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Abstract—This paper presents a convex, multi-period, AC-
feasible Optimal Power Flow (OPF) framework that robustly
dispatches flexible demand-side resources in unbalanced distri-
bution feeders against uncertainty in very-short timesacle solar
Photo-Voltaic (PV) forecasts. This is valuable for power systems
with significant behind-the-meter solar PV generation as their
operation is affected by uncertainty from forecasts of demand and
solar PV generation. The aim of this work is then to ensure the
feasibility and reliability of distribution system operation under
high solar PV penetration. We develop and present a novel, robust
OPF formulation that accounts for both the nonlinear power flow
constraints and the uncertainty in forecasts. This is achieved by
linearizing an optimal trajectory and using first-order methods to
systematically tighten voltage bounds. Case studies on a realistic
distribution feeder shows the effectiveness of a receding-horizon
implementation.

Index Terms—Distributed energy resources, chance con-
straints, multi-period, optimal power flow, unbalanced distribu-
tion feeders.

I. INTRODUCTION

The rapid growth in distributed solar PV generation over
the past decade has prompted significant interests and invest-
ments in demonstration of substation automation technology,
distributed energy resources or DERs, such as energy storage
and smart inverters, and autonomous demand response [1],
[2]. However, renewable energy sources, such as solar PV,
are inherently stochastic in nature and the corresponding
variability poses a challenge to grid operators [3]. To overcome
these challenges, grid operators can leverage responsive DERs
to provide demand-side flexibility. The inclusion of flexible de-
mand from energy-constrained DERs, such as battery storage,
couples the time-steps, which requires multi-period decision-
making and predictive optimization.

In addition, accounting for the uncertainties in solar gen-
eration and demand forecasts calls for a robust dispatch of
flexible DERs. Choosing an acceptable violation probability
is perceived as an intuitive and transparent way of determin-
ing a probabilistic security level [4]. Chance-constraint-based
optimization is one such tool that is employed to robustly
dispatch flexible resources in order to satisfy AC power
flow constraints. The nonlinearities associated with the AC
physics, however, renders the chance-constrained optimization
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problem challenging to solve due to non-convexities. Thus, to
certify reliable operation of distribution systems under high
penetrations of solar PV, techniques are desired that take into
account both the AC nonlinearities and the uncertainty from
solar PV forecasts.

The optimal power flow (OPF) formulation is a useful
framework for coordinating available grid resources, subject to
the nonlinear power flow constraints [5]. Several works in lit-
erature illustrate the importance of considering the three-phase
nature of distribution feeders in the OPF [6], [7]. However, the
solution space of the three-phase AC OPF is non-convex [8],
which means that a direct application of chance-constraints to
the non-convex optimization problem is not possible. Previous
works on chance constraint formulations have considered
a linear power flow model, which under chance constraint
formulation becomes a second-order cone program (SOCP)
that can be solved in a computationally-efficient manner [9],
[10]. In [11] the authors utilize a scenario-based approach with
an AC-QP formulation to provide a-posteriori probabilistic
guarantees. However, the single-phase equivalent, linearized
DC OPF models utilized in these works can be inaccurate for
distribution feeders. The authors in [12] implement a formula-
tion of chance constraints using an affine policy, which allows
them to include corrective control policies. They utilize convex
relaxations to reformulate the chance constrained AC OPF
problem as a semi-definite program (SDP). However, they do
not consider the multi-period coupling and the reformulation
only holds for Gaussian distributions. Futhermore, SDPs can
be numerically sensitivie [13]. The authors in [14] present
an algorithm which alternates between solving a deterministic
AC optimal power flow problem and assessing the impact
of uncertainty. The authors developed a two-stage approach
where the full AC load flow is solved based on a forecast
and in the second step the uncertainty is accounted for
through chance-constraints applied to the network linearized
at the operating point obtained in step one. However, they
only consider a single-phase equivalent model and ignore
multi-period coupling. Furthermore, the non-convex AC OPF
problem is not guaranteed to converge to a global optimum
and the solve time increases exponentially with system size
for NLPs. In this work, we build upon the work on chance
constraint formulation in [14] by decoupling the solution
to the deterministic multi-period AC OPF problem and the
linearized chance constraint problem. As shown in Fig. 1,
a deterministic, multi-period, SOCP+NLP problem is solved
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by an centralized grid operator to obtain an optimal, three-
phase, AC-feasible state (voltage and current) trajectory. Based
on the trajectory, Taylor series expansions of the power flow
equations are computed around the operating points from each
time-step. The sensitivity of the network constraints (voltage
and branch flows) to the uncertain injections (demand and
solar PV) can be computed. From these sensitivity factors,
the uncertainty determines the degree of constraint tightening,
which robustifies the SOCP and NLP formulations. Validation
of the presented robust optimization framework is completed
in GridLab-D, where an AC load flow is solved based on
actual, realized demand and solar PV injections. An illustration
of the relative root-mean-square error (RMSE) in the solar PV
forecasts is shown in Fig. 2a along with an illustration of the
range of uncertainty around the expected solar PV generation
over the prediction horizon in Fig. 2b. The forecast error is
meant to be representative of the state-of-the-science in solar
PV forecasts today [15], [16].The RMSE error in Fig. 2a
showcases how the error in solar forecast grows over the
prediction horizon (60 minutes in this case). Further, every
30 minutes a new solar forecast is available that follows a
similar forecast error. Corresponding to the RMSE values in
Fig. 2a, Fig. 2b shows the range of error in predicted forecast
of solar PV over the prediction horizon.

