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Abstract—Load tap changers (LTCs) are commonly used for
voltage control in distribution systems. The mechanical relays
on LTCs are controlled in discrete steps; hence, distribution
optimal power flow (DOPF) formulations require LTCs to be
modeled with integer variables. Integer variables are generally
ignored or relaxed and rounded off to reduce the computational
burden in DOPF models. However, in this work, we highlight
and overcome complex infeasibility issues caused by rounding
methods. Moreover, recent advances in convex optimization
have improved the computational tractability of the DOPF
problem. In this work, we develop and analyze numerical
efficiency of different, but exact formulations for incorporating
LTCs as integer control assets in a relaxed second-order
cone program (SOCP) version of DOPF model. The resulting
formulation becomes a mixed-integer SOCP (MISOCP), which is
computationally tractable compared to mixed-integer non-linear
program (MINLP). To recover the exact optimal solution in
the proposed MISOCP-DOPF model, a McCormick relaxation
is employed within a sequential bound-tightening algorithm.
We show that solutions obtained from MISOCP-DOPF are
always AC feasible. Thus, the MISOCP-DOPF yields optimal
and realistic AC solutions, and is validated in large distribution
feeders and is compared to MINLP counterpart.

Index Terms—Optimal power flow, mixed-integer second-
order conic programming (MISOCP), McCormick envelopes,
Distribution systems, Load tap changers (LTCs).

I. INTRODUCTION

Recently, optimal power flow (OPF) problems for
three-phase unbalanced distribution systems have gained
significant interest. Distribution optimal power flow (DOPF)
is becoming central to operate an Advanced Distribution
Management System (ADMS) for applications like volt/var
optimization, network reconfiguration, and distributed energy
resource (DER) coordination or Distributed Energy Resource
Management Systems (DERMs) [1], [2]. Conventionally,
discrete controllable assets, such as mechanical load tap
changers (LTCs) and capacitor banks that can only take
discrete (integer) states, e.g., binary ON/OFF (cap banks) or
integer states, e.g., −16,−15, . . . , 16 (LTCs), have been the
primary controllable elements in distribution systems used
for managing reactive power and voltage limits (volt/var
control) [3]. However, with increasing penetrations of behind-
the-meter variable DERs (e.g., roof-top solar PV, electric
vehicles, and distributed storage), the voltage regulation
problem is becoming increasingly dynamic in nature. That
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is, managing variable voltages within prescribed limits with
only conventional assets requires frequent actuation of discrete
assets, which reduces the lifetime of resources [4]. To
balance the use of these discrete elements with flexible and
continuously controllable assets, such as DERs and advanced
inverters [5], [6], optimized coordination of discrete and
controllable resources is valuable and needed. However, with
mixed controllable assets residing in three-phase nonlinear
systems, the DOPF problem is a challenging problem to solve.

Since the LTCs can only be controlled in discrete integer
steps, this turns a tractable and continuous optimization
problem into a mixed-integer program (MIP), which is NP-
hard1. Hence, large-scale MIP problems are not tractable
unless certain conditions hold, such as having totally
unimodular matrices [7]. For mixed-integer non-linear
programming (MINLP) formulations of the DOPF problem,
there is additional complexity that arises from the non-
convexity of non-linear power flow equations. Non-convex
MINLP and mixed-integer quadratic-constraint programming
(MIQCP) models are developed in [8] and solved for a system
with large number of discrete variables. However, the solutions
in [8] are not guaranteed optimal, and the optimality gap is not
evaluated to ensure quality of the solutions. Thus, obtaining
an optimal solution to the non-convex mixed-integer DOPF
problem in practical time has been recognized as a significant
challenge [9]–[11].

Authors in [11]–[16] have proposed numerous techniques to
solve the OPF problems with integer variables. In [11], penalty
term and rounding function are used to drive relaxed solution
to integer solution. In [12], the authors used the sensitivity
of the objective functions to the inequality constraints for
the discrete variables. An algorithm is proposed in [13] that
combines ordinal optimization with distributed asynchronous
dual formulations. The approach reduces the solution space
to quickly find good, but sub-optimal feasible solutions.
An annealing-based heuristic method is used in [14]. The
performance of the algorithm is improved by approximating
the stochastic simulated annealing with a set of deterministic
equations; however, the method suffers from slow convergance
and does not guarantee optimality. In [15], discrete variables
are modeled efficiently by using a penalty function that
makes the problem continuous and differentiable. However,
the use of a penalty function requires careful analysis to avoid
sub-optimal solutions. In [16], a hybrid approach combines
primal-dual interior point and meta-heuristics to speed up the

1NP-hard refers to problems where the computational complexity associated
with the MIP integers grows exponentially with the number of discrete
variables in the DOPF problem (i.e., no guarantee of the existence of a
polynomial-time algorithm).
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MINLP computation. However, this method also suffers from
scalability issue due the MINLP formulation.

