can be proven
that the relaxation is exact under the following sufficient
conditions:

C1: λp ≥ 0 (next unit of power injected will not decrease
overall losses)

C2: λs = 0 (STL element is not operating at its apparent
power limt, i.e., inverter is oversized)

where λp is the Lagrange multiplier associated with (27) and
λs is the Lagrange multiplier associated with (37).

Proof. From the KKT conditions, the following equation is
obtained with respect to battery charging power at node n,
phase φ at time t:

∂L

∂P c
= (1− ηc)− λc + λc − ηcΓ(t)∆t

+ λp − 2λs(P
d − P c) = 0

(47)

where L is the Lagrangian, Γ(t) =
∑T
τ=t(β1,n,φ(τ) −

β2,n,φ(τ)), β1,n,φ(τ) and β2,n,φ(τ) are Lagrange multipliers
associated with (39), P c and P d are the charging and dis-
charging power for the battery at node n, phase φ at time
t and ηc is the charging efficiency of the battery at node n.
Let P c > 0, then λc = 0. Using C1, C2 and that ηc < 1,
then all other terms in (47) are non-negative which results in
Γ(t) > 0. With respect to the battery discharge power, the
following KKT condition results:

∂L

∂P d
= (

1

ηd
− 1)− λd + λd +

Γ(t)∆t

ηd
− λp + 2λs(P

d − P c) = 0

(48)

Assume P d > 0 (simultaneous charge and discharge), then
λd = 0. Adding (47) and (48) gives:(

1

ηd
− ηc

)
+ λc + λd + Γ(t)∆t

(
1

ηd
− ηc

)
= 0 (49)

In the above equation λc ≥ 0 and λd ≥ 0, which implies
Γ(t) < 0. But this is contradiction, which shows that P cP d ≡
0. Case for P d > 0 is similar.

B. Terminal penalty on state of charge (SoC)

When the reference SoC (provided by the outer loop MILP)
tracking is added to the objective of the inner loop SOCP, the
objective function of the SOCP becomes:

F(N ) + α

T∑
t=t0

|G|∑
n=1

|φ|∑
φ=1

(
P cn,t(1− ηc,n) + P dn,t(

1

ηd,n
− 1)

)

+ γ

|G|∑
n=1

|φ|∑
φ=1

(∆Bn)
2

(50)
where ∆Bn = Bn,T −Bref , Bn,T is the terminal SoC of the
battery at the terminal interval T given by:

Bn,T (φ) = ∆t

T∑
t=t0

ηc,nP
c
n,t(φ)−

P dn,t(φ)

ηd,n
(51)

and Bref is the reference SoC obtained from solving the outer
loop MILP. The optimal solution will now have a Pareto-
optimal front between the loss reduction term and the SoC
tracking term. It is necessary to check whether the comple-
mentarity constraint holds under this addition to the objective
function and Lemma IV.2 provides the sufficient conditions
under which the complementarity condition is satisfied.
Lemma IV.2. With reference tracking, the complementarity
constraint is enforced under these sufficient conditions:

C1: λp ≥ 0
C2: λs = 0
C3: α > 0



Proof. Using (51), the KKT condition with respect to the
battery charging power gives:

∂L

∂P c
= α(1− ηc) + 2γηc∆Bn(φ)∆t− λc + λc

− ηcΓ(t)∆t+ λp − 2λs(P
d − P c) = 0

(52)

Let P c > 0, then λc = 0, λc ≥ 0, and (52) gives:

(Γ(t)− 2γ∆Bn(φ))∆t ≥ α(1− ηc)
ηc

+
λp
ηc

+
2λs(P

c − P d)
ηc

(53)

The KKT condition with respect to the battery discharge power
gives:

∂L

∂P d
= α(

1

ηd
− 1)− 2

γ

ηd
(Bn,T −Bref )− λd + λd

+ Γ(t)
∆t

ηd
− λp + 2λs(P

d − P c) = 0

(54)

Since λd ≥ 0, (54) gives:
(Γ(t)− 2γ∆Bn(φ))∆t ≤ −α(1− ηd) + ηdλd + ηdλp

+ 2ηdλs(P
c − P d)

(55)

Comparing (53) and (55) gives:

λd
ηcηd

1− ηcηd
≥ α+ λp + 2λs(P

c − P d) (56)

Provided ηcηd 6= 1, under conditions C1, C2 and C3, given
above, (56) provides: λd > 0, which proves that under the
given sufficient conditions, when P c > 0, then P d = 0. A
similar procedure can be used to show that when P d > 0,
then P c = 0. Hence, P dP c ≡ 0 is enforced.