Fig. 1. Block diagram showing the components of the complete robust version
of the SOCP+NLP optimization problem together with three-phase, AC load
flow “plant model” in GridLab-D (GLD). The The SOCP block performs
multi-period optimization and fixes the active power set-points in the NLP
to temporally decouple the NLP’s ACOPF formulation and compute optimal
reactive power set-points that are AC feasible.

Thus, the two key contributions of this paper are as follows:

1) A novel approach to robustify a stochastic, multi-period
feasible ACOPF optimization problem by leveraging the
solution of the deterministic problem with a linearized
chance-constrained tightening procedure based on the op-
erating points determined by the NLP’s optimal trajectory.
Hence, the uncertainty in forecasted values determine
the first-order tightening of constraints. The calculated
change in these variables at each time-step due to the un-
certainty is then added as safety buffer to the constraints
in the deterministic SOCP+NLP scheme.

2) Simulation-based analysis employs a state-of-the-art solar
PV forecasting scheme to validate the proposed robust
ACOPF approach.

(a) (b)
Fig. 2. Left: (a) Relative-RMSE over the forecast horizon from minutely
solar PV forecasts. The forecasts are updated every 30 minutes and provide
a 60-minute preview window. Right: (b) Error in predicted forecast of solar
PV over the prediction horizon for the considered test network from 12:00
noon to 1:00 pm.

TABLE I
VARIABLES USED IN THE MODEL FORMULATION.

Variable type Variables

Decision P d
n,t, P c

n,t, qb
n,t, SS

n,t
Dependent Wn,t, Sl,t, Il,t, Snet

n,t, Bn,t

Constant parameters Zl, SL
n,t, Smax,l, Vmin,n, Vmax,n, Gmax,n, ηc,n,

ηd,n, Hmax,n, ∆t, Bmin,n, Bmax,n, Pmax,n

A. Mathematical and modeling notation

Consider a radial distribution network with n nodes, where
N = {1, 2, ..., n} is the set of all nodes, φ = {a, b, c} is the
set of phases at each node, L = {1, 2, ..., l} = {(m,n)} ⊂
(N×N ) is the set of all branches, G = {1, 2, ..., g} is the set of
all nodes with DERs and T = {0, ..., T −1} be the prediction
horizon. Let vector Vn,t ∈ C|φ| be the voltage at node n and
time t, with Wn,t = Vn,tV

∗
n,t, il,t ∈ C|φ| be the current in

branch l at time t, with Il,t = il,ti
∗
l,t, Sl,t = Vn,ti

∗
l,t be the

apparent power in branch l at time t and Zl = Rl + jXl ∈
C|φ|×|φ| be the impedance of branch l. Let Snet

n,t ∈ C|φ| be the
apparent power injection , SL

n,t ∈ C|φ| be the apparent load,
SS
n,t ∈ C|φ| be the apparent power from solar PV, P c

n,t ∈ R|φ|
and P d

n,t ∈ R|φ| be the charge and discharge power of battery,
qb
n,t ∈ R|φ| be the reactive power from battery and Bn,t ∈
R|φ| be the battery SoC, all defined at node n and time t.
Assume the nodes have single-phase connected batteries. The
symbols ◦, (.)∗ and diag(.) represent the Hadamard product
of matrices, the complex conjugate operator, and the diagonal
operator, respectively.Salient variable types in the formulation
are presented in Table I.

