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Abstract—There is increasing consensus that flexible demand
is critical to solve challenges associated with the rapid growth
of variable renewable generation and aging transmission, distri-
bution and generation infrastructure. Conventional direct load
control programs are largely insufficient to address these issues.
This paper presents results from validation tests of a new
approach to demand side management, in which an aggregated
fleet of devices is managed as a virtual battery, using principles
that are found in communication networks: packetization and
randomization. Validation results from a cyber-physical testbed
with 5000 devices and a field-trial with 82 customer-owned
water heaters show that the packetized virtual battery system
can effectively solve a number of different problems. Customer
satisfaction survey results illustrate that the system is able to
maintain a high level of service quality.

I. INTRODUCTION

Both academic research and industry experience have shown
that flexible, responsive demand is critical to managing in-
frastructure costs and balancing the variability of renewable
supply. The core concepts and basic enabling technology
behind flexible demand go back to work by Morgan [1],
Schweppe [2] and others in the late 1970s. But existing
full-scale industry implementations have largely focused on
direct load control (remotely disconnecting loads during peak
hours) or behavioral demand response (asking customers to
curtail demand), both of which require active engagement from
customers and grid operators and can negatively impact quality
of service.

Motivated by rapid growth in variable wind and solar supply
and the availability of Internet of Things (IoT) technology
for active sensing and control, new approaches are emerging
that aim to bring the vision of flexible demand to reality.
Transactive (auction-based) methods have been proposed [3]
and demonstrated [4], but making auction-based systems
easy to use for residential and small-commercial customers
is difficult, since most do not have a sufficiently detailed
understanding of electricity to effectively form bids. Others
have proposed schemes that aim to simultaneously provide
customer quality of service and grid services using hierarchical

decision models [5], [6] and dynamic ordering of resources
based on fitness based assignments [7].

A number of researchers have recently shown that random-
ization can be a powerful tool for making fleets of loads
continuously dispatchable [8]–[10], while avoiding potential
synchronization effects that can negatively impact grid stabil-
ity. While these approaches do employ sensing and decision-
making at the device-level, the devices all respond to largely
uni-directional broadcast control signals from the coordina-
tor/aggregator that crucially depend on assumptions about
devices being relatively homogeneous, which may lead to
barriers for full-scale field implementation.

Coordinating large fleets of diverse devices to actively
balance supply and demand in real time, while still being easy
to use for both grid operators and end users is difficult. The
approach employed in this paper, Packetized Energy Manage-
ment (PEM), [11]–[13] addresses this difficulty by leveraging
concepts that are key to internet communications. Specifically,
PEM makes use of two powerful concepts: packetization to
divide the delivery of energy into manageable chunks and
randomization to spread packets of energy demand over time
to align with a desired, dynamic schedule. Here we refer to a
dispatchable fleet of devices operating under PEM (packetized
devices) as a Packetized Virtual Battery (PVB).

Our prior work has shown, via software simulations, that a
diverse fleet of packetized devices (e.g., water heaters, electric
vehicles and residential-scale batteries [14]) can match demand
to variable supply signals. But there are many examples in
the literature of promising academic ideas that face practi-
cal challenges when transitioning to full-scale, hardware-in-
the-field implementation. Similarly, the existing literature on
flexibility does not provide evidence of how flexible demand
algorithms can provide practical, usable solutions to real-world
electricity industry challenges. The key contribution of this
paper is the description and presentation of a full-scale cyber-
physical validation and real-world commercial implementation
of the Packetized Virtual Battery system.



A

B C

Fig. 1. Illustration of packetization and randomization applied to reducing
excess peak load. A: Initial load profile. B: Packetization. C: Randomization
process moves the energy packets in time.

II. THE PACKETIZED VIRTUAL BATTERY SYSTEM

Packetized Energy Management [11]–[13] enables a fleet
of distributed energy resources (DERs) to match demand with
variable supply signals (such as renewable resource availability
or market signals) through packetization and randomization
(see Fig. 1). More specifically, a DER controller (e.g., for a
water heater, HVAC system, EV charger, distributed battery)
periodically wakes up, measures the local need for stored
energy, and then probabilistically requests a packet of energy
from a server. The probability of requesting increases as the
device’s need for energy increases.

