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Abstract—Increased utilization of residential and small com-
mercial distributed energy resources (DERs) has led DER ag-
gregators to develop concepts such as the virtual power plants
(VPP). VPPs aggregate the energy resources and dispatch them
akin to a conventional power plant or grid-scale battery to
provide flexibility to the system operator. Since the level of
flexibility from aggregated DERs is uncertain and time varying,
the VPPs’ dispatch can be challenging. To improve the system
operation, flexible VPPs can be formulated probabilistically and
can be realized with chance-constrained model predictive control
(CCMPC). This can be solved using scenario-based methodology,
which provides a-priori probabilistic guarantees on constraint
satisfaction. This paper focuses on understanding the robustness
and performance trade offs in receding horizon control with
uncertain energy resources. The CCMPC dispatches robustly
the uncertain VPPs and conventional generators while taking
into account economically optimal, secure reference trajectory
for generating assets. Closed-loop performance is with respect to
minimizing the deviation of conventional generators from their
reference trajectory. To evaluate the trade off between robustness
and system performance with uncertain energy resources, a
simulation-based analysis is carried out on the modified IEEE
30-bus system.

Index Terms—model predictive control, energy storage, robust
optimization, uncertainty, dynamic capacity saturation, chance
constrained.

I. INTRODUCTION

In recent years, environmental and energy concerns have
led to increased penetration of distributed energy resources
(DERs), such as solar photovoltaic and wind generation, which
represents both a challenge and opportunity for grid operators.
The intermittency of renewable energy sources as well as
forecast uncertainties in load, price, and renewable in-feed
profiles, call for storage solutions and appropriate control
strategies [1]. So far, imbalances between production and load
are compensated by fast acting reserves from generators, such
as gas turbines or hydro storage power plants. However, due
to the on-going increase in intermittent sources, day-ahead
planning becomes more demanding. Independent System Op-
erators (ISOs) can pay high penalties when load forecasts
are inaccurate and require generators re-scheduling to balance
demand and supply [2]. Furthermore, an increasing number
of backup generation units is needed, running on reduced
power or even idling, to quickly react to output changes of
intermittent sources. Instead of compensating forecast uncer-
tainties with fast acting backup generators, as it is often done
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in practice, the imbalances can also be compensated by means
of coordinating flexible energy resources, i.e., demand dispatch
[3], [4].

Recently, the concept of Virtual Power Plants (VPPs) has
been proposed as a novel technology for aggregating and
coordinating a large fleet of residential flexible energy re-
sources, including electric battery storage, thermostatically
controlled loads (TCLs), and deferrable loads. The VPP offers
the aggregate flexibility to the system operator as a synthetic
reserve to preserve grid stability [5]. When called upon, the
VPP can rapidly respond to changes in net-load by quickly
coordinating its fleet of assets to provide requested balancing
reserves [6]. Since offered flexibility by VPPs to the system
operator is limited, to benefit the most from them, careful
planning through smart techniques such as MPC is required.

Today, in practice, based on market conditions and load and
renewable forecasts, an optimal power flow problem is solved
with a day ahead window prediction horizon (i.e. 24 hours) on
an hour by hour time scale to provide an economically optimal
schedule for generators and flexible resources [7]. However,
due to variable uncertainty in the net-load forecast, there will
always be mismatches between scheduled operating set-points
and the actual operating points. Therefore, the scheduled
operating point may no longer be feasible and balancing
reserves are required and can be provided by a set of VPPs
by adjusting the aggregate output of DERs [8].

As a VPP derives its flexibility from aggregating thousands
of DERs, estimation of the VPP’s current energy state, energy
limits, and up/down power capabilities are inherently uncertain
and time-varying. Therefore, this paper seeks to formulate
the VPP‘s flexibility in a probabilistic manner with chance
constraints. Then, we solve this by a scenario-based approach,
which provides a-priori guarantee to the probabilistic con-
straints [9], [10]. The authors in [9], [11] use probabilistically
robust optimization method provides a priori guarantees on
the probability of constraint violation without needing any
knowledge of the uncertainty distribution, however it requires
large number of uncertainty scenarios. Other recent studies
also solve chance constraint problem using scenario approach
as authors do in [12], or by using analytical reformulation,
e.g., [13], but these studies do not model the uncertainty on
the VPP’s capacity.