Thus, given the computational complexity of a MIP-based
DOPF [17], state-of-the-art methods in literature approach the
problem by replacing the discrete variables with continuous
ones, and then project the solution onto the original discrete
lattice (i.e., use rounding). However, the rounding approaches
neglects the effect of discretization, which can lead to two
undesirable outcomes: (a) infeasibility in the solution to the
original MINLP model, and (b) sub-optimal solutions. In
Section II-A, it is demonstrated with a simple 4-node feeder
that simple rounding heuristics cannot guarantee feasibility.
Even use of local search heuristic to ensure feasibility
with rounding does not scale up due to the exhaustive
local search [11]. This paper extends these ideas to a
computationally tractable and scalable approach for DOPF
with LTCs.

In general, reformulations are used to efficiently solve
the nonlinear DOPF problem. There are two general
reformulation approaches: a) linear approximations and b)
convex relaxations. A linear approximation of the nonlinear
DOPF model can involve Jacobian linearizations and/or
simplifying assumptions (e.g., “DC” optimal power flow
assumptions) and results in a convex optimization problem
with (piece-wise) linear constraints (e.g., a linear or quadratic
program, LP or QP). With a linear approximation, one can
readily exploit the efficiency of LP/QP solvers. As such, linear
approximations of OPF are indispensable in the industry and
are widely studied [18]–[20]. Linear approximations of DOPF
problem have also been widely studied [21], [22].

Convex relaxations also permit the use of polynomial-
time algorithms for solving the DOPF problem [23], and
provides a rich set of optimization techniques that preserve
the (globally) exact model [24]–[30]. For example, semi-
definite programming (SDP) [24], [29] and second-order cone
programming (SOCP) [25]–[28] can recover globally optimal
solutions to the non-convex DOPF problem, under certain
circumstances. However, SDPs are computationally much
more expensive compared to SOCPs in solving DOPF [31].
For single-phase equivalent radial networks, it has been
proven that SDP and SOCP relaxations exactly recover the
global optimum of the nonlinear DOPF problem [23] under
certain assumptions on the objective function (e.g., loss
minimization).

These relaxations have also been successfully applied to
solve mixed-integer program (MIP) variants of the DOPF
problem. In [32], [33], the DOPF problem was initially
reformulated with integer variables. However, the convex MIP
was then further relaxed by relaxing the integrality of the
discrete variables. The resulting problem was then solved and
rounding was used to recover an integer solution. However, as
presented in the Motivating Example in Section II-A, rounding
can lead to infeasibility when operating the system close to
its limits. In [34], an SOCP relaxation is used for solving
an DOPF problem with discrete control variables. However,
instead of replacing discrete variables with continuous ones as
done above, the authors use the so-called “Big-M” method.
Similarly, a binary encoding scheme for discrete tap control

in LTC is proposed in [35] using the “Big-M" approach.
Although useful in addressing bi-linearities, Big-M methods
are often unable to perform at scale due to numerical
issues resulting from very large M values. If M is chosen
too small to overcome numerical issues, then the solution
becomes sub-optimal [36]. A linear approximation of an MIP-
DOPF problem with LTCs using a piece-wise linear (PWL)
approximation is presented in [37]–[41]. This approach
increases the number of discrete variable, which significantly
limits computational tractability. A variation of MIP-DOPF is
developed in [42] using first order approximation of power
flow equations to reduce computational complexity.

Contributions: Building independently on the concepts
proposed in [43], [44] and adapting them to the conic
DOPF models [25]–[28], this paper develops a mixed-integer
second order cone program (MISOCP) formulation of DOPF
model. We use the relaxed SOCP model and extend it by
incorporating the proposed nonlinear LTC model. Non-linear
LTC model of the voltage regulator is reformulated as a conic
model with second-order conic constraints. The bi-linearity
in the proposed model is addressed by using McCormick
envelopes [45], which are convex. The effectiveness of
the McCormick envelopes have been demonstrated in other
optimization models in [43], [44]. To ensure tightness of the
proposed convex McCormick relaxations, we also propose
an iterative algorithm called Sequential Bound Tightening
Algorithm (SBTA) to solve the MISOCP-DOPF model. The
algorithm iteratively shrinks the solution space by tightening
the convex envelopes. This iteratively improves McCormick
approximation. As a result, the proposed model together with
the SBTA algorithm outperforms the commercial MINLP
solvers in terms of computational time and optimality.
Specifically, the major contributions of the paper are:
• The presented MISOCP formulation extends state-

of-the-art SOCP models to include discrete control
through conic constraints formulation. The bi-linear
constraints are then relaxed into a linear framework using
McCormick relaxations.

• Development of a novel and efficient SBTA for solving
the proposed DOPF problem. The algorithm tightens the
relaxation by sequentially reducing the variable bounds.
This guarantees an integer-feasible DOPF solution.

In contrast to related work (e.g., [43]), the work herein
(a) avoids a piece-wise linear approximations that adds up
additional complexity due to extra integer variables, (b)
assesses the feasibility of MISOCP-DOPF solutions to the
original MINLP version, and (c) ensures a tight relaxation of
the MISOCP-DOPF models through SBTA.