Packetized devices coordinate their actions by interacting
with a PVB server, which accepts or rejects packet requests.
When the PVB server gets a request from a device, it compares
the total power consumption of the fleet with a pre-defined
set point and accepts or rejects the request based on this
comparison. The server is essentially device agnostic, in that
it does not keep track of the state or location of individual
devices. Instead the server focuses on managing the fleet as a
single virtual battery.

The results in this paper are for the application of the
Packetized Virtual Battery system to electric resistive hot water
heaters. For this case, devices enrolled in a PVB are enabled
to monitor the average tank temperature, using a weighted
combination of upper and lower thermostat measurements.
When the temperature is above or below the upper or lower
temperature limits (e.g., TH = 140◦F and TL = 120◦F) the
device opts out of the process and simply turns off or on
as needed. When the temperature is between TL and TH the
device will send a request for a packet of energy (e.g., 5
minutes at 4.5kW) with a probability that increases with the
estimated tank temperature. As a result, water heaters with
tank temperatures closer to the lower bound request packets
more frequently than those with tank temperatures closer to
the upper bound, thus ensuring that devices that need energy
have a higher chance of consuming a packet. The stochastic
request mechanism is described in detail in [13]. The opt-out

Fig. 2. The water heater management device used in this work, known as the
MelloTM smart thermostat for water heaters. Two temperature sensors allow
the device to measure the water/tank temperature near the tank’s upper and
lower thermostats. Users can adjust the temperature set point (the middle of
the flexible range) using the buttons on the device or through a phone app.

mechanism provides a guaranteed Quality of Service level: if
the device’s state is below the lower bound (i.e., the water tank
is too cold) it will opt out of the PVB and consume power
until the temperature returns to within the acceptable range.

To implement the PVB system within a utility context, we
designed a smart thermostat-style controller for electric hot
water heaters (see Fig. 2), which creates a secure connection
to the cloud-based PVB server using TLS (Transport Layer
Security) 1.2 with on-device hardware encryption. The device
gives the participating utility customer the ability to control
their temperature set point, which subsequently increases or
decreases TL and TH (withing safe upper and lower limits).
During device installation, the mechanical thermostats on the
water heater are adjusted to ensure that the device has primary
control over the water heater during normal operations. In
order to enable the PVB server to accurately estimate the fleet-
wide power consumption, each device is equipped with the
ability to measure current, voltage and power factor.

Once formed, a PVB can provide electric utilities with a
wide variety of valuable grid services, such as peak load
reduction, energy price arbitrage, ancillary services and grid
constraint management to defer transmission and distribution
investments. The following subsections describe the applica-
tion of PVBs to these various services.

A. Peak load reduction

Peak load reduction to mitigate the need for new generation
or bulk transmission system upgrades has been the principle
use case for demand response programs from the beginning.
Most of these programs use one of two formats: voluntary
reductions in which utilities send customers messages asking
them to manually reduce load, potentially with some financial
benefit, and direct load control programs in which devices are
remotely disconnected through some sort of communication
system. The performance from voluntary or incentive-based
programs can be hard to predict and may decay over time.
Direct load control programs typically face two key problems
(a) running out of stored energy and (b) rapid cold or hot “load



Fig. 3. Illustration of the PeakCrusher service

Fig. 4. Illustration of the LoadShaper service

pickup” at the end of demand response events. If the demand
response event is long (a few hours), participating devices
may run out of stored energy (get too hot or too cold) near
the end of the event, which can cause customer discomfort.
And then at the end of the event, all of the devices turn
on nearly simultaneously, potentially resulting in a new peak
load after the event period concludes, reducing the benefit and
potentially introducing grid stability challenges if the resource
is sufficiently large.

