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Abstract— The goal of this paper is to develop a low-order model
to represent the coordination of distributed energy resources based
on concepts that make the internet work and is known as packetized
energy management (PEM). The low-order model includes energy
as a state variable together with dynamic opt-out constraints and
internal packet request feedback, which in principle turns the model
into a PEM virtual battery (PEM-VB) model. The paper focuses on
a homogeneous aggregation of electric water heaters (EWHs) under
PEM. It is shown that the bottom-up logic of the PEM-VB makes the
system observable mainly due to the convenient feeding back of the
number of packet requests through the communication channel es-
tablished between the PEM coordinator and devices enrolled in the
scheme. Without such extra information, the system loses the ability
to observe the system’s stored energy state. A procedure for comput-
ing the maximum and minimum energy bounds for the PEM-VB is
developed. Moreover, the PEM-VB is explicitly used as the underly-
ing model for an extended Kalman filter observer formulation with
the purpose of estimating the energy stored in a simulated ensemble
of agent-based EWHs under PEM. The use of PEM-VB is demon-
strated in pre-positioning of flexible resources depending upon load
forecasts. Finally, conclusions and future directions are provided.

Index Terms— Demand dispatch, distributed energy resources,
packetized energy management, virtual battery

I. INTRODUCTION

The overarching goal in power systems operations is to deliver
energy in an efficient, reliable, and economical manner. To
achieve this, power system operators employ hierarchical primary,
secondary, and tertiary frequency regulation schemes that uphold
the century-old operating paradigm of supply follows demand. As
electrification and decarbonization policies are pursued, the levels
of variable, renewable generation will increase, which will require
that power system operator think beyond supply follows demand
to achieve the desired power systems objectives. This means
one needs to consider the potential flexibility provided by, for
instance, internet-enabled, connected, and responsive loads, which
are part of the broad class of behind-the-meter (BTM) distributed
energy resources (DERs) [1]. By effectively coordinating DERs
and regulating their aggregate response, it is possible to turn the
operating paradigm on its head and have (responsive) demand
follow (variable) supply. In fact, it has been shown that BTM
DERs can represent an inexpensive source of flexibility for the
grid [2]–[4]. Thus, this paper focuses on a DER coordination
scheme recently developed by the authors and their collaborators
known as packetized energy management. This scheme enables
information to be exchanged between the DERs and a coordinator,
which informs the device to transition its operational state (e.g.,
consume, standby, and/or discharge), so that the coordinator
can provide the appropriate control signals to control aggregate
responsive net-demand (total consumption minus supply) as a
source of grid flexibility. This control of the aggregate net-demand
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is often with respect to tracking a power reference signal, such
as that provided by a market-facing aggregator or independent
system operator (ISO) and is similar to automatic generation
control (AGC) and other ancillary services.

A natural question that arises when managing a fleet of DERs
as a source of flexible demand is what power reference signals
can and cannot be tracked? To tackle this question, it is important
to have a notion of the current energy state or state of charge
(SoC) of the aggregation. If that is the case, then the ensemble
of DERs can be considered to be a virtual battery, e.g., [5]–[9].
In [5], a direct load control scheme is presented from which
power/energy limits on the aggregate response of thermostatically
controlled loads (TCLs) are defined as a function of ambient
conditions. A formal virtual battery (VB) model is then developed
for TCLs in [6] that couples the power response and fleet’s
SoC in a low-order, dynamic model. Similar methods are then
adapted to develop VB models for large-scale fleets of TCLs
and pool pumps in [8] that are utilized in a feedforward scheme
together with myopic load coordination scheme. In [9], machine
learning methods are used along with a direct load control scheme
to parameterize a low-order VB model that works well for
small-scale aggregations of less than 300 electic water heaters
(EWHs) and air conditioners (ACs). The temporal flexibility or
slack inherent to deferrable DERs, such as electric vehicles (EVs),
are characterized as a VB in [7], where online control policies are
developed to dispatch the DERs within local and VB constraints.

However, the parametrization of VBs often require DER coordi-
nation schemes that assume full or partial knowledge of the individ-
ual’s DER energy or human comfort states. This information over-
head may be perceived by the DER owner as violating their privacy.
For example, with the charging profile of an electric vehicle owner,
one can extract specific driving patterns such as miles driven by
the owner in a day. Furthermore, constantly streaming information
from large-scale fleets of DERs to a centralized coordinator limits
scalability of the schemes due to communication rates and costs.

In this work, a low-order VB model is developed and
parametrized based on a light-weight communication
infrastructure that underpins the bottom-up, event-based DER
coordination approach called packetized energy management [10]–
[12]. PEM is illustrated in Fig. 1. In this scheme, information about
the energy state of the DER ensemble is transmitted indirectly
by energy request pings received at the load coordinator. These
requests are received from each DER on an asynchronous, event-
based timescale, which reduces communication overhead and
enables a scalable implementation [13]. While PEM is applicable
to DERs in general [11], the focus of this work is on EWHs.