V. TEST CASES AND NUMERICAL SIMULATIONS

Test simulations are conducted on the IEEE-13 node dis-
tribution system [25], which is an unbalanced three-phase
system consisting of one, two and three phase lines. The
switch between nodes 671 and 692 is assumed to be closed
at all times. The system has a three-phase OLTC transformer
between nodes 633 and 634. Capacitor banks are placed at
nodes 675 and 611. The system is modified to include STL
elements at nodes 632, 675, 680 and 684 as shown in Fig. 4.
These elements consist of solar PV generation plus equivalent
battery bank and are capable of four quadrant operation.

Figure 4. IEEE 13 node test feeder used as a test case

A. Test case results

The control inputs obtained from the outer and inner loop
of the optimization algorithm for a given solar and load profile
are applied to the IEEE-13 node system. From the output of the
system as shown in Fig. 5, it can be seen that the voltages are
well tracked and are within their bounds and the battery state
of charge is accurately tracked. From the results in Figure 5, it
appears that the SOCP voltages upper bound the plant voltage.
However, this relationship breaks down when the batteries
hit their limits, in which case the order can reverse. Future
work will establish conditions under which this upper bound
is upheld.

Figure 5. (a) Tracking of the reference SoC by the aggregate SoC of the
network batteries. The batteries discharge power at each interval to meet the
power demand and finally reach the reference SoC level provided by the outer
loop MILP. (b) Comparison of voltage profile at phase b between the SOCP
model and the 3-phase plant model using forward-backward sweep.

B. Improvement in system performance with flexible resources

Two cases of multi-period OPF are run, one with storage
devices and one without and the effect on total network losses
is compared. The comparison is shown in Fig. 6(a). Figure
6(b) shows how the network losses change with increase in
battery capacity.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a technique to optimally solve an
unbalanced three-phase distribution network by optimizing the
slow and fast control assets over different time scales using
multi-period optimal power flow techniques. A multi-period
mixed-integer linear program solves the OPF for the slow
mechanical assets and a multi-period SOCP is used to solve
the optimization for the fast STL elements.

The complementarity constraint problem for the battery
model is studied and sufficient conditions are provided under
which the complementarity constraint condition is satisfied at
optimality for the convex SOCP problem. The effectiveness of
these algorithms is tested on a three-phase non-linear model of
IEEE-13 node system. Further analysis on the model shows
how storage flexibility in the system improves performance
and reduces losses.



Figure 6. (a) Comparison of losses at different lines in the network between
storage and without storage MOPF. From the figure it can be seen that there
is a reduction in the network losses with the inclusion of storage especially in
line connecting nodes 650 and 632 and 632 and 671. The battery connected
at node 632 minimizes the power required to be sent across these lines which
reduces the losses. (b) Change in total predicted network loss with increase
in storage capacity. There is a particular amount of storage beyond which
addition of more storage to the network has negligible effect on the loss
reduction. For this test case, the value is around 150 kWh.

Future work will analyze the three-phase SOCP relaxation
and find necessary conditions under which it is tight. Improv-
ing the coupling between inner and outer layers as it relates to
market conditions and relate closed-loop performance of inner
loop to required available flexibility and measurements, is also
a future scope for improvement. Testing the proposed tech-
niques on large-scale networks using distributed algorithms,
which reduce the computation time, will also be completed.
Future work will also concentrate on improving and relaxing
the complementarity conditions provided in Lemmas IV.1
and IV.2.
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