MISOCPs can be solved efficiently using extensions of MIP
algorithms [46] with computational efficiency similar to MIPs
[23] which permits one to leverage the maturity of the existing
MIP solvers [47]. In addition, modelling the discrete controls
exactly with integer variables overcomes the need for an ad-
hoc heuristic rounding schemes.

The rest of the paper is organized as follows. Section II
describes the overview of non-convex and convex models of
DOPF. Section III describes the proposed MISOCP-DOPF
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model and the SBTA. Case studies are carried out on 4-node,
69-node, and 137-node distribution feeders in section IV to
demonstrate the efficacy of the proposed model and algorithm.
Section V provides conclusions and future work.

II. DISTRIBUTION OPTIMAL POWER FLOW
FORMULATION BASICS

A. Non-Convex Formulation and Rounding Heuristics

1) Non-convex DOPF formulation: The mathematical
model of the DOPF can be concisely stated as an objective
function, followed by several linear and non-linear constraints.
Without loss of generality, for an arbitrary single-phase
distribution network, let the nodes in that network be indexed
by i and j. yij is complex admittance, for the branch between
node i and node j. Shunt admittance at arbitrary node j is
represented by gj . For every line segment between node i and
node j, the real power flowing from i to j be denoted by
Pij and reactive power by Qij , Sij = Pij + iQij . pi and qi
denote real and reactive injections at node i. Voltage at each
node is given by Vi. Vi and Vi are the lower and upper voltage
limits on the ith node. Similarly, the limits on real power are
given by Pi and Pi, and the reactive powers are constrained
by the lower limit Qi and upper limit Qi. The DOPF can
mathematically be stated as,

argmin
V,p,q

f(V, p, q) (1a)

subject to : Sij = Vi (V ∗i − V ∗j ) y∗ij (1b)∑
j:i→j

Pij = pi (1c)∑
j:i→j

Qij = qi (1d)

Pi ≤ pi ≤ Pi (1e)

Qi ≤ qi ≤ Qi (1f)

Q2
ij + P 2

ij ≤ S2
ij (1g)

Vi ≤ |Vi| ≤ Vi. (1h)

The DOPF model is quadratically constrained optimization
problem, which is non-convex in nature. The load model
used in the above formulation is of constant power type.
However, if a generic Constant Impedance, Current or Power
(ZIP) load model is considered, then the load model can be
written as quadratic function of nodal voltages Vi. Therefore,
a comprehensive DOPF formulation becomes an non-linear
programming (NLP) problem. If the discrete control of LTC
and cap bank models are included, then the DOPF becomes an
MINLP. For detailed MINLP-DOPF formulation, please refer
to [11].

2) Rounding Heuristics (Motivating Example): The
following concise example illustrates the shortcomings of
relaxing the integer variables and using rounding heuristics
to recover an integer solution for the DOPF problem.

Consider a simple 7.2 kV modified IEEE 4-node example
(phase-a only) feeder as shown in Fig. 1a. The circuit has
a voltage regulator 2©– 3© with a 32-step LTC (tap positions:
−16 to 16) and impedance of (0.47+i 1.05) Ω, feeder sections
1©– 2© and 3©– 4© with impedances of (0.46 + i 1.07), (0.47 +

i 1.07) Ω, respectively, and a load of (80 + i 35) kVA at
node 4©. The operating constraints are: 0.95×7.2 kV≤ |V4| ≤
1.05× 7.2 kV. The DOPF objective is set to minimize losses.
Then, consider the resulting MINLP formulation of the DOPF
problem and relax the discrete LTC’s integer decision variables
with a continuous representation. This results in an NLP-
DOPF. We will now investigate what happens under different
load conditions when you round up and down a relaxed
solution to recover a realizable integer solution.

First, consider rounding up: If the substation voltage is set
to |V1| = 1.00 × 7.2 kV and the load is assumed to be
constant PQ. Solving the NLP-DOPF yields an optimal tap
position of 8.68. When rounded up to 9.0, this DOPF model
becomes infeasible as |V4| = 1.053×7.2 kV exceeds its upper
bound (please see Fig. 1b). This is because the optimal solution
seeks to push the voltage towards its upper bound to reduce
the current (and resulting losses) in the constant power load.
In this particular case, it is necessary to round down to create
a feasible integer solution.

However, just rounding down is not a viable general strategy
either. Consider the effects of rounding down on feasibility
when the loads is changed to constant-impedance. Now,
solving the loss-minimization DOPF yields an optimal tap
position of −7.36. When rounded down to the nearest integer
−8.0, the DOPF model becomes infeasible as |V4| = 0.946×
7.2 kV crosses the lower bound. This is because the LTC keeps
the voltage close to the lower bound to reduce the current.
Thus, rounding up produces an integer-feasible solution.