The main contribution of this paper is the development of a
predictive, low-order model of the aggregation of EWHs under
PEM that is capable of providing bounds and estimates of the
stored energy of the ensemble, while ensuring that local quality
of service (QoS) constraints are satisfied. The PEM-VB model
is shown to accurately estimate the SoC of a fleet of EWHs
using an extended Kalman filter (EKF). Furthermore, an optimal



Fig. 1: Closed-loop feedback system for PEM with Pref provided
by the grid or market operator and the aggregate net-load Pdem

measured by the coordinator.

control problem (OCP) is presented that can be used to modify the
aggregate power consumption of EWHs and ensure that the end-
user remains unaffected by the coordination. The predictive PEM-
VB model allows system operators to optimize use of flexible
demand to counter the variability inherent to renewable generation.

The paper is organized as follows. Section II summarizes the
PEM methodology and mechanism. In Section III, the low order
model for PEM is developed as well as its energy bounds and
conditions for local observability are provided. In Section IV,
numerical simulations are presented including an extended
Kalman filter formulation using the PEM-VB as the underlying
model for an ensemble of EWHs that are simulated individually.
Furthermore, an OCP formulation is presented that can be used in
day ahead planning. The conclusions are given in the final section.

II. PRELIMINARIES ON PEM

Packetized energy management for diverse DERs has been
presented in the author’s earlier work [10]. State-bin transition
models with high-dimensional state space were also developed
along with control schemes discussed in [14]–[16]. This paper,
however, focuses on a new, low-order, energy-based model for
a fleet of PEM-enabled EWHs.

When applied to an ensemble of EWHs, PEM utilizes a
probabilistic scheme based on the local dynamic state related
to the energy content of each individual EWH. For instance, an
electric water heater stores thermal energy that is proportional
to the temperature difference between the hot water in the tank
and ambient conditions. A notion of state of charge can then be
associated with EWHs, which allows one to define the quality
of service based on how close the energy level or temperature
is to a customer-defined set point. For example, an EWH QoS
is satisfied, if its temperature remains within a user’s predefined
temperature deadband. PEM’s bottom-up approach (detailed
in [10], [14]–[16]) is summarized as follows:
i. An EWH estimates or measures its local SoC.
ii. If the SoC is within a predefined range of comfort, the EWH,

based on its SoC, probabilistically requests to consume
energy from the grid at a fixed rate (e.g., 4kW) and for a
pre-specified epoch (e.g., 5 minutes) to beget an energy
packet (e.g., 0.33 kWh). If the SoC is too low, the EWH
automatically opts out of PEM and charges. This mode is
called OPT-OUT and is added to guarantee QoS. Once SoC
is returned within limits, EWH opts back into PEM.

iii. If a request is received, the coordinator either accepts or
denies the EWH’s packet request based on grid or market
conditions. If the request is denied, go to i. If the request is
accepted, consume the energy packet and then go to i.

Based on the previous description, an EWH can be in
either one of three states: ON, OFF or OPT-OUT. Furthermore,

randomization is injected to the request rule based on the local SoC,
which limits synchronization and promotes equitable access to
the grid. Fig. 1 illustrates the closed-loop system under PEM [10].

The temperature dynamics of the n-th EWH is given by the
simplified equation,

Tn[k+1]

=Tn[k]+∆t

(
ηnPrate,n

cpρLn
φn[k]−∆Tn[k]

τ
− Qn[k]

cpρLn

)
, (1)

where cp =4.186 kJ
kg◦C is the specific heat constant, Tamb is the

ambient temperature, τ = 150× 3600 seconds is the standing
loss time constant to ambient temperature and ρ= 0.990 kg

L is
the density of water when close to 50 ◦C. For the n-th EWH,
Prate,n is the energy transfer rate, Ln is liters in the container
tank, ∆Tn[k] := Tn[k] − Tamb, T set

n is the setpoint of the
thermodynamic switch, ηn is the efficiency of the system,Qn[k]
is the heat loss from the tank due to water usage and φn[k]∈{1,0}
is the state of the theromodynamic switch. Observe the three
terms multiplying ∆t in the right hand side of (1) correspond
to the added power from the grid, standing losses, and end-user
power consumption, respectively. The water usage profiles, Qn
are generated according to the procedure outlined in [10].