To take uncertainty of VPP’s energy capacity into account,
we employ chance constraints to a receding-horizon model
predictive controller (MPC) that is similar to the author’s
prior work in [14], [15]. At each step, net-load forecasts (i.e.,
load minus renewable generation) and dynamic states (e.g.,
storage and generators) are updated to provide a prediction of



power imbalances. The chance-constrained predictive dispatch
operates on minute-by-minute time scale with 20-40 minutes
prediction horizon and responds to any mismatches caused
by forecasting error, which is denoted as chance-constrained
model predictive control (CCMPC). The CCMPC provides an
open-loop schedule for the entire horizon yet only implement
the first control decision. This procedure is repeated every
minute in receding horizon fashion. The objective of the
chance constrained MPC optimization problem is to minimize
the deviation of conventional generation from the scheduled
set points provided by the economic trajectory.
Contributions of this paper include the following:
• Prior works have explored allocating flexible resources in

a techno-economic setting to compute optimal economic
trajectories as reference signals for a fast timescale dispatch
of energy resources. In this paper, we expand these bilevel
frameworks to couple these economic trajectories with a fast
timescale stochastic predictive dispatch.

• As far as the authors are aware, prior work on stochas-
tic OPF methods, focuses mainly on the uncertainty of
(algebraic) power injections (e.g., wind, demand), which
temporally decouples the OPF problem and side-steps the
computational challenges of multi-period optimization un-
der uncertainty, e.g., [16], [17]. Unlike those works, this
paper presents a stochastic predictive OPF with uncertain
dynamic energy capacity and analyze how robustness (i.e.,
uncertainty in VPP energy capacities) trades off with sys-
tem performance (i.e., ability of VPP to supply corrective
power balancing). Related work in [12], [13], [18] also
investigate uncertain energy storage capacity, however, the
authors manage that uncertainty through day-ahead reserve
scheduling at a 15-60 minute time-scale rather than the
stochastic predictive dispatch presented herein.

• Computing optimized charging/discharging commands for
uncertain energy resources deterministically, based on the
expected energy capacity estimate may result in saturation
of the control action under unexpected energy capacity
realization. This saturation phenomena gives rise to the
notion of dynamic capacity saturation (DCS), which we
present and analyze in this paper for the first time. We show
that DCS is helpful to describe how uncertain resources can
participate in corrective power balancing.
The remainder of this paper is organized as follows. Sec-

tion II describes the optimal power flow problem and tracking
control framework, and discusses the roles of each, and their
interactions. In Section III, we explain role of uncertainty on
capacity of storage devices and describe chance constrained
model predictive control (CCMPC). In Section IV the results
of case studies on the modified IEEE 30-bus power system is
presented. Finally the concluding remarks and future work are
given in Section V.

II. PROBLEM FORMULATION

We consider a transmission system model comprising of
Nb buses, Nl lines, NG generators, NL loads and NB VPPs.
Given a forecast of demand and expected renewable generation
(i.e., net-load) for a number of hours (e.g., day-ahead), an
economically optimal trajectory is computed. However, due to

OPF MPC 
Gen 

VPP 

Dynamic States 

r* PG PC PD 
  

 (net-load forecast) 

min-by-min 

min-by-min 

min-by-min 
hourly 

hourly 

hourly 
Network 

model 

Figure 1. Overview of control scheme showing controller including OPF and
MPC part and how each part is related to power grid

forecasting error, it may be necessary for generators to deviate
from the predefined trajectory. The controller’s objective is
to meet the demand while minimizing the tracking error
by utilizing the flexibility of VPPs. This suggests a bi-level
control strategy for electric power systems. In this work our
focus is on predective reference tracking-MPC. Figure. 1
provides an overview of the proposed control system.

A. Optimal Economic Trajectory
Like most of related works, e.g., [12], [18], [15], the

DC power flow approximation is adopted which gives us
a tractable linear representation of the power system while
ensuring the convexity of optimization problem.