By extension of the above, it is clear that for different load
types at a single node or multiple nodes, simple rounding
heuristics cannot guarantee feasibility. Indeed, we tested
the rounding heuristic in a 137-node feeder with 8 LTCs,
and we observed similar infeasibility issues. Moreover, the
combinatorial nature of the rounding heuristic prohibits
scalability in practical-sized feeders.

a) b)

Feasible Region

|V4|>1.05 p.u

|V4|< 0.95 p.u

(rounding up)

(rounding down)

continuous

continuous

integer

integer

1
2 43

Fig. 1. a) 4-node example feeder to demonstrate the issues of rounding, b)
feasible space showing the issues of rounding up and down integer variables.

B. Second-Order Conic Programming Model

The relaxed SOCP-DOPF model in [25]–[28] is based on
the branch flow model originally described in [21], [22]. The
relaxed DOPF model is developed based on the assumptions
that (i) the network is connected, (ii) the objective function is
convex and is strictly increasing on the square of the branch
currents, non-increasing with constant power loads, and is
independent of apparent power flow on the branches, and
(iii) the objective function is independent of voltage angles
and current angles. These assumptions are quite reasonable
for distribution systems. The relaxed DOPF model uses:
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(i) Angle Elimination that removes the phase angles of the
complex voltages and currents in the original branch flow
model. The model is still non-convex due to quadratic equality
constraints, which relate real and reactive powers on the
branch to respective nodal voltages and branch current. In
the (ii) Conic Relaxation the quadratic equalities are relaxed
with inequalities, which turns the problem into a convex, conic
optimization problem. Specifically, the DOPF model can now
be modelled as an SOCP if the objective function is linear.
In radial distribution systems, the relaxations are proven to be
exact under the conditions that there are no upper bound on
the loads [27], [28].

Let G = (N,E) be the connected graph of the singe phase
distribution system and we assume G is acyclic. N represents
the buses and E represents each link in the graph, which are
segments of the distribution feeder. The nodes of the network
are indexed by i, N = {i : i = 1, 2, 3, ..., n}. For a distribution
system, the root node or the node i = 1 is the substation node.
Each link in the network is denoted by its two end nodes (i, j),
i.e., i → j denotes a feeder segment from node i to node j.
Let E be the set that contains all the links or feeders segments
in the network. For each link (i, j) ∈ E, Iij represents current
in the branch flowing from node i to node j. Let lij = |Iij |2
and vi = |Vi|2. All other notations are as described in the
Section II-A. The SOCP-DOPF can be modeled as,

argmin
S,l,v,s1

f(S, l, v, s1) (2a)

subject to :

pj =
∑
k:j→k

Pjk −
∑
i:i→j

(Pij − rij lij) + gj vj ∀j (2b)

qj =
∑
k:j→k

Qjk −
∑
i:i→j

(Qij − xij lij) + bj vj ∀j (2c)

vj = vi − 2 (rij Pij + xij Qij) + (r2ij + x2ij) lij (2d)

∀(i, j) ∈ E∥∥∥∥∥∥
2Pij
2Qij
lij − vi

∥∥∥∥∥∥
2

≤ lij + vi ∀(i, j) ∈ E. (2e)

The above formulation is SOCP if the objective function
is linear. The conic relaxation is exact if there are no upper
bounds on loads. For radial networks, it is possible to recover
the angles of voltage and current using an angle recovery
algorithm outlined in [27].

III. PROPOSED MODEL

In this section, we augment the SOCP-DOPF problem to
include a discrete LTC model of the voltage regulator, with
the tap position as a control variable. The overall flowchart
is shown in Fig. 2. The variables and symbols used in the
proposed model are described in the previous Section.

A. Conic Reformulation of LTC Model

For the LTC between nodes i and j, let the primary
and secondary voltages be given by vi and vj , respectively.
Modeling the LTC includes its impedance, which is
represented similarly to the impedance of a feeder section.

OPF
(Non-Convex)

OPF – Angle Relaxation
(Non – Convex)
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McCormick Envelopes
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Sequential Bound 
Tightening  Algorithm

MISOCP-DOPF

Fig. 2. Overall flowchart of the proposed model integrated to SOCP-DOPF.

Define ∆S as the step change in voltage for a unit change in
tap position, tij . Thus, voltage magnitude control of LTCs can
be mathematically modelled as,

vj = vi k
′
i
2 (3a)

k′i = 1 + ∆S tij . (3b)

Defining k′′i := 1
vi

and relaxing the above yields:
vj k

′′
i ≥ k′i

2 (4a)
vi k
′′
i ≥ 1. (4b)

Inequalities (4a) and (4b) are hyperbolic constraints, which
can be reformulated as second-order cone constraints and
represent convex sets [48]. However, (4a) and (4b) are lower
bounded but have no upper bounds. Relaxations of equality
on (3a) and (3b) to inequality in (4a) and (4b) may lead to
errors in the model. To ensure tightness of these relaxations
and to reduce the modeling errors, we must establish upper
bounds on these bi-linear terms and bring the lower and the
upper bounds closer. This is achieved by using upper bounds of
McCormick envelopes (described next) constructed on the bi-
linear terms vjk′′i and vi k′′i. The lower bounds are defined by
the second order reformulations of the hyperbolic constraints.
Then, we use the SBTA algorithm, to shrink the feasible space
using a series of upper bounds.