In the remainder of the paper, Section II develops the
convex three-phase OPF problem formulation for the dispatch
of energy-constrained, distributed batteries to minimize the
network line losses. Section III presents a method to ensure a
network-admissible, multi-period battery dispatch by coupling
the convex, multi-period SOCP with an exact, time-decoupled
NLP formulation. The linearized chance-constrained formu-
lation is presented in Section IV. Simulation-based analysis
and validation results obtained with GridLab-D are discussed
in Section V for a realistic distribution feeder. Finally, con-
clusions and future research directions are discussed in Sec-
tion VI.
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II. CONVEX FORMULATION OF MULTI-PERIOD 3-PHASE
OPF

The aim of this section is to develop a convex formulation of
the multi-period, unbalanced OPF for a distribution feeder that
is suitable for dispatching energy-constrained DERs. Figure 3
illustrates the types of DERs available to the optimizer at each
node and salient notation. A common objective in distribution
networks is to minimize the real power losses, while keeping
the system within its operational grid constraints [17]. This
program optimizes batteries in the network (i.e., their real and
reactive power set-points) on a minute-by-minute timescale in
a receding-horizon fashion and with a behind-the-meter setup
as shown in Fig. 3. The minutely timescale is effective in
managing batteries’ state of charge (SoC). To scale the algo-
rithm for larger networks, we focus on a convex formulation.
Specifically, a three-phase SOCP is developed to formulate
the multi-period OPF problem. A branch flow model (BFM)
is used to represent the AC physics in the unbalanced feeder.

Fig. 3. Distributed storage architecture. The batteries are controlled through
a four quadrant control scheme and can supply and consume both real and
reactive power. Each distributed storage is composed of a renewable source
of energy such as solar power and a battery bank, each with its own inverter.

A. Mathematical Formulation

Let x := {P d
n,t, P

c
n,t, q

b
n,t, S

S
n,t} be the set of decision

variables ∀ t ∈ T , n ∈ N , then the problem of optimally
dispatching the batteries to minimize objective function f1(x)
can be formulated as:

min
P d
n,t, P

c
n,t, q

b
n,t, S

S
n,t

f1(x) (1a)

s.t.∥∥∥∥ 2Wn,t(i, j)

Wn,t(i, i)−Wn,t(j, j)

∥∥∥∥
2

≤Wn,t(i, i) +Wn,t(j, j), (1b)∥∥∥∥ 2Il,t(i, j)

Il,t(i, i)− Il,t(j, j)

∥∥∥∥
2

≤ Il,t(i, i) + Il,t(j, j), (1c)∥∥∥∥ 2Sl,t(i, j)

Wn,t(i, i)− Il,t(j, j)

∥∥∥∥
2

≤Wn,t(i, i) + Il,t(j, j), (1d)

0 = Wn,t −Wm,t + (Sl,tZ
∗
l + ZlSl,t)− ZlIl,tZ∗l ∀l ∈ L,

(1e)

0 = diag(Sl,t − ZlIl,t −
∑
p

Sp,t) + Snet
n,t ∀l ∈ L, (1f)

0 = real(Snet
n,t − SS

n,t + SL
n,t)− P d

n,t + P c
n,t ∀n ∈ G, (1g)

0 = imag(Snet
n,t − SS

n,t + SL
n,t)− qb

n,t ∀n ∈ G, (1h)
|diag(Sl,t)| ≤ Smax,l ∀l ∈ L, (1i)

V 2
min,n ≤ diag(Wn,t) ≤ V 2

max,n ∀n ∈ N , (1j)

|SS
n,t| ≤ Gmax,n ∀n ∈ G, (1k)

(P d
n,t − P c

n,t)
2 + (qb

n,t)
2 ≤ H2

max,n, ∀n ∈ G, (1l)

