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Abstract

Multi-energy systems (MES) offer an opportunity to leverage energy conversion processes

and temporary energy storage mechanisms to reduce costs and emissions during operation

of buildings, campuses, and cities. With increasing options for flexibility in demand-side

resources, it is possible to temporarily defer thermal and electrical demand of (flexible)

buildings without sacrificing comfort and convenience of its occupants, which can improve

overall MES economic efficiency and reduce emissions.

To that effect, this paper develops a linear optimization formulation of a MES with flexible

(thermal and electric) building demands that capture nonlinearities in the efficiencies of

energy conversion processes. The optimizaiton formulation accounts for multiple time-steps

to capture the (first-order) dynamics of large thermal building loads. The flexible buildings

are parameterized, in part, based on historical data from a college campus in Vermont, USA.

The idea of the MES model is to investigate the role that flexible building loads plays in

reducing costs and emissions for a small campus relative to that of a possible carbon tax.

The operation of the MES is optimized to reduce costs based on representative seasons

and carbon tax scenarios. Interestingly, it is found that when utilized optimally, flexible

buildings can offer an effective method to improve economic efficiency while also reducing

carbon emissions close to the levels that a carbon tax would realize, though without carbon

price’s large cost increases. That is, we present evidence that flexible buildings in Vermont

may offer another route to achieve the emission goals close to that of a carbon tax policy.

Keywords

Multi-energy systems, buildings, flexibility, economic dispatch, carbon, optimization

∗Z. Hurwitz and Y. Dubief are with the Department of Mechanical Engineering at the University of
Vermont. Emails: {zhurwitz, ydubief}@uvm.edu
†M. Almassalkhi is with the Department of Electrical and Biomedical Engineering at the University of

Vermont and was partly supported by the U.S. Department of Energy’s Office of Energy Efficiency and
Renewable Energy (EERE) award DE-EE0008006. Corresponding author: malmassa@uvm.edu.

1



1 Motivation & Introduction

Recently, climate change has intensified the focus on efficiency and methods to reduce

carbon (and other harmful) emissions from human and engineering processes [1, 2]. This has

led to innovations in building and renewable energy technologies and significantly tightened

energy efficiency standards. In fact, it is well-recognized that the passive nature of efficiency

alone is not sufficient to enable the deep penetration of variable renewable generation required

to reverse the trends of climate change. Thus, to go beyond efficiency, we need to leverage

the flexibility that is available behind the natural gas and electric meters, which could come

from homes [3, 4], commercial buildings [5, 6, 7], and large industrial sites (i.e., commercial

and industrial or C&I systems), such as manufacturing and campuses [8, 9, 10]. This has

even motivated organizations, such as LEED, to recently update their energy efficiency

certification metrics to explicitly include and incentivize demand-side flexibility [11].

The need for efficiency and flexibility should include multiple demand types, such as

electric, (district) heating, and cooling. In fact, both natural gas and electricity often sup-

ply commercial and industrial (C&I) multi-energy systems (MES) and buildings from vast

multi-energy carrier networks of pipelines and transmission lines that physically couple the

electric, heating, and cooling demands. Therefore, to improve efficiency and leverage flexibil-

ity requires a multi-energy systems (MES) approach that is cognizant of both the economics

and the emissions in supplying the demand, which is the focus of this paper. Figure 1 il-

lustrates the overall approach and outline of the paper. While MES have classically been

studied from the perspective of co-generation (Cogen or combined heat and power or CHP)

and tri-generation (Trigen) processes as a way to enhance overall energy supply efficiency

and economics, this paper considers a system of energy conversion and storage processes

rather than a single device. More specifically, this paper considers the buildings and energy

processes of a university campus and associated economic and carbon efficiencies. For a

comprehensive overview of MES, please see [12].