B. McCormick Envelopes

The bi-linear terms in the proposed model are relaxed by
using the McCormick envelopes [45]. This approach allows
the formulation to be linearly convex in spite of the nonlinear
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equations for a regulator’s voltage control. In general, the
McCormick envelopes for an arbitrary bi-linear term xy with
variables x ∈ [xL, xU ] and y ∈ [yL, yU ] can be mathematically
described as,

McCormick
(
x, y, [xL, xU ], [yL, yU ]

)
:=

Upper Bounds

{
w ≥ xLy + yLx− xLyL

w ≥ xUy + yUx− xUyU

Lower Bounds

{
w ≤ xLy + yUx− xLyU

w ≤ yLx+ xUy − yLxU .
(5)

Note that the McCormick envelope represents an inexact
envelope approximation of the original NLP problem, which
means that the resulting solution may not be realizable without
violating the physical constraints. Furthermore, the accuracy
of the approximation is directly related to the ranges of the
variables (e.g., xU −xL and yU −yL). That is, smaller ranges
yield more accurate McCormick envelopes.

C. Mixed-integer Second-order Conic Programming Model of
Distribution Optimal Power Flow

The complete modelling of MISOCP-DOPF can be obtained
as follows. The notations used in the formulation has same
meaning as above. In addition, each of the links that host LTC
is contained in the E′, E′ ⊆ E. Without loss of generality,
we index all load serving nodes NL ⊆ N . Tap positions for
each of the LTCs and voltage for each of the nodes with loads
are constrained within an interval.

P : argmin
S,l,v,s1,t

f(S, l, v, s1, t) (6a)

subject to :

2(b), 2(c), 2(d), 2(e)
tij ≤ tij ≤ tij ∀(i, j) ∈ E′

(6b)
vi ≤ vi ≤ vi ∀i ∈ NL ⊆ N (6c)
k′i = (1 + ∆S tij) ∀(i, j) ∈ E′ (6d)∥∥∥∥ 2k′i
vj − k′′i

∥∥∥∥
2

≤ vj + k′′i ∀i ∈ E′ (6e)∥∥∥∥ 2
k′′i − vi

∥∥∥∥
2

≤ k′′i + vi ∀i ∈ E′ (6f)

McCormick
(
k′′i, vi, [k

′′
i
L
, k′′i

U
], [vi

L, vi
U ]
)

∀i, j ∈ N s.t. (i, j) ∈ E′ (6g)

k′i ≥ 1 + 2∆Stij + ∆S2tijtij ∀(i, j) ∈ E′

(6h)
tij ∈ Z ∀(i, j) ∈ E′. (6i)

Thus, the proposed mixed-integer convex model is MISOCP.
The optimization objective function focuses on minimizing
losses, which yields an objective function that is linear, due
to modelling choices.

D. Sequential Bound Tightening Algorithm

Recall that McCormick relaxations, in the proposed LTC
model may not be tight. This can be fixed by tightening
the convex envelopes for obtaining the desired accuracy
in the results. Tightening the McCormick envelopes also
reduces computational time. To improve the tightness of
the McCormick envelopes in the MISOCP-DOPF model, we
propose an iterative Sequential Bound Tightening Algorithm
(SBTA) that shrinks the feasible convex region every iteration
by decreasing the feasible range of values that each variable
can take. This directly reduces the error in the solutions, and
after a few iterations, the relaxations are within the feasibility
tolerance limit, and the algorithm terminates.

The algorithm is outlined in pseudo code (see Algorithm 1)
and iterates while seeking to minimize the approximation error.
The tolerance on the error can be set by the user: a tighter
tolerance would mean more iterations, while a lower tolerance
value could give inaccurate solution.

In the first iteration, the relaxed MISOCP-DOPF model is
solved with the initial bounds on variables. In the subsequent
iterations, the range of the LTC voltages is set 2ζ around
the optimal solution obtained in the previous iteration.
Progressively reducing ζ shrinks the solution space every
iteration. ε is the desired solution quality or the tolerance.
In the algorithm, v∗i

m and t∗ij
m denote the optimal values of

voltage and optimal integer tap position obtained after solving
the problem in the mth iteration.