0 = Bn,t+1 −Bn,t − ηc,nP
c
n,t∆t+

P d
n,t

ηd,n
∆t ∀n ∈ G, (1m)

Bmin,n ≤ Bn,t ≤ Bmax,n ∀n ∈ G, (1n)
Bn,T+1 = Bn,t0 ∀n ∈ G, (1o)

0 ≤ P d
n,t ≤ Pmax,n ∀n ∈ G, (1p)

0 ≤ P c
n,t ≤ Pmax,n ∀n ∈ G, (1q)

where the above equations hold ∀t ∈ T . In formula-
tion (1a)-(1q), (1a) represents the objective function, which
is defined as f1(x) :=

∑T
t=t0

(∑L
l=1(1Tdiag(Rl ◦ Il,t)) +

α
∑|G|
n=1 1

TP d
n,t

(
1
ηd,n
− ηc,n

))
. The first term in the objec-

tive minimizes the network line losses whereas the second term
avoids simultaneous charging and discharging of batteries.
More details about the phenomenon of SCD and the conditions
under which it can be avoided are provided in [18]. The
constraints in (1b)-(1d) are second order cone constraints that
relate the voltages and currents in the network to the variables
Wn,t, Il,t and Sl,t. These second order cone constraints are
obtained through relaxation of the non-linear power flow
equations, further details of which are also discussed in [18].
Constraint (1e) relates the voltage drop in the network with
the branch power flows. Constraint (1f) represents the power
balance equation at each node which makes sure that the power
coming into a node equals power going out, (1g) and (1h)
are the real and reactive nodal power balance equations, (1i)
is the line power flow constraint with Smax,l ∈ R|φ| being
the apparent power limit of line l, (1j) is the voltage limit
constraint at each node with Vmin,n ∈ R|φ| and Vmax,n ∈ R|φ|
the lower and upper voltage limit respectively at node n, and
(1k) represents the apparent power limit of the solar inverter
at node n. Constraints (1l)-(1q) describe the battery power
and state of charge (SoC) constraints with Hmax,n ∈ R|φ| as
the apparent power limit of the battery inverter at node n and
Bmin,n ∈ R|φ| and Bmax,n ∈ R|φ| as the lower and upper state
of charge limit of the battery respectively at node n and ∆t
is the prediction horizon step. To prevent a “greedy” energy
optimizer and to manage finite SoC in the receding-horizon
scheme, sustainability constraint (1o) is added.

The optimization model (1a)-(1q) is convex and can be
solved with GUROBI (as a QCQP) or MOSEK (as an SOCP).
However, the conic relaxation in (1b)-(1d) of the nonlinear
power flow constraints may engender solutions that are not
AC feasible (i.e., non-tight relaxation). To guarantee AC
feasibility, the next section presents a nonlinear programming
(NLP) formulation of the OPF problem that is initialized with
the relaxed SOCP solution over the time-perod. Note that the
NLP initialization goes beyond just a warm-start and includes
a novel mechanism to account for the multi-period formulation
inherent to an energy storage trajectory. This is described next.

III. MULTI-PERIOD COUPLING OF SOCP WITH NLP

To achieve an AC-feasible solution, we employ a nonlinear
programming (NLP) formulation that captures the non-convex

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020



AC physics exactly. However, the NLP formulation is ill-
suited for multi-period optimization, so we seek to leverage the
multi-period solution available from the SOCP [18], [19]. The
SOCP-NLP coupled algorithm is developed as shown in Fig. 1,
where the solution obtained from the SOCP is passed to the
NLP solver. Keeping the real-power solutions constant leads to
fixing the battery SoC and, as a result, yields in a decoupling
of the time-steps of the prediction horizon in the NLP. Thus,
each time-step can be solved independently and in parallel (as
independent NLPs), which leads to a scalable implementation
compared to solving the multi-period NLP. Further details of
the coupled SOCP-NLP implementation are provided in [18].