The notion of (thermodynamically) flexible buildings in this manuscript refers to the

concept that heating and cooling demand represents energy processes with (thermal) inertia

that are inherently flexible. This is because the demand is specified by a building’s ability to

maintain thermal zones’ temperature set-points within a (pre-specified) dead-band. Increas-

ing the dead-band permits a shift in the building’s demand across larger time-periods, which

begets flexibility in building demand and permits greater economic efficiency. In addition to

innovations on building efficiency and flexibility, there is also a growing popular demand for

carbon tax policies, which alter the economics of energy. Within that context, this paper

seeks to study and investigate the following question: for a realistic MES, what role can

flexible buildings play in reducing costs and emissions relative to a carbon tax?
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Figure 1: Summary of overall methods with necessary data and models to perform MES
co-optimization of utility economics and carbon emissions by using flexible buildings and
multi-energy processes.

To answer this question, we

1. analyze real data from buildings to develop a simplified, averaged first-order model of

a thermodynamically flexible building;

2. develop a predictive model of a flexible MES, including nonlinear energy conversion

processes inherent to realistic boilers, chillers, and combined heat and power plants;

3. optimize over the actual natural gas and electric energy and demand tariffs that pro-

mote “economic efficiency” and consider the role of a carbon tax; and

4. construct and analyze a realistic case-study based on data from University of Vermont

in Burlington, Vermont in the northeastern United States.

Most of the early work on MES focuses on combined natural gas and electrical opti-

mal power flow (or GEOPF) on multi-carrier networks [13, 14]. This early work on MES

optimization established the existence of new minimum cost solutions that were not achiev-

able when studying the energy systems in isolation. In addition, these methods led to the

MES modeling frameworks of so-called “Energy Hubs” and “Power Nodes” [15, 16, 17, 18]

. The energy hub framework has enabled past interesting studies in: distributed control of

energy hub systems, impact of hybrid-electric transportation, integration of energy storage,

and multi-energy analysis of buildings [19]. Generalizing the energy hub models to manage

flexible buildings as part of a MES has been presented, including [20], but was focused on
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control and short term operations rather than emissions and planning problems, which is

the focus in the current paper.

Herein, we build on concepts from university campus-scale MES [10], which developed

a piece-wise linear (PWL) framework and illustrated the value of considering the nonlinear

energy conversion processes of boilers, chillers and combined heat and power (CHP) assets.

In this current paper, we employ a similar PWL approximation of the underlying nonlinear

energy efficiencies. However, the PWL approaches now more accurately capture the energy

processes and we augment energy storage with available energy flexibility from buildings

by allowing the buildings’ internal temperatures to deviate from their set-points. Much of

the literature on flexible buildings focuses on feedback control or online optimization over at

couple hours or up to a day [21]. These works generally leverage historical MES demand data

to construct seasonal electric, heating, and cooling demand profiles to build representative

daily demand curves. In this paper, we also employ representative daily MES demand

curves to study the impacts of flexibility and carbon taxes. However, we additionally use the

historical MES data to identify the thermodynamic parameters for buildings to study thermal

flexibility, in terms of the internal temperature set-points. Thus, the key contributions of this

paper is the identification and integrating of flexible buildings within economic optimization

of a nonlinear MES (time-coupled, PWL), and the analysis of comparing the effects of

flexible buildings against that of a price on carbon emissions. Specifically, unlike very recent

work from [18] that is also focused on campus-scale MES and carbon emissions within the

context of an energy hub coordination scheme, we focus on how flexibility in the thermal

demand together with a carbon tax can improve overall MES economics and CO2 emissions.

While (thermodynamically) flexible buildings and virtual energy storage (VES) have been

explored previously within the context of multi-stage, hierarchical optimization of microgrid

operations and economics [7, 22, 23], these works do not consider the role of natural gas

energy conversion processes and gas tariffs nor CO2 emissions. For work on MES microgrids

that include emissions (but not necessarily carbon pricing policies), the literature tends to

not consider larger dynamic buildings loads nor resources that require ramp-rate and start-

up costs, since the focus is on small and nimble residential demand-side MES resources [24].