Algorithm 1 Sequential Bound Tightening Algorithm
Ensure: tn ≤ tn ≤ tn ∀tn ∈M

vi ≤ vi ≤ vi ∀i ∈ E′
initialization m = 1
repeat

if m = 1 then
vi ≤ vmi ≤ vi ∀i ∈ E′
1/vj ≤ k′′i m ≤ 1/vj ∀i ∈ E′
Solve P

else
v∗m−1i − ζm ≤ vmi ≤ v∗

m−1
i + ζm ∀i ∈ E′

1/(v∗j
m−1+ζm) ≤ k′′i m ≤ 1/(v∗j

m−1−ζm) ∀i ∈ E′
Solve P

end if
m = m+ 1

until |v∗j − v∗i (1 + ∆S t∗n)2| ≤ ε

E. Prescribed Tolerance

The approximation error due to McCormick relaxation
plays an important role in the convergence of the proposed
algorithm. Theoretically, ε should be zero or as close to
zero as possible. However, this might take a lot of time
to converge due to an overwhelmingly large number of
iterations. This leads to a trade off between convergence
time and accuracy. Our analysis shows that accuracy does
not improve considerably when the error drops below a
certain value. Since the LTCs are discrete control variables,
setting an error tolerance ε such that the change in LTC
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through the SBTA iteration is less than ±1, the quality
of the solution is preserved and the tap position remains
unchanged. However, ε larger than that can cause change in
LTC positions, which causes the solution to drift away from
the optimal. Therefore, we conducted a test by changing the
input voltage of the LTC in the range 0.9 − 1.1 p.u, and
observing the change in the output voltage of the LTC with the
tap setting incremented/decremented by 1. Figure 3 depicts the
relationship between change in output voltage due to 1 step
change in LTC position, i.e., ∆V = |(vj − vi(1 + ∆S tn)2)−
(vj − vi(1 + ∆S (tn ± 1))2)| and the input voltage to the
LTCs. We choose ε be less than ∆V . We found that setting
ε ≤ 0.0102 gives sufficiently accurate results.
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Fig. 3. Upper bound on ε at different primary voltages.

IV. NUMERICAL SIMULATIONS

In this section, performance of the proposed DOPF model
is analyzed through a series of numerical simulations. Starting
with a modified IEEE 4-node system, we run a loss
minimization problem with LTC tap positions as decision
variables. Results of this study are extensively analyzed and
the feasibility of the obtained optimal solutions are compared
with the solutions of MINLP-DOPF. Case studies using an 4-
node feeder with one LTC, 69-node feeder with 4 LTCs are
carried out to illustrate the relative scalability of the MISOCP
model compared to the MINLP-DOPF. In addition, to reflect
European operational practice, case studies on the 69-node test
feeder have been included to consider voltage bounds of±10%
around nominal, which further reduced losses. We also explore
alternative objective functions and include continuous control
resources as decision variables in the MISOCP formulation.
Finally, we perform a multi-period DOPF on 137-node feeder
with 8 LTCs to highlight the scalability of the proposed
model in comparison to contemporary MINLP modelling.
Note that LTCs in all these studies have 32 steps, with step
size ∆S=0.00625.

A. Loss Minimization

1) 4-node Feeder: We take phase-a of the IEEE 4-
node three-phase distribution feeder, as shown in Fig.1a, to
demonstrate working of MISOCP-DOPF and SBTA. As shown
in the Fig.1a, we added one voltage regulator with LTC. We
minimize the power losses on the modified 4-node feeder with
the tap position of the LTC as the discrete control variable.
We vary load connected at node-4 to demonstrate tightness of
the solutions for various loading condition. The load power
factor is fixed at cos(tan−1(1/3)).

Since only node 4© has connected loads, the voltage on this
node is constrained between 0.95 and 1.05 pu. Voltages at all
other nodes are unconstrained and free to take any values. Tap
positions of the LTC is constrained between −16 and +16 as
discrete integers. MOSEK is used to solve the MISOCP-DOPF
model. Voltage at node 1© is fixed at 1.0 pu. The algorithm
terminates when the ε is less than 0.0102.
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Fig. 4. Convex relaxation of nonlinear constraint vnk”n = 1 over the region
vn ∈ [0.95, 1.05] and k”n ∈ [ 1

1.05
, 1

0.95
]. The set of points satisfying the

constraints are represented by a dotted line. The boundaries of the McCormick
envelopes are shown in bold, which encloses the (shaded) convex region.

The proposed SBTA for all load cases converged in 2
iterations. The voltage bound in Algorithm 1 at the first
iteration is set at 0.1, and ζ [2] = 0.03 is used in the second
iteration (see Fig. 5). Fig. 5 also shows reduction on voltage
error over the iterations of the SBTA algorithm. Decreasing
ζ each iteration reduces the convex feasible set (with bounds
from the McCormick envelopes). The shrinkage can be seen
in 5, the right axis shows the difference between the upper
bound and the lower bound of the input voltage to the LTC.
This reduction in the feasible set is essential to achieving
tightness on the solutions. Fig. 4 shows the effect of decreasing
ζ on the convex feasible region. Fig. 4a shows the overall

1 2
0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 5. Error on voltage calculation and voltage bound decrements over the
iterations in SBTA.
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function together with the McCormick envelopes. Fig. 4b is the
zoomed in version around McCormick envelopes. In Fig. 4c
and 4d, the bounded area is shrinking. The convergence of the
model depends on the value of ζ and the tolerance of error ε.
For a smaller ζ and a smaller tolerance ε, the model would
require more iterations to achieve convergence. However, ζ
should be selected such that 2ζ is less than the difference of
upper and the lower bounds on the variables in the McCormick
envelopes.