The NLP problem at each time-step t of the prediction
horizon can then be expressed as:

min
x

f2(x) (2a)

s.t :

[
Wn,t Sl,t
S∗l,t Il,t

]
=

[
Vn,t
il,t

] [
Vn,t
il,t

]∗
∀l ∈ L (2b)

(1e)− (1l) (2c)

P h
n,t = P h∗ ∀h ∈ {c,d} (2d)

where f2(x) :=
∑L
l=1 1

T(diag(Rl ◦ Il,t)), P c∗ ∈ R|φ| and
P d∗ ∈ R|φ| are the charge and discharge power of the battery
obtained from the SOCP at node n and time t, such that
P ∗ = P d∗ − P c∗. The constraint in (2b) is the non-linear
power flow constraint that relates voltages and currents with
the variables Wn,t, Il,t and Sl,t. The NLP given by equations
(2a)-(2d) is solved separately at each step of the prediction
horizon to obtain a feasible plus (near) optimal solution with
guaranteed feasibility and a bound on the optimality, as the
relaxed SOCP provides a lower bound on the optimal value
of the original nonlinear problem [20]. Utilizing this SOCP-
NLP coupled optimization framework, a scalable solution of
three-phase OPF problem can be obtained rapidly, plus the
framework provides bounds and guarantees on feasibility and
optimality of the solution.

In the next section, the physically realizable solution ob-
tained from the NLP is used to linearize the network model at
the operating point. Based on the obtained linear model at each
operating point over the prediction horizon, the uncertainty in
demand and solar PV is used to calculate the predicted changes
in voltage magnitudes and line power flows in the network.
These values are then used to systematically tighten the limits
to robustly solve the AC OPF at the next instant.

IV. ROBUSTIFY CONSTRAINTS

In this section, we describe the chance constraint method
that is implemented to obtain the robust bounds on network
constraints. In this work, we consider the uncertainty in
demand and solar PV forecast. Other sources of uncertainty
include the capacity and ratings of DERs, which is inherent
due to the nature of aggregation of different energy resources
to form a DER resource. However, the method presented in
this work can also be extended to these types of uncertainties.
A detailed analysis on accounting for uncertainty in DERs can
be found in [21].

Based on the Taylor series expansion of the power flow
equations around the operating point (determined previously
from the deterministic optimization), sensitivity factors, sim-
ilar to the ones in [22], can be obtained. These sensitivity
factors then determine the fluctuations in the variables to the
uncertainty Ω (which could represent either solar or demand
uncertainty). For a constrained variable Y , the sensitivity
with respect to the random variable Ω can be expressed as:
ΓY = ∂Y

∂Ω

∣∣
Ω=0,Y=Y ∗ The sensitivity factors allow us to

approximate the constrained variables as linear functions of
the random variable Ω, as a result the constraints in stochastic
form can be expressed as:,

P(Y + ΓY Ω ≤ Ymax) ≥ 1− αY (3)
P(Y + ΓY Ω ≥ Ymin) ≥ 1− αY (4)

where αY represents the acceptable violation probability. The
linear dependence of Ω enables the use of an analytical chance
constraint reformulation [14]. Assuming that the uncertainty
Ω is any general zero mean distribution (operating point is
determined by the expected forecast) with covariance matrix
Σ, then (3)-(4) can be expressed in a deterministic form as:

Y + f−1(1− αY)||ΓY Σ1/2||2 ≤ Ymax (5)

Y − f−1(1− αY)||ΓY Σ1/2||2 ≥ Ymin (6)

where f−1(1 − αY) represents the safety factor function
evaluated at 1−αv, which prescribes the desired probabilistic
guarantee. Thus, robustness against the uncertainties naturally
begets an uncertainty margin that is product of the safety
factor function and the variances and defines how much the
constraint is tightened.1 It can be observed from (5)-(6), that
the uncertainty margin can be calculated before solving the
optimization problem at the forecast value and then utilizing
the margins obtained from chance-constraints to tighten the
constraints on the deterministic problem. If we denote by λY
the uncertainty margin in the constraint, then (5)-(6) can be
expressed as:

Y ≤ Ymax − λY(αY,Σ, Y
∗) =: Yb (7)

Y ≥ Ymin + λY(αY,Σ, Y
∗) =: Yb, (8)

where Yb and Yb represent the updated upper and lower
robust bounds and λY(αY,Σ, Y

∗) := f−1(1−αY)||ΓY Σ1/2||2
represents the uncertainty margin which depends on both the
operating point and the acceptable violation probability factor
αY.