Based on net-load forecast, the optimal, NT -hour ahead (i.e.
NT = 24), schedule is computed as a multi-period, quadratic
programming (QP) problem whose objective is to minimize
energy (fuel) costs of conventional generators [19]. Let a [$/h-
pu] and b [$/h-pu2] are linear and quadratic coefficient of
generators cost curve, PGi ∈ RNG refers to power set point of
generator i corresponding to the forecasted load power. With
this definition, the resulting objective of the problem can be
expressed as:

min
PGi

∑

∀k∈NT

∑

∀i∈NG

aki PGi[k] + bki P
2
Gi[k], (1)

subject to the physical and operational constraints corre-
sponding to the power flow on the system generator and line
limits for all k ∈ NT :

P f
Li[k] +

∑

j∈ΩN
i

fij [k] =
∑

z∈ΩG
i

PGz[k], (2)

PGi ≤ PGi[k] ≤ PGi, (3)
−RGi ≤ PGi[k + 1]− PGi[k] ≤ RGi, (4)

fij [k] = bij(θi[k]− θj [k]), (5)
fij ≤ fij [k] ≤ fij , (6)

where ΩN
i and ΩG

i refer to set of all buses connected to bus i
and set of all generators at bus i. Forecasted electrical net-load
(i.e., demand minus renewables) is represented by P f

L while
PG(PG

1) and RG represent, maximum (minimum) generation
capacity and ramp rate limit of generator, respectively. Also
θi is the voltage bus angles at bus i and bij denotes the

1The lower bounds of the generator set-points would be available from unit
commitment (UC) problem which is not within the scope of this paper. In
this paper for simplicity the lower bound is assumed to be zero.



imaginary part of the admittance of the line connecting node i
to node j and fij represent power flows on the corresponding
line. By solving this problem every hour, a reference signal
over a horizon of NT is established based on the updated
measurements and forecasts.

Remark II.1 In this paper, we are assuming that the respon-
sive VPPs are available from previously allocated reserves
(e.g., akin to [12]) and have baseline consumption. By shifting
the controllable loads consumption from its baseline, VPPs can
respond to the instantaneous mismatches caused by forecast
error quickly. Any decrease/increase in the consumption of the
VPPs relative to its baseline consumption can be translated
as discharging/charging the VPPs. That is, we assume that
market interactions have determined the regulation capability
from each VPP [20].

B. Trajectory tracking and managing uncertainty

Due to mismatches between forecasted and actual values of
net-load, forecasted optimal set points of generator may not
be a feasible solution for the power flow problem. Therefore,
in the second level, a model predictive controller (MPC) is
in charge of responding to any deviation in load consumption
and renewable production from their predicted value in a way
to minimizing the deviation from reference optimal trajectory
while satisfying all the constraints such as line limits, gener-
ators limit, ramp rate limits of generators and dynamic and
power ratings of energy storage devices (VPPs). The MPC
iteratively, based on initial states, updated net-load forecast
and updated reference signal, optimizing over a finite time
horizon, M , by solving an open-loop optimization problem.
This yields a sequence of optimal control action for the next
M steps, where only applying the first instance of control
sequence.

In general, the outcomes of the first level (optimizing under
deterministic condition) are used as our base trajectories which
already take care of our primal objectives like cost or security
while the VPPs make the aggregated flexibility available to
controller as balancing reserve and enhance tracking perfor-
mance. Since time step of MPC (≈ 1 minute ) is much shorter
than OPF (≈ 1 hour), reference trajectory provided by OPF is
interpolated by time step of Ts.

Control actions will be applied for the whole step-width Ts

such that u(t) = u[k] for t ∈ [kTs, kTs + Ts]. At each time
k, the state of the charge (SOC) of VPPs and generator set-
points are the dynamic states which are measured and included
as initial state of the system for the next step. Based on [15],
MPC scheme can be summarized as follows:
1) At time k, with initial SOC, Sk, updated net-load forecasts

and updated generator set-points from solving OPF, MPC
solves a finite-horizon open-loop optimal control problem,
over interval [k,k +M ]. This returns sequence of optimal
control action such as charging or discharging VPPs and
re-scheduling generator set-points if needed, for the next
M steps (k to k +M ).

2) Apply only the control action corresponding to time k
3) Measure the actual system state based on the actual load

consumption and renewable generation at time k + 1.