The PVB system deals with these challenges through the
use of randomization, packetization and strategic set point
adjustments. Specifically, the peak load reduction service
(known as PeakCrusher) pre-positions loads before a demand
response event, approves some packet requests during the
event (enabling longer duration events) and then avoids load
spikes after event by gradually restoring the load. Device-
level randomization helps with this process by ensuring that
devices are staggered in time, which prevents sudden changes
in load. The PVB mitigates the potential for synchronized
oscillations in load after the event by automatically ramping
up the PVB server’s set point after the demand response event.
By automatically computing these set point adjustments at
the server-level, the only information required from the PVB
operator is the timing and duration of the peak load event.

B. Energy arbitrage

Because there is very little energy storage in the grid,
wholesale energy market prices fluctuate rapidly over a wide
range within short periods of time. During periods of high
wind and solar production, negative prices are increasingly
common. During peak periods, wholesale prices can be 100x
higher than average. PVBs can be used to arbitrage these
price differences by adjusting net load to match the inverse of
electricity prices. Our energy arbitrage service (LoadShaper)
uses predictive algorithms to shape net load either to wholesale

market prices or to a pre-defined schedule. Because the server
does not need to actively model device-level behavior, the
problem of dispatching the PVB for load shaping is substan-
tially simplified, and established algorithms for dispatching
batteries for energy arbitrage can be used (e.g., [15]).

C. Additional grid services

As shown in Sec. III, the services in Secs. II-A and II-B
have been field deployed and tested. In addition, the following
two additional services are in development.

Our ancillary service tool (FastTracker) enables groups of
grid edge distributed energy resources to provide frequency
regulation and spinning reserve services into wholesale elec-
tricity markets. In this service, algorithms enable real-time
prediction of available capacity, leading to more accurate bids
and more accurate tracking, leading to increased ancillary
service revenue potential.

Finally, our distribution network tool (GridOptimizer) en-
ables reliable and resilient grid operations by managing grid
constraints in real-time, thus mitigating the need for ex-
pensive transmission and distribution investments. By fusing
data sources such as AMI, micro-PMUs, network models,
and SCADA/EMS data, GridOptimizer optimally dispatches
PVBs to mitigate overload, under-voltage, and over-current
conditions.

D. Benefits and costs of virtual battery systems

Based on industry reports (e.g., [16]) and our own analysis,
the value of grid services from fleets of DERs, such as electric
hot water heaters, can range from $100-$400 per device per
year, depending on location and device characteristics. A water
heater with a 20◦F flexible temperature range and an average
load of 0.5kW (about a 10% duty cycle) provides services that
are similar to a 0.5kW, 2 kWh battery. The device, installation
and program marketing costs are typically less than $300 per
device, which leads to an upfront cost of $150/kWh, which is
less than half the cost of grid-scale battery systems (see [17]
for a similar analysis). As manufactures increasingly include
“smart device” connectivity in their new appliances, the need
for retrofit hardware solutions will decline, which has the
potential to reduce these upfront costs substantially.

III. LARGE-SCALE CYBER-PHYSICAL VALIDATION

The PEM enabled water heaters requesting energy packets
from the PVB server constitute a cyber-physical system. This
joint communication and computation system presents unique
challenges such as communication delays and the need to
ensure interoperability between diverse systems [18]. To better
understand these challenges, we developed a cyber-physical
testing platform that simulates the real-world implementation
of the PVB system with a high level of accuracy.

Fig. 5 shows the resulting cyber-physical test bed. In this
system, the PVB server is modeled with a Python-based web
server that receives energy requests, as HTTP POST messages.
The server replies to requests with yes or no depending
on the difference between the actual power being consumed



Fig. 5. Illustration of the cyber-physical testbed used for large-scale valida-
tion.

by the fleet of devices and real-time balancing signal (the
set point). Each request message contains information about
the requested power and the time length of the packet. If
conditions are favorable, the server accepts incoming requests.
Devices (water heaters) are simulated in separate processes
(implemented in C++ code for computational efficiency), each
of which includes a differential equation model of a water
heater and the ability to send HTTP post messages to the
server. These simulated devices are designed to operate in real
time (one second of simulation time = one second of wall-
clock time) in order to maintain realistic conditions. Both the
server and the simulated devices run on a high performance
multi-core PC.