Table I summarizes the results under different loading
conditions. As the load increases, the losses increase
quadratically. The LTC position increases with an increase in
the load to minimize the current in order to reduce the losses
and keep the voltage at node 4© within acceptable limits. All
of the solutions in Table I are feasible with respect to the
original MINLP-DCOPF model.

TABLE I
RESULTS FOR THE MODIFIED 4-NODE FEEDER WITH AN LTC.

Load Voltage, pu Loss
kW LTCkW kVar Node 2© Node 3© Node 4©

300 100 0.99904 1.05075 1.04999 2.639 9
450 150 0.99650 1.05302 1.04999 5.999 9
600 200 0.99390 1.0552 1.04999 10.775 11
750 250 0.99121 1.05760 1.04999 17.015 12
900 300 0.98845 1.05991 1.04999 24.768 14
1050 350 0.98560 1.06221 1.04999 34.092 15
1200 400 0.98266 1.06333 1.04878 45.077 16
1500 500 0.97646 1.04980 1.03023 72.983 16
1800 600 Infeasible

2) 69-node Feeder: A loss minimization study on a single
phase 69-node system was also carried out using discrete LTC
positions as control variables. Schematic of 69-node system is
shown in Fig. 6 [49]. The feeder is modified by adding 4
LTCs. The intention of this study is to demonstrate scalability
of the proposed model. The total losses in the system is
found to be 192.54 kW. The LTC positions are 8,6,0, and
9, respectively. The voltage profile along the feeder is shown
in Fig 7. The feasibility of the obtained optimal solution was
confirmed with basic power flow analysis. Solving MINLP-
DOPF model yields total losses of 206.50 kW.

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15
16

17
18

19

20

21

22

2324252627

28

29

30

31
32 33 34 35

36

37

38
39 40 41 42 43 44 45 46

47

48 49 50

51 52

68 69

66 67

53

54

55
56 57 58 59

61

60

62636465

LTC#1

LTC#3

LTC#4

LT
C
#
2

Fig. 6. Schematic of modified 69-node feeder with 4 LTCs.
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Fig. 7. Nodal voltage profile on 69-node feeder.

In order to further test the effectiveness of the proposed
model to networks with a higher permissible voltage deviation,
we allowed the voltage limit in the range 0.9 to 1.1 p.u. We
run this simulation with the same loss minimization objective.
As we expected, the total active loss drops from 192.8 kW to
173.89 kW. The obtained solutions are tight with respect to
the nonlinear DOPF in (1b) and (1h).

3) 137-node Feeder: A 137-node distribution system
is used to solve the MISOCP-DOPF to demonstrate the
scalability of the method. The network is synthesized by
cascading two sections of a 69-node feeder in Fig. 6 (second
feeder connected at node 69 of the first feeder) and load
scaled by a factor of 0.5. The resulting feeder has total of
8 LTCs. We minimize the active power losses on the network
by controlling the tap positions of the LTCs. Nodal voltages
are constrained between 0.95 and 1.05 p.u and LTCs between
−16 and +16. The results are summarized in Table II. All
the voltages match closely (up to three decimal places) with
the solutions obtained from power flow analysis. We only
present the voltages on the nodes which are connected to the
LTCs. The total losses on the system are 279.2 kW and the
proposed MISOCP-DOPF model took 16.38 seconds to solve
using MOSEK. Using the commercial KNITRO solver for
the MINLP-DOPF formulation took 27.6 seconds with total
losses of 298 kW. We run the MINLP-DOPF model with
MISOCP-DOPF solution as initial condition to ensure that
MINLP-DOPF is not trapped at local solutions. This approach
did speed up the computation time of MINLP-DOPF but the
objective function value did not change in MINLP-DOPF. The
difference in the objective function values in MISOCP-DOPF
and MINLP-DOPF are due to the difference in convergence
set in the solvers and due to the relaxations in SOCP model.
We run several cases by varying the load, and we observed
that MISOCP-DOPF solutions are always feasible to MINLP-
DOPF, and MISOCP-DOPF solutions are superior to those of
MINLP-DOPF.

TABLE II
SUMMARY OF THE RESULTS FOR THE 137-NODE DISTRIBUTION FEEDER.

LTC Connecting Nodes Tap Voltages, p.u
Sending Receiving Sending Receiving

LTC#1 1 2 8 1.00000 1.04993
LTC#2 18 19 9 0.98892 1.04743
LTC#3 40 41 -2 1.04968 1.04036
LTC#4 56 57 6 1.01736 1.04901
LTC#5 69 70 11 0.98248 1.04999
LTC#6 86 87 3 1.03059 1.04969
LTC#7 108 109 -1 1.04979 1.04490
LTC#8 124 125 4 1.03315 1.04999
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TABLE III
DISPATCH OF PV AT VARIOUS NODES ACROSS THE 69-NODE

TEST FEEDER.