4) Set k = k + 1

The open-loop MPC optimization is as follows:

J∗ = min
PGi, PCi, PDi

k+M∑

m=k

∑

∀i∈Ng

ciG(PGi[m]− P r
Gi[m])2 (7a)

+
k+M∑

m=k

∑

∀i∈NB

ciCPCi + ciDPDi

s.t.

PNi[m] +
∑

j∈ΩN
i

fij [m]−
∑

z∈ΩG
i

PGz [m] = 0 (7b)

PNi[m] = PCi[m]− PDi[m] + P f
Li[m] (7c)

fij ≤ fij [m] ≤ fij (7d)

fij [m] = bij(θi[m]− θj [m]) (7e)

PGi ≤ PGi[m] ≤ PGi (7f)

PCi ≤ PCi[m] ≤ PCi (7g)

PDi ≤ PDi[m] ≤ PDi (7h)
PGi[m]− PGi[m− 1] ≤ RGi (7i)
−RGi ≤ PGi[m− 1]− PGi[m] ≤ RGi (7j)

Si[m+ 1] = Si[m] + Ts

(
ηciPCi[m]−

1

ηdi
PCi[m]

)
(7k)

Si ≤ Si[m] ≤ Si (7l)
Si[k − 1] ≤ Si[k +M ] (7m)
PCi[m]PDi[m] = 0 (7n)

where (7b)-(7l) are satisfied, ∀m = k, k+1, . . . , k+M . Note
that cG and cC(cD) are positive scalars representing track-
ing and charging (dis-charging) cost coefficients. Moreover,
PCi, PDi ∈ R+ are positive scalars representing charging
and discharging commands of VPPs and P r

Gi is the reference
signal. PCi (PDi) and Si represent the maximum charging
(discharging) power capacity and the maximum energy ca-
pacity of VPP located at bus i, respectively. Similarly, PCi

(PDi) and Si represent the minimum charging (discharging)
power rate and the minimum energy level of the VPPs which
in our work assumed to be equal to zero for simplicity. The
charging and discharging efficiency of VPP located at bus i
are denoted ηci and ηdi respectively. The net power injected
from VPP i at time m equal to (PCi[m]−PDi[m]) that could
be positive (charging the VPP) or negative (discharging) or
zero. We impose terminal constraint (7m) on SOC of VPPs
to ensure sustainablity of VPP resources at the end of each
optimization horizon.

Remark II.2 To prevent simultaneous charging and discharg-
ing which is not physically realizable for most of the storage
devices, complementary condition (7n) is employed, however
since this constraint is non-linear, it makes the problem
strongly non-convex and needs applying mixed-integer ap-
proach [21]. Authors in [14] employed a heuristic method that
enabled them to solve the convex problem while preventing
simultaneous charging and discharging. Furthermore, as VPPs
aggregate large population of small-scale flexible energy re-
sources, they have the ability to send charging and discharging
commands to different devices in their group simultaneously
and the aggregated charging and discharging commands are
what determine the next time steps overall energy level.



III. THE CHANCE CONSTRAINED PROBLEM

VPPs can be formed from a large number of different
resources including storage devices, wind farms, solar farms as
well as different forms of flexible energy resources like plug-in
electric vehicles (EVs) and TCLs [22]. The flexibility offered
by VPPs can enable renewable integration into the power
system and provide significant balancing reserves to the system
operator and prevent frequent rescheduling due to imbalances
from weather and load/demand forecasts. However, the level
of the flexibility that VPPs can provide to system operator
is uncertain itself. As an example, coordinated aggregation of
large population of TCLs is often modeled as virtual storage
resources [23]. However, due to stochastic and time-varying
human usage of hot-water, the size of the virtual storage re-
sources is time-varying. More specifically, available flexibility
offered by aggregated TCL to the system operator, which
can be translated to the upper bound of the virtual storage
resource, is a function of different stochastic quantities such
as weather condition and human behavior. Flexibility offered
by each device is uncertain and considered an independent
random variable (i.e. background usage of each device is
independent from background usage of other devices). Since,
VPPs are formed from a large number of flexible resources, the
central limit theorem implies that the VPP’s energy capacity
is a normally distributed random variable centered on the true
mean (i.e S ∼ N (µ,σ2). Thus, the stochastic variable (S) is
present only on the right hand side of (7l).