From the tightened constraints on voltage and power limits,
we ensure that any dispatch of DERs is robust against desired
uncertainty levels. However, the tightened bounds may lead
to infeasible dispatch, so to guarantee persistent feasibility in
the scheme, we introduce slack variables Y +

v and Y −v which
guarantee feasibility of solution to the deterministic AC OPF
with the tighter bounds under very high uncertainty. Based on
these updates, the optimization problem (1a)-(1q) under the
tightened bounds can be expressed as:

1Note that this method can be extended beyond normal distributions to
consider more general distributions with only knowledge of mean and variance
of the distribution. However, the results obtained are more conservative in that
case, e.g., with a Chebyshev approximation.
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min
P d
n,t, P

c
n,t, q

b
n,t, S

S
n,t

f3(x) (9a)

s.t.

(1b)− (1h), (9b)

|diag(Sl,t)| ≤ Lb,l,t ∀l ∈ L, (9c)

V b,n,t − V −v,n,t ≤ diag(Wn,t) ≤ V b,n,t + V +
v,n,t ∀n ∈ N ,

(9d)

|SS
n,t| ≤ Sb,n,t ∀n ∈ G, (9e)

(1l)− (1q) (9f)

where the above equations hold ∀t ∈ T and Lb,l,t :=
Smax,l − λL(αL,Σ, S

∗
l,t), V b,n,t := V 2

max,n − λv(αv,Σ,W
∗
n,t),

V b,n,t := V 2
min,n + λv(αv,Σ,W

∗
n,t), Sb,n,t := Gmax,n −

λs(αs,Σ, S
S∗
n,t). In the above problem the objective is to

minimize line losses and voltage slack, i.e., f3(x) :=∑T
t=t0

(
∑L
l=1(1Tdiag(Rl ◦ Il,t)) + γ

∑N
n=1 1

T(V +
v,n,t +

V −v,n,t) + α
∑|G|
n=1 1

TP d
n,t

(
1
ηd,n
− ηc,n

)
), where V +

v,n,t and

V −v,n,t represents the upper and lower voltage slack that is
added to ensure feasibility. The parameter γ is chosen to be
large in order to discourage the activation of the slack variables
and only employ them when a solution would not be feasible.
The parameter γ can be thought of as a trade-off parameter
between risk and performance. If γ << 1 then the solution
is close to the deterministic solution, whereas for γ >> 1
we sacrifice performance for robustness. In-between these two
extremes, the trade-off parameter γ represents a “price” on risk
(i.e., cost of risk), which has been studied extensively in [23].
Simulation-based analysis can help inform grid operators on an
appropriate value of γ for a specific system. Similarly, the NLP
optimization in (2a)-(2d) is updated with the bounds obtained
from the chance constraints, which comes next:

min
x

f4(x) (10a)

s.t : (1e)− (1h), (1l), (2b), (2d) (10b)

|diag(Sl,t)| ≤ Lb,l,t ∀l ∈ L (10c)

V b,n,t − V −v,n,t ≤ diag(Wn,t) ≤ V b,n,t + V +
v,n,t ∀n ∈ N

(10d)

|SS
n,t| ≤ Sb,n,t ∀n ∈ G (10e)

where f4(x) :=
∑L
l=1 1

T(diag(Rl ◦ Il,t)) +

γ
∑N
n=1 1

T(V +
v,n,t + V −v,n,t).

In this work, the forecast errors for solar PV and demand are
assumed to pertain to uniform (unimodal) distributions. Due
to this assumption, the conventional Gaussian safety factor
function may not guarantee robust performance for the given
αY. A Chebyshev approximation can be used, which guar-
antees robustness for any distribution of forecast errors with
a given mean and covariance matrix, but the approximation
is often very conservative [24]. In addition, it is reasonable
to assume that intra-hour forecast errors will come from a
unimodal distribution, which allows for a less conservative
unimodal Chebyshev approximation, which still guarantees
robust performance against any unimodal distribution (e.g.,

uniform distribution). The safety-factor function for the uni-
modal distribution presented herein is a simple analytical
approximation based on the exact numerical solution from [24]
and is given by:

f−1(1− αY) ≈
(

1− αY

eαY

)1/1.95

(11)

This approximation is an inner approximation of f−1(1−αY)
(i.e., no less conservative) with a coefficient of determination,
R2, of 0.997 for αY < 0.50 and relative approximation errors
of less than 5% for αY < 0.10. The updated SOCP-NLP
optimization problem can then be implemented in receding-
horizon fashion together with the updated bound tightening.
Numerical results are presented next.