To test the system, we simulated a fleet of 5000 packetized
electric resistive hot water heaters, with an ON-state power
consumption of 4.5 kW and a mean tank size of 200 litres
(see Fig. 6). The packet size and mean time to request were
set to be 3 minutes each. The device settings were initialized
to ensure that tank temperatures remain within TL = 49◦C and
TH = 61◦C range, with the set point at 55◦C. Fig. 6 shows
the PVB fleet tracking a balancing signal, approximately
representing variable power availability from wind or solar
resources. In this trajectory, the balancing signal for the first 50
minutes is relatively low, which decreases tank temperatures
and the fleet-wide stored energy; essentially the virtual battery
is discharging. After t = 50min, the balancing signal shifts
to a higher mean value, representing an increase in wind or
solar generation. The PVB fleet then charges for 80 minutes,
increasing the average temperature of the fleet (see Fig. 6b).
Through the opt-out mechanism, the mean temperature of the
entire population is maintained well within the pre-established
acceptable bounds, thus ensuring quality of service.

The results in Fig. 6 show that the PVB can charge or
discharge to track a balancing signal, while simultaneously
maintaining quality of service for end users. The results
also suggest that the 5000-device PVB can provide nearly
±2.5MW of flexibility, i.e. ±0.5 kW of flexibility per device.

IV. VALIDATION WITH A FLEET OF CUSTOMER-OWNED
WATER HEATERS

An initial deployment of 300 Packetized water heater
management devices (Fig. 2) began in March of 2018 in

Fig. 6. (a) Packetized virtual battery, simulated in the cyber-physical testbed,
tracking a balancing signal representing variable wind or solar availability,
(b) Temperature profile of water heaters over time.

partnership with a rural Vermont utility. As of September 1,
2018, 82 devices were installed in the utility service area.

This utility operates the PVB for energy arbitrage and peak
reduction purposes using the LoadShaper and PeakCrusher
modules. When operating in the LoadShaper module, as
described in Sec. II-B, the predictive algorithms incorporate
five-minute and day-ahead pricing signals from the regional
wholesale grid operator, ISO New England, to shape the net
load. Fig. 7 provides results from the LoadShaper module
deployed from midnight to 3:30AM on August 11th. Loca-
tional Marginal Prices (LMPs) throughout the day hovered
around $40/MWh, ranging from $25 per MWh to $60/MWh
throughout the day. As shown, the power set point inversely
tracks the LMP, increasing power consumed when prices are
low and decreasing when prices are high.
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Fig. 7. Illustrative results from the LoadShaper service dispatching the virtual
battery (upper figure) based on the trajectory of locational marginal prices
(lower figure).

When operating in PeakCrusher mode, the PVB can reduce
costs associated with annual and monthly peak loads. From



May 1st to September 1st, the utility scheduled 36 peak events
ranging from 2 to 6 hours in duration. Figure 8 illustrates
the performance of the PVB with 81 devices deployed and
a peak scheduled from 15:00 to 21:00 on a weekday in
August. Assuming that the peaks are accurately scheduled, this
type of peak reduction can substantially reduce utility costs
for regional transmission and generation capacity, which are
assessed based on contributions to annual peak loads.
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Fig. 8. Illustrative results from a packetized virtual battery operating in
PeakCrusher mode, with a scheduled peak from 15:00 to 21:00 on a weekday.

In order to evaluate the impact of participation in the
program on end users, we sent a survey to participating
customers. While the number of responses was relatively small
(32), customers expressed a very high level of satisfaction with
the program. When participants were asked how likely it was
that they would recommend this program to a friend, 97%
answered “likely” (41%) or “very likely” (56%). Similarly,
97% indicated that they were “satisfied” (77%) or “very
satisfied” (20%) with the program.

V. CONCLUSION

This paper provides real-world and large-scale validation
results from tests of a new approach to demand side manage-
ment, in which a fleet of grid edge devices (water heaters in
this case) is coordinated to act as a virtual battery. The large-
scale, real-time cyber-physical simulation results demonstrate
that the system can actively track with a rapidly changing grid-
balancing signal, such as the power production from wind or
solar plants. The results from utility field trials suggest that
packetization and randomization, which have previously been
demonstrated only in software simulation, can be used to solve
real-world grid problems facing the electricity industry.
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