Node PV Capacity (KVA) Dispatch
PV (kW) PV (kVAr)

4 500 372.91 331.94
7 500 405.51 292.50
9 500 406.66 290.89
12 500 396.46 304.65
22 500 380.35 267.53
37 300 141.70 57.46
47 500 392.91 308.61
52 500 404.79 293.49
57 300 118.93 180.44
60 400 327.48 229.67

B. Other Objective Functions

The non-integer part of the developed work is based on
recent advancements in SOCP relaxation of OPF problem
[27], [28]. An arbitrary choice of objective function may
not lead to a tight SOCP solutions; hence, the user must be
careful in selecting the objective function in SOCP relaxation
of OPF problem. We have tested the model with voltage
deviation (i.e,

∑
i(vi − vnom

i )2) minimization in the objective
function, and observed that the solution is not tight [50].
However, with a multi-objective minimization of losses and
voltage deviations, we were able to achieve tight and efficient
solutions. In fact, with the 69-node network augmented with
several solar PV sites (i.e., curtailable generation), simulations
demonstrate the combined optimization of continuous and
discrete assets within the proposed MISOCP framework.
Specifically, the multi-objective simulation converged in four
SBTA iterations. The capacity of the solar PV site at each
node and corresponding dispatch (active and reactive power)
are shown in Table III. The obtained LTC positions are
{0, 0,−1, 8} and the total active power loss is 90.73 kW.

C. Multi-Period DOPF

We use the proposed model on the 137-node feeder to
optimize the tap settings on LTCs over a 24-hour horizon with
hourly resolution. The performance of the proposed MISOCP-
DOPF model is compared with the results of MINLP model
obtained using KNITRO (see Fig. 8).
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Fig. 8. Solve time from MISOCP-DOPF model vs MINLP model for the
multi-period DOPF on 137-node feeder.

The proposed MISOCP-DOPF has better efficiency and
scalability. The proposed MISOCP-DOPF model enabled us
to solve the entire 24-hour DOPF problem with discrete

tap controls in less than 5 minutes. While KNITRO was
only able to solve the multi-period MINLP-DOPF model for
≤ 3 time intervals. Other state-of-the-art solvers (e.g. SCIP,
BARON, CONUENE) also failed to obtain a solution, when
the number of time intervals was increased to ≥ 4. MISOCP-
DOPF shows at least one order magnitude faster solve time
compared to the MINLP-DOPF formulation. For the multi-
period DOPF, using the solution from MISOCP-DOPF as
initial condition to the MINLP-DOPF model did not help
speed up the computation for ≥ 2 of time intervals. Note
that the computational complexity in this work is discussed
based on North American type feeders, where multiple in-line
LTCs can exist for voltage regulation [51]. In European type
networks, since in-line LTCs are not common and LTCs are
primarily equipped at substation transformers [52], rounding
heuristics could still be a viable option due to small search
space.

To compare the quality of the MISOCP solutions, we have
evaluated the optimally gap relative to the (integer relaxed)
SOCP and observed that the worst-case optimality gap is less
than 0.68%, which ensures quality of the MISOCP solution.
The MINLP-DOPF showed large optimality gap of less than
6.2%, which is almost ten times larger.

V. CONCLUSION AND FUTURE WORK

In this work, we first demonstrated challenges surrounding
infeasibility of the rounding approach in solving DOPF model
with LTC control. Then, based on a state-of-the-art SOCP
formulation of the DOPF and convex relaxation of the LTC
models with McCormick envelopes, we built a MISOCP
version of the DOPF model. Then, we applied a sequential
bound tightening algorithm to ensure that the relaxations in
MISOCP-DOPF are tight. Numerical simulations are presented
for 3 distribution feeders and showed that the proposed method
is superior to MINLP in all regards. The MISOCP-DOPF
model outperforms the MINLP model in terms of solve time
and optimality. Also, we demonstrated that the solution from
MISOCP model is AC feasible to which ensures that the
infeasibility issue due to rounding approach is also overcame
through the MISOCP-DOPF formulation.

Future work will investigate analytical conditions that
guarantee feasibility and optimality of the proposed
MISOCP-DOPF model and comparisons with alternative
formulations/solution methods. In addition, we seek to extend
this work along the following directions:
• include battery storage and 4-quadrant inverter control

into the optimization, which increases temporal coupling
due to energy dynamics,

• extend MISOCP to consider the full three-phase OPF
models to actively manage phase imbalances.

In this paper, we have successfully demonstrated efficiency
and usefulness of MISOCP model in solving optimal power
flow problem on distribution feeders with discrete and
continuously controllable assets. The proposed model can
certainly serve as a core model in ADMS tools.
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