The rate governing how EWHs request packets is predefined
by a so-called probability of request function. Such a function
provides the probability at which an energy packet is requested by
the n-th EWH. If the corresponding temperature of the EWH is
Tn[k] and the desired set-point is T set

n ∈(Tn,Tn) over time k (for
discretization time-step ∆t), then the probability of request is given
by a cumulative distribution function over the range of admissible
dynamic states. For example, the exponential distribution gives

Preq(Tn[k]):=1−e−µ(Tn[k])∆t, (2)
where µ(Tn[k])>0 is a variable rate parameter dependent on the
local dynamic state. For energy packet requests, it follows that

µ(Tn[k])=


0, if Tn[k]≥Tn
mR

(
Tn−Tn[k]
Tn[k]−Tn

)(
T set
n −Tn

Tn−T set
n

)
, if Tn[k]∈(Tn,Tn)

∞, if Tn[k]≤Tn
where mR>0 [Hz] is a design parameter that defines the mean
time-to-request (MTTR). Moreover, the energy at time k stored
in the tank of the n-th EWH is obtained from

En[k]=cpρLn∆Tn[k]. (3)

Energy can be translated into SoC, ζn[k]=
En[k]−Emin,n

Emax,n−Emin,n
where

ζn∈ [0,1] andEmax,n,Emin,n are maximum and minimum limits
on energy respectively. The procedure to obtain limits on energy
are presented in the next section.

III. VIRTUAL BATTERY MODEL FOR EWHS

In this section, a notion of average energy or SoC of an
aggregation of EWHs is developed. By doing so, a fleet of
EWHs can be abstracted into a PEM virtual battery. Furthermore,
charging and discharging characteristics of this PEM-VB are
obtained based on the total power consumption of the fleet and the
requests received by the coordinator. The desired low order virtual
battery model then consists of three states; (i) average energy of
the fleet, (ii) total number of EWHs consuming power and (ON)
(iii) total number of EWHs in OPT-OUT. Total number of EWHs
in the ON and OPT-OUT modes are required to capture the
charging characteristics of PEM-VB. The discharge characteristics
are governed by the end-use process and is discussed next.



A. End-use model of hot water extraction

Local end-user events of the n-th EWH correspond to hot water
usage that result in heat loss from the tank, denoted by Qn in
(1). To obtain a low-order model, the aggregate statistics of the
fleet must are required. For this purpose, it was shown in [16] that
these user-driven events can be modeled by the so-called Poisson
rectangular pulses (PRPs) [17]. To clarify notation, the subscript
n is omitted hereafter and focus is placed on a single EWH.

Assume that there exists an appropriate probability space
(Ω,P,F), where Ω is the set of events, F a filtration, and P the
probability measure of elements in F. The stochastic differential
model for a PRP,w(t) is given as [17],

dw(t)=(v(t)−w(t))dN1(t)−w(t)dN2(t), (4)
where N1 (N2) is an independent, stationary Poisson point
process with constant rate parameter λ1 (λ2), representing the
initiation (conclusion) of a random end-user event and v(t) is
a random variable independent of N1 and N2 that describes the
intensity of the end-user event. For an EWH, v(t) describes the
power used for increasing the tank temperature and is considered
here exponentially distributed with mean λ.

Denote the expected value of the random processw as w̄(t):=
E[w(t)]. Due to the independence of the processes ∆N1, ∆N2

and v(t) in time, one can compute the expected end-user event as
dw̄(t)

dt
=(v̄(t)−w̄(t))λ1+w̄(t)λ2. (5)

The solution of (5) whenw(0)=0 is

w̄(t)=E[v]
λ1

λ1+λ2
(1−exp(−(λ1+λ2)t))

The expected event reaches steady state as t goes to infinity.
Hence, the mean of end-user event in steady state is

w̄sst := lim
t→∞

w̄(t)=
E[v]λ1

λ1+λ2
. (6)

The next theorem describes the probability distribution of these
events as the number of devices increases. A reasonable assump-
tion is that the end-user event for each EWH are independent
and identically distributed (i.i.d.) random processes. One can then
obtain the steady state statistics of the aggregation of the processw.

Theorem 1: The aggregation of individual end-user events,w,
is distributed in steady state asN (w̄sst, σw/

√
Ne), where Ne is

the total number of end-user event processes and w̄sst and σw are
the corresponding expected value and standard deviation of the
processw in steady state.
Proof: See [15].

Example 1: If v ∼ exp(λ), then σw = λ
√

2p−p2 and
w̄sst = λp, where p := λ1

λ1+λ2
. The average of 2, 000 water

usage profiles generated from (4) with λ=2.1 liters per minute,
λ1 =1/3600 sec−1 and λ2 =1/800 sec−1 results in the mean and
standard deviation of 0.3868 and 0.0382 respectively, whereas
for the one generated using Theorem 1 gives a mean of 0.3818
and standard deviation of 0.0369.

This example shows that the average effect produced by the
fleet of EWHs driven by i.i.d. PRPs (w(t)) is the same as the
aggregate driven by the i.i.d. process γ(t) distributed according
toN (w̄sst,σw). Finally, in case of a fleet of EWHs, the hot water
usage varies depending upon the time of the day. For example, the
water usage is higher in the morning due to people taking showers
than the afternoon, but remains relatively constant within a period
of 1 to 2 hours. Therefore, a full day can be divided into periods

of relatively constant water usage. Historical data is then used to
obtain the statistics for each period as discussed in [18].