Definition III.1 Dynamic capacity saturation (DCS): Com-
puting optimized control actions, such as charging/discharging
commands, for uncertain energy resources that provide balanc-
ing reserves can be based on a mean (or average) energy ca-
pacity estimate. When using the mean capacity values result in
a deterministic optimization problem. However, the underlying
uncertain energy capacity may realize itself unexpectedly and
saturate (or zero out) the optimized control action. We call this
saturation phenomenon dynamic capacity saturation (DCS).
Under DCS, an energy resource may saturate, which zeros out
its control action, leading to unexpected power imbalances in
the system. To regulate these DCS-induced imbalances, grid
operators must rely on (expensive) generation to supply the
difference based on their participation factor di, as shown
in (8). In addition, SOC of VPP could be updated to reflect
actual capacity as shown in (9). Figure 2 shows an example
of how forecast errors lead to DCS. Plot (a) illustrates the
expected and actual capacity of VPP (dotted lines). Also, the
state evolution of SOC based on the expected capacity of
VPP and needed correction due to forecasting error are shown
(dashed lines). Plot (b) and (c) show the optimal schedule for
charging/dis-charging of VPP and how DCS causes deviation
from optimal solution:

∆PGi[k + 1] = −di
∑

i∈Nb

T−1
s max(Si[k + 1]− Si, 0)) (8)

Si[k + 1] = max(Si[k + 1], S) (9)

Since the capacity of VPP is a stochastic variable, we
could approach the problem in a probabilistic manner. The
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Figure 2. An example of how forecast error causes dynamic capacity
saturation.

chance constraint is one such option whereby we decide on
the probability level of 1−ε, where ε ∈ (0, 1), as shown below

P(Si[k + 1] ≤ Si(δ)) ≥ 1− ε (10)
In [10], a scenario is introduced, in which the chance constraint
is substituted by a finite number of deterministic constraints
and provide a-priori guarantees on satisfying the chance
constraint with some certain level of confidence β , where
β ∈ (0, 1). Ref. [9] proposed a two step method based on
[10] that results in a lower number of realizations. In the first
step, the set ∆, including at least 1 − ε probability mass of
uncertainty, is made with confidence level of at least 1−β. To
form this set, we need at least N realizations, where e denotes
the Euler number and N is calculated based on the number of
uncertain parameters Nω ,

N ≥ 1

ε

e

e− 1
(ln

1

β
+ 2Nω − 1) (11)

Based on the set ∆, the chance constraint is substituted to
the robust constrain

Si[k + 1] ≤ Si(δ) for all δ ∈ ∆ (12)

While only expected value of capacity of VPP is needed
to come up with a deterministic solution, N realizations are
needed for a probabilistic solution. For example, to ensure a
violation probability of maximum ε = 0.1 with a confidence
level of β = 0.05, in presence of one VPP with uncertain
capacity, we need to consider 64 realizations of VPP capacity
as shown in Fig 3. The green, dashed line represents expected
values and the red, solid line represent the robust bound.

We introduce coefficient α ∈ [0, inf), as an average level of
robustness to investigate role of robustness on performance of
the controller.

S = αSexpected (13)

By setting α based on the robust bound (e.g, robust bound
computed by scenario approach), we can reduce the probability
of DCS, but part of the flexibility offered by VPPs will
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Figure 3. Expected value of VPP capacity versus 64 realizations

be dismissed. On the other hand, by selecting α ≥ 1, the
predictive optimizer will have more VPP resources available
for balancing, however, DCS will occur more frequently in
the system, which can reduce closed-loop performance (i.e.,
generator having to make up the slack resulting from DCS.)
Therefore, there should be a balance between robustness and
flexibility. i.e. coefficient α must be chosen in such a way that
controller can use the most flexibility offered by VPPs and
minimize chances of DCS2.

IV. SIMULATION RESULT

In this section, the introduced control approach is applied to
modified IEEE 30 bus power system [24]. The power system
is modified to include one VPP at bus 5. All optimization
problem were solved via the MATLAB and AMPL using the
solver GUROBI.