V. SIMULATION RESULTS

In this section, we illustrate the effectiveness of the approach
with simulation-based analysis on a realistic three-phase dis-
tribution feeder.

A. Case study description
Simulations are conducted on a reduced 131-node three-

phase distribution feeder with a base voltage of 7.6kV and
base apparent power rating of 1 MVA. The 131-node radial
network is obtained through Kron-based network reduction2

from the full 1200 node circuit. Frrom the network reduction
process, the reduced network consists of 130 representative
“super nodes” with each connected to a “super net-load”
(with demand minus solar PV injection) and the head-node
represents the 0th super node.

The robust SOCP-NLP algorithm is implemented in a
receding-horizon fashion with an optimization horizon of 30
time-steps with each time-step being 1 minute (i.e., 30 min
prediction horizon). That is, the SOCP results in an open-loop,
optimal battery and inverter control trajectory, which is used by
the time-decoupled NLP instances to calculate an AC-feasible
dispatch trajectory. The resulting operating trajectory is used to
calculate the operating points from which a sensitivity-based
bound tightening is performed on the network constraints
as described in section IV. Discrete control devices such
as switches, capacitor banks, and tap-changing transformers
are fixed at their nominal value for this study. Analysis on
the control of such discrete devices is provided in [7], [26].
Furthermore, the battery sustainability constraint in (1o) has
been omitted as SoC is not the focus herein and it did not
have a significant effect on results (and it simplifies SOCP).

1) Required data management: In the presented framework,
the minutely PV production forecast data and demand profile
data are available over the 30 minute optimization horizon to
the central dispatcher. Such minutely solar PV forecasts are
available for purchase by utilities and updated every 30 min-
utes with a 60-minute forecast [27]. A sample forecast of
aggregated solar PV over one hour from 12:00 noon to 1:00 pm
is shown in Fig. 2b, together with the uncertainty in solar PV
generation based on the assumed uniform error distribution.
From Fig. 2b, it can be seen how the error in forecast grows

2Due to page limitations, the Kron-based network reduction process for
unbalanced feeders is omitted herein, but has been validated and is based
on [25].
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over the prediction horizon. Furthermore, the uncertainty in
demand and solar PV forecast is assumed to be from a
uniform distribution, which is unimodal. It is too strong an
assumption to claim that forecast errors come from a Gaussian
distribution, so instead, we employ the unimodal Chebyshev
approximation above to generalize the result. Further details
about the relative conservativeness of different distributions
can be found in [23]. For the chance constraints, the acceptable
voltage violation parameter αv is chosen to be 0.10. The
results presented here only consider the voltage constraint,
however, the framework readily allows for tightening other
constraints, such as current and power flow limits. In addition,
it is reasonable to assume that the system operator or utility
knows about the power rating and capacity of the available
PV units and the ratings and updated SoC of the DERs. The
dispatcher could be a distribution system operator (DSO; e.g.,
NY REV’s DSIP [28]), so it is reasonable to assume that
such system information is available. Furthermore, we assume
that the DSO is provided updated feeder topology, so they
can formulate and solve the optimization problem based on
network parameters and dispatch available flexible resources.

As the proposed method employs convex optimization for-
mulations, the solution time is expected to be polynomial in
the system size. In [18], it was shown that the SOCP-NLP
formulation can be solved in under a minute for a similar sized
network. In fact, herein, the average solve time of the minutely
implementations is ≈ 50 seconds, which allows sufficient time
for communication delays. All simulations were conducted on
a MacBook Pro with 2.2 GHz processor and 16 GB RAM.

Fig. 4. Tightened voltage bounds obtained from chance constraints over the
prediction horizon.