With the aggregate statistics of the hot-water usage now known,
the PEM-VB is formally derived next.

B. Virtual Battery Model
The simple average of an homogeneous population of N

EWHs temperatures is Tavg =
∑N
n=1 Tn/N . From (1) and

provided thatQ is the discrete-time equivalent of γ, we have,

Tavg[k+1]=

(
1−∆t

τ

)
Tavg[k]+

∆tTamb

τ

−
∆t
∑N
i=1(Qi[k])

NcpρL
+
η∆tPrate

∑N
i=1φi[k]

NcpρL
.

From Section III-A and the law of large numbers, one has that∑N
i=1Qi[k]/N becomes µQ :=w̄sst, which results in

Tavg[k+1]=

(
1−∆t

τ

)
Tavg[k]+

Tamb∆t

τ

− ∆t

cpρL
(µQ)+

η∆tPrate(Non[k]+Nopt[k])

cpρLN
, (7)

where
∑N
i=1φi[k] is the total number of EWHs that are either in

ON state (Non) and in OPT-OUT state (Nopt), that is,
N∑
i=1

φi[k]=Non[k]+Nopt[k]. (8)

Each EWH then requests probabilistically based on
Preq(Tavg[k]), which means that the total number of requests
received at the coordinator during the interval [k − 1, k] is
xr[k] := Preq(Tavg[k])(N −Non[k]−Nopt[k]). Define β[k] as
the proportion of the xr[k] requests that are accepted by the
coordinator at time k and β−[k], the proportion of EWHs in the
ON state that complete their packet at time k. The dynamics of
the number of ON EWHs is then identified as

Non[k+1]=Non[k]−β−[k]Non[k]+β[k]xr[k]. (9)
The fact that Pavg(Tavg) is nonlinear makes (9) nonlinear. Also,
(9) assumes that even though some EWHs have opted out of
the PEM scheme, they still notify the coordinator whenever they
leave and re-enter the scheme. Thus, we have

Nopt[k+1]=Nopt[k]+ξopt−out[k]−ξopt−in[k], (10)
where ξopt−out and ξopt−in are the number of devices opting out
and opting in PEM during ∆t, respectively. Thus, under the ON
and OPT-OUT dynamics, the total number of devices,N , remains
constant, as expected.

For each ∆t, the control input β[k] is determined from
β[k]=(Pref [k]−Pdem[k])(Pratexr[k])−1, (11)

where, Pdem[k] := Prate(Non[k] +Nopt[k]), whereas the input
β−[k] is determined by introducing a packet-duration-timer
state that runs at the coordinator. The timer accumulates the
number of requests accepted at each timestep and moves them
forward in time, deterministically, until the packet is consumed,
which transitions the EWH’s mode from ON to OFF. The packet
duration timer dynamics is given by

τ [k+1]=Mτ [k]+e1β[k]xr[k], (12)
where τ ∈ Rnp , np is the number of timer steps given by
np =dtp/∆te, tp is the packet duration, ei∈Rnp is an elementary
vector whose i-th component is 1, M ∈ Rnp×np is such that
its first lower diagonal comprised of ones and zero everywhere



else. The packet expiration rate is obtained from the last state of
the timer as β−[k]=e>np

τ [k]. Finally, converting temperature to
energy using (3) gives the desired three state (E,Non,Nopt) and
4-input (β,β−,ξopt−outξopt−in) PEM-VB.

The PEM-VB achieves its maximum energy limit and is
“fully charged” when all requests are accepted (β=1). Similarly,
the PEM-VB becomes fully discharged when all requests are
rejected (β=0). Figs. 2-3 show charge and discharge cycles of the
PEM-VB for 1000 EWHs having packet duration of 5 minutes,
rated power 4.5kW and ambient conditions Tamb = 14◦C. This
shows that the usual notions of state of charge can be associated
to a fleet of EWHs operating under PEM. Note that as PEM-VB
discharges, the number of OPT-OUTs (Nopt) increases and is an
indication of decreasing QoS. Information on EWHs in OPT-OUT
mode is obtained at the coordinator from measurements of
(ξopt−in,ξopt−out).

Fig. 2: SoC during a 30 hour dis/charging simulation showing a
first-order response. Highlighted region shows PEM-VB charging.

Fig. 3:Non,Noff andNopt during a 30 hour charging/discharging
simulation. The total number of devices is always preserved.

C. Virtual battery energy limits
The limits of the PEM-VB energy are computed by analyzing

the steady-state conditions for salient inputs β and β−.
1) Upper energy limit: From (3), (7) and (9),

Emax = lim
k→∞

cpρL(Tavg[k]−Tamb)|β=1,β−=1/np
,

provides the energy upper limit. In the authors’ earlier work [12], it
was shown that β−≈1/np when all requests are accepted (β=1).
Also, from the fact that Nopt[∞] = 0 and Non[k+1] =Non[k]
when β=1, one has that

Non[∞]=
βPreq(T∗avg)N

β−+βPreq(T∗avg)
.