A. Perfect prediction of VPP capacity

Initially, we assume that the capacity of VPP can be
forecasted perfectly. Based on the forecasts of net-load, an
optimal schedule for generators is computed. To model net-
load forecast error raised from uncertain renewable generation,
mean reverting random walk with zero mean is added to the
forecasted net-load. Performance and behavior of MPC (with
horizon length of M = 20) is shown in Fig. 4. Recall that
reference signal is the generator set-point, which means high
performance implies generators do not respond to imbalances
(i.e., do not ramp through reserves). Obviously, in presence
of VPP, tracking performance is improved and the flexibility
offered by VPP, make MPC able to effectively limit the
ramping up or down of generators. However, the tracking error
can not be zero due to limited capacity of VPP.

TABLE I
RUN-TIME METRICS FOR OPF AND MPC

Average (s) Standard deviation (s)
OPF (hourly) 0.5045 0.0021
MPC (M = 40 mins) 1.8289 0.0035

2The forecasting error occurs almost at all time steps (e.g., see Fig 2a for
t > t1). However, despite forecast errors, sub-optimal solution happens only
when DCS occurs (e.g., see Fig 2a at t = t3). If DCS is absent, optimal
regulation can be achieved despite forecasting errors.

Figure 4. Optimal schedule based on the forecasted net-load as a reference
trajectory and performance of the MPC scheme for one generator under two
cases: without VPP and with VPP.

B. Uncertain VPP capacity
In this part, we assumed that the expected capacity of VPP

is given and the probability distribution of the uncertainty
is known. The actual capacity of VPP at each time step is
computed as

Sact = (1 + ζ/10)Sexpected, (14)
where ζ is normally distributed (i.e ζ ∼ N (0, 1) .
To investigate the role of uncertain capacity of VPP in

tracking performance of MPC, a simple forecast of net-load
that stays constant over the next 24 hours is created. Actual
net-load is created by injecting 20 percent step down and 10
percent step up error while each error persists for 10 minutes,
as shown in Fig 5. A comparison of the tracking performance
of deterministic and robust approaches, at α = 0.9, is provided
in Fig. 6.

The first plot shows one realization of actual capacity of
VPP, S (dashed blue line) and state evolution of SOC of VPP
under the deterministic and robust approaches. The second
plot shows optimal schedule for charging/discharging VPP
under the deterministic and robust approaches. And the third
plot shows tracking performance of the system under different
scenarios. As illustrated, under deterministic approach, DCS
occurs twice (i.e. before and after t = 30 in the first plot)
which cause unscheduled adjustment in generator power (red
dashed line in the third plot). Although by using robust
approach part of the offered flexibility is dismissed, chance
of DCS reduces which leads to less generators adjustment.

10 20 30 40 50 60
Time, k (minutes)

80P L / 
P Lf  (%

)

100

120

forecasted net-load
actual net-load

Figure 5. The actual net-load is created by injecting 10 minutes long, step
down and step up error to the forecasted net-load.

To evaluate the tracking performance of deterministic and
robust approaches under stochastic behavior of VPP capacity,
100, 000 repeated trials are performed. Each trial differs in
expected capacity of VPP (0.4 p.u. and 0.8 p.u.) and α
(from 0 to 2). Objective functions of robust approach J∗

R and
deterministic approach J∗

D are used as a metric for the tracking
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Figure 6. The tracking performance of system under three different scenarios:
no VPP, deterministic approach and robust approach.

performance. Smaller objective means less average deviation
from scheduled set-points and indicates better tacking. Fig-
ure 7 shows J∗

R,J∗
D and their ratio, at α = 0.9, where capacity

of VPP is 0.8 p.u. for 2000 trials. The results of deterministic
and robust approaches where capacity of VPP equals 0.4 p.u.
and 0.8 p.u., at α = 0.9, is shown in Table II.

~ ~

Trials

Figure 7. The first plot compares J∗
D and J∗

R for 2000 trials (VPP capacity
= 0.8 pu) and the second plot illustrates their ratio. Any points above the
green line indicates better performance of the robust approach. The robust
approach outperformed the deterministic approach on 1480 of the 2000 trials
and on average, it is 12% better.