B. Simulation results

The high solar penetration results in large variability in
the net-demand, which, in a deterministic setting, can lead to
violations of network constraints. Validation of the proposed
stochastic framework is achieved by comparing the determin-
istic SOCP+NLP scheme, which does not account for uncer-
tainty, against the one with the robustified constraints. The
multi-period SOCP is solved using GUROBI [29], whereas
the NLP is solved with IPOPT [30] with the HSL_MA86
solver [31]. Based on the optimal dispatch (p∗, q∗∗), three-
phase, AC load flows are computed in GridLab-D [32] with

(a) (b)
Fig. 5. Histogram of the voltages obtained from: (a) the deterministic AC
OPF showing violation of voltage limits; (b) from the stochastic AC OPF
showing acceptable voltages.

the realized (actual) demand and solar PV values. We illus-
trate the effectiveness of the robustified scheme by analyzing
the voltage magnitudes from Gridlab-D over the 60-minute
receding horizon from 12:00 noon to 1:00pm.

The resulting network voltages over the hour obtained from
the deterministic method are depicted in the histogram shown
in Fig. 5a, illustrating that voltage violations due to the
uncertainty are significant and beyond the acceptable limit.
The histogram of the voltages obtained through the stochastic
formulation are shown in Fig. 5b, from where it can be seen
that the violations are less than αv = 10%. This is due to
the robust voltage bounds in the stochastic formulation, which
account for the uncertainty in solar PV. Figure 4 shows how
the voltage bounds are tightened over the prediction horizon
depending upon the accuracy of forecast. Recall that the
forecasts are updated only every 30 minutes, which explains
the sudden changes at minute 30 in the simulation.

Further differences between the deterministic and stochastic
formulation is shown through the comparison of the control
variables. Fig. 6a shows the comparison in the aggregate
dispatch of batteries, whereas Fig. 6b shows the comparison in
the aggregate state of charge. From these plots it can be seen
that the stochastic formulation forces the batteries to dispatch
their resources much differently in order to ensure that the
voltage constraints are not violated under uncertainty. This is
further illustrated in Fig. 6c, which shows how the stochastic
formulation dispatches more reactive resources in order to
counter the effect of the expected variability from the forecasts.
However, the robust formulation is clearly more conservative
which explains the increased utilization of flexible resources
to ensure robust operation. This is illustrated in Fig. 6d and
Fig. 6f, where in Fig. 6d a comparison of the objective
function (i.e., total network losses) between the deterministic
and the stochastic methods is provided, whereas in Fig. 6f
a comparison of the net demand, i.e., demand plus losses is
provided. Clearly, the stochastic approach results in reduced
performance (i.e., increased losses). The worst case increase
in net demand is found to be less than 3% in this case, with an
RMSE of .0538 MW between the deterministic and stochas-
tic method. However, unlike the deterministic approach, the
robust implementation satisfies voltage magnitude constraints
despite the uncertainty and within acceptable violation limit,
αv. This trade-off can be designed by choosing αv appropri-
ately. Furthermore, the stochastic method results in reduced
network voltage imbalance as shown in Fig. 6e. Future work
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(a) (b)

(c) (d)

(e) (f)
Fig. 6. Comparing deterministic and robust optimal solutions: (a) Aggregate
battery dispatch; (b) Aggregate battery state of charge; (c) Aggregate reactive
power dispatch; (d) Feeder network line losses (objective value); (e) Average
nodal voltage imbalance; (f) Total feeder demand with optimized losses. The
stochastic implementation is more conservative and leads to a root-mean-
square demand-plus-loss increase of just 0.054MW (less than 1.4%).

will look into the reasons for this improved performance in
network imbalance.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an efficient method for the optimal
dispatch of DERs in an unbalanced distribution network while
considering the uncertainty in demand and solar PV forecast.
A two-stage technique is developed that accounts for both
the non-linearity of power flow equations and the uncertainty
in forecast. A deterministic multi-period AC OPF is solved
based on the forecast of demand and solar PV, whereas the
linearized model obtained at the operating point of the NLP is
used to calculate the tighter bounds on network constraints
for the deterministic AC OPF. The simulation results and
comparison with deterministic approach show the effectiveness
of the proposed method in dealing with uncertainty.

Future work will study the trade-off between performance
and security in chance-constrained problems. Studying the
uncertainty associated with demand and solar forecast and
developing accurate distributions to represent the forecast
errors leading to improved performance is another important
area of research. The reasons behind a reduction in network

imbalance in the stochastic method over the deterministic
methods will also be analyzed.
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