Replacing Non[∞] into (7) gives Preq(T∗avg) = 0.00828 since
(1−∆t/τ)≈ 1, which corresponds to Non[∞] = 142. Non[∞]
here matches the value provided by the simulation in Fig. 3 and

amounts to Tavg = 54.23◦C. Using (3), the maximum energy
value isEmax =11.58N MWh. To determine the available energy
from the ensemble, lower energy bound is required.

2) Lower energy bound: The lower limit of the PEM-VB is
achieved at,

Emin = lim
k→∞

cpρL(Tavg[k]−Tamb)|β=0,β−=0.

It should be noted that there are no EWHs in the ON state
(Non[∞]=0) whenβ=0, that is all requests are denied. Therefore,
EWHs transition between OFF and OPT-OUT, however,Nopt[∞]
and hence the number of EWHs in OFF state are constant meaning
that ξopt−out and ξopt−in are equal, as shown in Fig. 3. This type of
behavior corresponds to a 2-state Markov chain in steady state and
its statistics are then used to determineNopt[∞] as shown next.

Let zopt and zoff be the two states (OPT-OUT and OFF) of the
Markov chain, then its dynamics are given by,(

zoff [k+1]

zopt[k+1]

)
=

(
1−p1 p2

p1 1−p2

)(
zoff [k]

zopt[k]

)
. (13)

Clearly, this model permits a non-trivial unique stationary
distribution for probabilities p1 and p2. The stationary distribution
provides the averaged occupancy of each state, which is the
percentage of EWHs that, on average, are either in zoff or zopt.
That is, if π= (πoff ,πopt)

> denotes such stationary distribution,
then πoff = p2

p1+p2
and πopt = p1

p1+p2
provides occupancy of zoff

and zopt respectively. Now, the transition probabilities p1, p2 are
determined from mean sojourn time of the Markov chain. Let topt

be the number of time steps an EWH spends in OPT-OUT, on
average, before transitioning to OFF, then topt is the mean sojourn
time of zopt. Similarly, toff is the mean sojourn time of zoff .

Consider first topt, which physically represent the time taken
by an EWH that starts in OPT-OUT at T to reach Tpem (the pre-
defined temperature at which EWH re-enter the PEM scheme).
Further, denote with ψ(zopt), the expected number of time steps
needed to reach state zoff given that one starts in zopt andψ(zoff) if
one were to start in state zoff . Forcing the state zoff to be absorbing,
it follows that ψ(zoff) = 0 and ψ(zopt) = 1 + (1− p2)ψ(zopt),
which provides ψ(zopt) = 1/p2. Thus, p2 describes how many
time steps on average EWH stays in OPT-OUT, and the actual
expected time spent in OPT-OUT is trivially topt =ψ(zopt)∆t=
∆t/p2. Similarly, one can obtain the expected time spent in OFF as
toff =∆t/p1. The sojourn times topt,toff can be obtained by solv-
ing the continuous version of (1), Ṫ=AT+D that has the solution

T(t∗)=(eAt(D+AT0)−D)/A, (14)
where A=−1/τ , D=Tamb/τ−µQ/(cpρL)+φηPrate/(cpρL),
φ∈{0,1} and T0 is the initial temperature.

For the simulation in Fig. 3, topt = 9.27min is obtained
from (14) when T0 =T and φ=1. Similarly, toff =57.4min for
T0 =Tpem, φ=0. Finally Nopt[∞]=πoptN=139 that matches
the total number of OPT-OUTs observed in Fig. 3, that is 140
which amounts to modeling error of<1% for a population of 1000
EWHs. One can now solve for Tavg in (7) to obtain minimum
temperature that the PEM-VB can achieve: 49.8◦C. Applying (3),
the minimum energy of the PEM-VB isEmin =10.30MWh.

The stored energy on the PEM-VB is Emax − Emin =
1.28MWh, which is close to the 1.275MWh obtained from the
simulation. Thus, the PEM-VB model captures energy bounds
well. Next, we examine how to estimate the PEM-VB states from
measured outputs.



D. Local Observability

This section focuses on observability of the PEM-VB model.
Specifically, it is shown that the energy of the system is locally
observable exactly due to the internal feedback from the requests,
which signifies the importance of the bottom up approach and
the value of the overhead created by the bi-directional, but sparse
communications between EWHs and the coordinator.