TABLE II
COMPARING THE AVERAGE OF J∗

D ,J∗
R AND THEIR RATIO AS A METRIC OF

PERFORMANCE BASED ON 2000 TRIALS

E(S) J̃∗
D J̃∗

R J̃∗
D/J∗

R J∗
D > J∗

R
0.4 p.u. 0.1390 0.1336 1.0402 83%
0.8 p.u. 0.0848 0.0756 1.1227 74.5%

Figure 8 compares the average tracking performance under
deterministic and robust approach for different values of α
(i.e. level of robustness). By choosing a small α (conservative
choice), DCS occurs less frequently, however, larger part of
flexible resources are not utilized. By choosing large α, the

controller benefits from the full flexibility offered by resource.
However, by discounting the role of uncertainty, DCS occurs
more frequently and consequently generators rescheduling is
needed more often. In both of these cases, the deterministic
approach outperforms the robust one (i.e. J∗

D < J∗
R ). If α

is chosen appropriately, the flexibility offered by the VPPs
can be used effectively while limiting occurrence of DCS .
In other words, sacrificing some robustness in dispatching the
uncertain resource leads to improved tracking performance.
It is interesting to note that in the scenario-based approach
with typical selection of ε = 0.1 and β = 0.05, 64 re-
alizations are needed based on (11) and we would get an
equivalent α = 0.75, for which the deterministic (average)
approach actually outperforms the robust approach (i.e., it is
overly conservative). However, equivalent violation probability
of α = 0.85 in which the robust approach (on average)
outperforms the deterministic one by 4.5% is a non-intuitive
ε = 0.6.

To explore the performance of the robust approach for a
more general net-load scenarios, a mean reverting random
walk (MRRW) noise is added to the actual load profile
shown in Fig. 5, and 1000 realizations are created (Fig. 9).
Table III provides result of the tracking performance of robust
and deterministic approaches regarding the 1000 trials. To
better understand the effect of DCS on performance of the
controller, the total number of times that DCS occurs NDCS

using each method is calculated. Note that each trial includes
60 time-steps (minutes) and 1000 trials are considered for each
scenario of capacity of VPP. Therefore, NDCS is computed
with respect to 60000 time-steps.

~
~

0.85

Figure 8. Trade-off between robustness and tracking performance (VPP
capacity = 0.4 pu). Average ratio of J∗

D and J∗
R is used as a metric for

performance of the system regarding to the different levels of the robustness.
At α = 0.85, on average the robust approach is 4.5% better than the
deterministic one.

TABLE III
COMPARING AVERAGE PERFORMANCE OF THE SYSTEM UNDER

DETERMINISTIC AND ROBUST APPROACH WITH 1000 TRIALS

E(S) J̃∗
D J̃∗

R J̃∗
D/J∗

R J∗
D > J∗

R NDCS
D NDCS

R
0.4 p.u. 0.1536 0.1480 1.0376 83% 2867 1769
0.8 p.u. 0.0947 0.0884 1.0713 69% 2089 1045

V. CONCLUSION AND FUTURE WORK

This paper studies the performance of a bilevel receding-
horizon predictive optimal power flow problem for managing



Figure 9. One thousands realization of load profiles are created based on the
Fig. 5 while the green dashed line shows the forecasted load and the red line
shows mean of all created load profiles.

short-term variability with grid assets (VPPs) that are uncertain
in their energy capacity. This gives rise to the notion of
dynamic capacity saturation (DCS) for uncertain energy re-
sources. The numerical studies indicate that there exists a sen-
sitive trade-off between robustness of the optimized dispatch
(i.e., severity of DCS) and closed-loop system performance
(i.e., VPPs ability to provide regulating reserves). It is shown
that sacrificing some robustness in the dispatch of the uncertain
energy capacity can significantly improve system performance
(up to 4-12%). Interestingly, the popular approach of robus-
tifying chance-constraints with scenario-based sampling may
lead to reduced closed-loop system performance. Future work
will focus on analytically quantifying the effects of DCS on
the closed-loop response and developing tools that optimally
manages storage commitment under dynamic uncertainty (i.e.,
α). Additionally, we plan to extend the current work to
consider multi-VPPs with uncertain capacity under system
constraints such as line flow limits, and address the question
of where the VPPs should be placed and how many VPPs are
advantageous for a given power network.
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