The low-order PEM-VB model enables analysis of strong
local observability. This is a consequence of the implicit function
theorem [19] and mimics the process used for linear control
systems. Consider the system

x[k+1]=f(x[k],u[k]), y[k]=h(x[k]), (15)
where f and h are smooth functions. The time increments of the
output can be computed from (15) as

y[k]
y[k+1]

...
y[k+n−1]

=


h(x[k])

h(f(x[k],u[k]))
h(f(f(x[k],u[k]),u[k+1]))

...
h(Ln−1f(x[k],u[k]))

, (16)

where Ln−1f is the n-th iterative substitution of f . Then (16) is
written as Yk=H(x[k],u[k]). IfH is invertible, then the system is
observable and one can solve locally for x[k], which requires that
the Jacobian ofH, sayOH, is invertible. Hence, if det(OH) 6=0
then (15) is called strong locally observable.

The PEM-VB states are x[k] = (E[k],Non[k],Nopt[k])>, its
inputs u[k]=(β[k],β−[k],ξopt−out,ξopt−in), and the components
of f=(f1,f2,f3)> and h in (15) are

f1(x,u)=a1x1−∆t

(
ηPrate(x2+x3)

N
−µQ

)
, (17a)

f2(x,u)=(1−u2−u1Preq(x1))x2−u1Preq(x1)(x3−N),
(17b)

f3(x,u)=x3+u3−u4, (17c)
where a1 :=(1−∆t/τ) and

h(x)=(Prate(x2+x3),Preq(x1)(N−x2−x3))
> (18)

Example 2: Computing the Jacobian OH for f and h in (17)
and (18), respectively, gives rank(OH)=3 for all inputs, except
if β[k]+β−[k] = 0∀k, which occurs regularly as shown in the
numerical simulations provided in the upcoming section (e.g.,
see Fig. 4) and yields rank(OH) = 2. In this case, rank is lost
since no EWHs are in the ON state (x2 = 0,∀k). However, the
dynamics (9) for x2 then cancel and the EWHs cycle between
OFF and OPT-OUT states. Hence, it is still possible to estimate
x1 since devices in the OFF-state ensure condition xr>0 and the
coordinator has information from EWHs that temporarily opt-in
and opt-out of PEM (ξopt−in/out).

However, when information on xr is unavailable to the
coordinator,OH losses rank when β[k]+β−[k]=0. Specifically,
when β = 0 one has that rank(OH) = 2. The situation is even
worse when β = β− = 0 providing rank(OH) = 1. The latter
case makes the system unable to estimate the energy of the
PEM-VB. In other words, while many VB approaches assume full
information and control of every DER state that is generally not
possible in practice due to privacy and communication constraints.
In that context, PEM’s anonymous, light-weight, and probabilistic
request mechanism satisfies both communication and privacy
limitations due to its asynchronous, internet-like protocols.

IV. NUMERICAL RESULTS

First, the tracking limits of the PEM-VB are considered. Con-
sider a fleet of 1000 EWHs having packet duration of 5 minutes,
rated power of 4.5kW and ∆t=15s. The first numerical simula-
tion aims to illustrate the behavior of the PEM-VB when tracking a
reference power signal. The blue curve at the top plot of Fig. 4 was
selected. The signal comprised of an scaled and zero mean AGC
signal from [20] that has been placed around two power levels
(300 and 1000 kW) for the purpose of letting the system reach its
energy limits while tracking. Observe that the SoC plot saturates
reaching either 0% or 100% exactly when the PEM-VB can no
longer track the reference. This is clearly reflected in the saturation
of β and β−. Furthermore, in the intervals [8,11] and [21,24], the
PEM-VB reaches 0% SoC and is unable to track the reference. In
this case the inputs β=β−=0, the system is cycling between OFF
and OPT-OUT states and the dynamics of the ON states becomes
irrelevant. Contrarily, in intervals [1,4], [14,18] and [27,30], β=1
and β−=1/np the system reaches 100% SoC and cannot track
the reference due to the lack of flexibility in the PEM-VB. Staying
around the set point (50%) allows the PEM-VB to track the refer-
ence and also corresponds to the nominal power of the system [12].

Fig. 4: Tracking when reaching upper and lower energy boundaries.
System is unable to track once energy limits are reached.

Fig. 5: Tracking an AGC signal from ISO-NE.

A. Estimation of SoC using PEM-VB
The next simulation involves the estimation of the SoC of an

ensemble of EWHs via a simple extended Kalman filter (EKF)
formulation. Here an agent-based simulation of a fleet of 1000
EWHs with packet duration of 5 minutes, packet power of 4.5kW,
and ∆t=15 seconds is performed (i.e., 1000 individual models
based on (1) are simulated and aggregated). Here the standard
EKF formulation is used on (17) assuming additive Gaussian
noise for the state and measurement update equations.

The estimation of the SoC is now performed online from
the measurements of demand power, Pdem, and the number



of requests, xr from a fleet of 1000 EWHs operating under
PEM. The fleet is tracking a scaled AGC signal centered around
500 kW and the result is shown in Fig. 5. It is found that the
root-mean-square error (RMSE) in the SoC estimation using the
PEM-VB as the model for the EKF estimator is less than 2%.

The next simulation involves comparing the estimation
procedure using the EKF formulation with and without the
information of number of requests. A simple step-down reference
signal for 150 EWHs having packet duration of 5 minutes and
packet power of 2kW suffices to illustrate the two cases. Fig. 6
shows the result when requests are available to the coordinator.
Observe that the reference signal is tracked, as expected, and
the EKF using the PEM-VB model reproduces demand power
and the number of requests accurately while estimating SoC with
approximately 2% RMSE. In the simulation, the Gaussian noises
R1 andR2 have been tuned to improve the estimation.

On the other hand, the case where no requests are fed back into
the estimation produces Fig. 7. Even though demand power is
estimated correctly, the EKF is not able to estimate the system’s
SoC accurately. In the simulation, only the PEM scheme accepts
information about the number of requests to perform the tracking
of the reference. But the EKF does not receive such information
resulting in more than 10% RMSE. Furthermore, the simulation
was limited to 150 minutes since the error increases after that time.

Fig. 6: Estimating SoC while tracking a reference with xr.

Fig. 7: Estimating SoC while tracking a reference without xr.

B. Pre-positioning flexible load w.r.t. day ahead forecasts
In this section, the predictive capability of the PEM-VB model is

shown. For this purpose, consider the net load in Vermont, shown
in Fig. 8, during two consecutive days in the summer of 2017 [21].
The net load is fulfilled by a mixture of conventional generation
and variable distributed renewable generation. As shown in Fig. 8,
a difference of over 150MW was observed due to June 6 being

cloudy resulting in lower distributed generation. On the other hand,
June 7 was forecasted to be sunny and the conventional generation
had to ramp up/down to account for this variability, which is costly.
It is, therefore, desirable to minimize the deviation of conventional
generation from a given set-point. Provided the day ahead forecasts
of the net load Pf are available, the nominal power consumption
(Pnom) of EWHs can be modified (due to their flexibility) using
an optimal control problem to design a control input Pref . This
input, when fed to the PEM system of Fig. 1 minimizes the ramp
up/down of generators. The PEM-VB model has the desired low
order structure suitable for the OCP formulation as shown next.

The optimal control problem uses the PEM-VB model with the
state space given by states x[k] = (x1[k],x2[k])>, and mapping
f(x[k],u[k]) = (f1(.),f2(.))> given in (17a), (17b). The control
input u[k] := Pref [k] is considered as the optimization variable.
Furthermore, it is assumed here that under nominal conditions
Nopt is small enough and can be omitted from the PEM-VB
model. Another reason for this is that in this work ξopt−in and
ξopt−out are considered as inputs, which in a predictive framework
they require to be modeled as part of the dynamic equations.
This is outside the scope of the paper and left for future work.
However, in our simulations, it is observed that if the energy
remains within [20,80]% then the number of opt-out DERs is small
enough (≤1.5% on average) and can been ignored for the purpose
of this day-ahead reference planning problem. Let xmax

1 , xmin
1 be

the energy limits of the PEM-VB obtained in Section III, then the
reduced energy bounds x1>x

min
1 and x1<x

max
1 are used instead.

Consider now a scaled version of the net-load day-ahead
forecast Pf , observed on June 7, as shown at the top plot of
Fig. 9 (a). Let g be the contribution of conventional generation
and l :=

∑K
i=1Pf [k] be the average net-load. The objective is

to keep the conventional generation (g) as close as possible
to l by modifying Pnom of EWHs. Given an initial state of
PEM-VB x0 ∈R2, an OCP similar to the one in [8], is defined
for minimizing the following cost function,
χ(Pref [k],g[k],x[k])

=

K+1∑
k=1

(
c1(∆Pdev[k−1])2+c2(∆gdev[k])2+c3(∆x1[k])2

)
+

K+1∑
k=1

(
c4(∆Pref [k−1])2+c5(∆g[k])2

)
, (19)

where, ci> 0,i= 1,...,5 are weights that have been tuned (here
c = (c1,c2,c3,c4,c5) = (1,100,100,1,100)), so that the ramp
up/down costs of g[k] are higher than those of EWHs, ∆Pdev[k] :=
Pref [k] − Pnom[k] and ∆gdev[k] := g[k] − l penalize the
deviation of EWHs and conventional generation from Pnom and
l, respectively. Similarly, ∆x1[k] :=x1[k]−[1 0]x0 discourages
deviation of EWH energy from the nominal. The remaining two
terms, ∆Pref :=Pref [k]−Pref [k−1], ∆g[k]=g[k]−g[k−1] are
ramp rate limits. The resulting optimization problem is given by,

min
Pref [k],g[k],x[k]

χ(Pref [k],g[k],x[k]) (20a)

s.t. x[k+1]=f(x[k],Pref [k]) and (12),
Pref [k]≥Pratex2[k], (20b)
Pref [k]≤Prate(Preq(x1[k])(N−x2[k])+x2[k]), (20c)
Pf [k]=∆Pdev[k]+g[k], (20d)

x≤x[k]≤x,∀k=1,...,K+1, (20e)
x[0]=x0,x1[K+1]=[10]x0, (20f)



where, x,x are the bounds on the state, the constraints (20b), (20c)
on Pref are obtained from 0≤ β[k]≤ 1 and (11), (20d) is for
energy conservation, (20e) represent bounds on PEM-VB energy
limits, (20f) is the initial state x0 and terminal (sustainability)
constraint. The timer states (τ [k]) have been included in the OCP
so that the expiration rate β−[k] can always be calculated from the
timer states and hence it does not constitute an input to PEM-VB.
Purpose of the timer is to keep track of expiring packets. Time
step of the OCP has been set equal to the packet size, so only a
single timer state, np =1, is required.

The optimization problem is solved using IPOPT in Julia
with JuMP on a MacBook Pro with a 2.2 GHz processor and
16 GB memory. The solution was obtained within 7 seconds.
The result of solving the optimization problem (20) for a fleet of
15,000 EWHs is shown in Fig. 9. Ramp up/down of the generation
g[k], shown in blue in Fig. 9 (a), is minimal. To minimize ramping
of generators, the optimal control problem anticipates the increase
in distributed generation and preheats the EWH fleet. This can
be seen from Fig. 9 (b) where Pref and Pnom have been plotted.
The evolution of the EWHs SoC is shown in Fig. 9 (c). PEM-VB
captures the average SoC or energy of the fleet, shown in blue in
Fig. 9 (c). Notice that between hrs 16-20 the fleet is discharging to
account for the decrease in distributed generation. This pushes the
fleet to the lower end of the energy limit and as a result, opt-outs
increases. To capture this behavior, a model is required and will
be explored in future publications. Furthermore, it should be noted
that although opt-out was not included explicitly in the OCP, the
EWHs can still track the day ahead reference Pref and minimize
generator deviation from the given set point.

Fig. 8: Netload in Vermont during two consecutive days in summer.

Fig. 9: Optimal dispatch of EWHs. (a) Net load forecasts (Pf) and
setpoint of generators (g), (b) nominal power consumption, Pnom

and the input Pref , (c) evolution of EWHs SoC distribution. PEM-
VB captures the average SoC or energy of the fleet. The Kullback-
Leibler divergence between initial and final distributions is 0.061.

V. CONCLUSION AND FUTURE WORK

This paper developed a low-order model for a homogeneous
ensemble of EWHs operating under PEM. The PEM-VB, is

capable of predicting the SoC and energy bounds. It was shown
that the model is strong locally observable and represents a
bottom-up scheme when the number of requests is available to
the coordinator. The estimation of the PEM-VB states has been
illustrated with an EKF implementation in which the SoC of
an ensemble of individually simulated EWHs is recovered with
an accuracy of 2% RMSE. Furthermore, it was shown that the
PEM-VB model can also be used in an optimal control problem
to account for the variability in renewables.

REFERENCES

[1] M. Golden, A. Scheer, and C. Best, “Decarbonization of electricity requires
market-based demand flexibility,” The Electricity Journal, vol. 32, no. 7, p.
106621, 2019.

[2] J. L. Mathieu, M. Dyson, and D. S. Callaway, “Using residential electric
loads for fast demand response: The potential resource and revenues,
the costs, and policy recommendations,” in American Council for an
Energy-Efficient Economy, 2012, pp. 189–201.

[3] H. Hao, B. M. Sanandaji, K. Poolla, and T. L. Vincent, “Potentials and
economics of residential thermal loads providing regulation reserve,” Energy
Policy, vol. 79, pp. 115 – 126, 2015.

[4] N. J. Cammardella, R. W. Moye, Y. Chen, and S. P. Meyn, “An energy
storage cost comparison: Li-ion batteries vs distributed load control,”
Clemson University Power Systems Conference, pp. 1–6, 2019.

[5] J. L. Mathieu, M. Kamgarpour, J. Lygeros, and D. S. Callaway, “Energy
arbitrage with thermostatically controlled loads,” in European Control
Conference, 2013, pp. 2519–2526.

[6] H. Hao, B. M. Sanandaji, K. Poolla, and T. L. Vincent, “Aggregate flexibility
of thermostatically controlled loads,” IEEE Transactions on Power Systems,
vol. 30, no. 1, pp. 189–198, 2015.

[7] D. Madjidian, M. Roozbehani, and M. A. Dahleh, “Energy storage from ag-
gregate deferrable demand: Fundamental trade-offs and scheduling policies,”
IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 3573–3586, 2018.

[8] N. Cammardella, J. Mathias, M. Kiener, A. Bušić, and S. Meyn, “Balancing
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