That is, the current paper shows that flexibility in the Vermont-based system (which has

access to 100% renewable electricity from the utility) can achieve similar outcomes with

flexibility that it can with a carbon tax. That is, the incentives of economic efficiency mostly

align with those of the carbon tax in this system, which means that unlocking building-

level flexibility in Vermont can lead to significant reductions in carbon without necessarily

requiring an expensive carbon tax.

The outline of the paper is as follows: Section 2 presents the MES model for curating
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the objective function and PWL constraints. The flexible buildings parameters are identified

and estimated in Section 3 based on real demand and weather data. Section 4 presents the

case-study on flexibility in Vermont, while Section 5 presents the conclusion and directions

for future work.

Figure 2: Left : System-level overview of the MES system considered in this paper with
economic costs and emissions as the key outputs. Right : physical asset-level overview of the
MES considered in this paper. The energy conversion processes are illustrated with color
changes. Flexible buildings make up the cooling/heating demands at the bottom.

2 System Modeling

From Fig. 2, the proposed general MES framework is presented (on the left) and is sepa-

rated into different physical blocks to represent devices and their physical energy conversion

and storage processes (on the right). Each device modeled could be categorized in one of

three block types: 1) source blocks, 2) storage blocks, and 3) conversion blocks. Source

blocks are used to supply energy (at some potential cost), which includes natural gas and

electricity. These blocks are used to calculate costs of operation as well as carbon emissions

and are further discussed in Section 2.1. Storage blocks store energy over multiple time-steps

and could represent electric batteries or thermal energy storage tanks whose general form is

explained in Section 2.2. Conversion blocks represent devices, such as chillers, boilers and

CHPs that transform one energy input into one or more energy outputs. Of course, these

conversions are subject to the physical reality of energy losses, which begets inefficiencies

that are described in Section 2.3.

The general problem formulation represents an offline day-ahead, multi-energy planning

problem over a representative day (i.e., 24-hour horizon) at 15-minute resolution to capture

t = 1, . . . , T timesteps, where T = 96. This problem is formulated by the following and
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detailed in the next sections:

minimize f cost
el (Gel

in) + f cost
gas (Ggas

in ) + f cost
CO2(Gel

in, G
gas
in ) (1a)

f conv
el (Gel

in, G
gas
in ) = Edem

el [t] + P bat
in [t]− P bat

out [t] (1b)

f conv
th (Gel

in, G
gas
in ) = Edem

th [t] (1c)

Ebat[t+ 1] = Ebat[t] + ηinP
bat
in [t]− 1

ηout

P bat
out [t] (1d)

Ebat[T ] = Ebat[0] (1e)

θ[t+ 1] = θ[t] +
∆t

MthCp

(
(1− ηuseU [t])Edem

th [t]−R(θ[t]− θamb[t])

∆t

)
(1f)

1

T

t=T∑
t=0

θ[t] = θSet (1g)

0 ≤ Ebat[t] ≤ Ebat
max (1h)

0 ≤ P bat
in/out[t] ≤ P bat

in/outmax (1i)

θSet −
θflex

2
≤ θ[t] ≤ θSet +

θflex

2
(1j)

Relations in (1) provide a high-level overview of an optimization formulation that allows

us to understand how flexibility and carbon pricing affect overall energy costs. The energy

costs f cost in (1a), are defined via natural gas ($/MMBtu) and electric ($/kW, $/kWh)

utility tariffs and carbon prices ($/lb) based on cumulative CO2 emissions. The energy

consumed by the MES is converted, via nonlinear f conv in (1b) and (1c), into heating,

cooling, electricity components that either supply other conversion processes (e.g., co/tri-

generation) or meet MES demand. However, if some demand is flexible, such as those

enabled by electric batteries in (1d) or those enabled by smart buildings that can manage

thermal loads over a greater time period as shown in (1f) with temperature θ. That is,

the temperature and battery state of charge (SoC) limits in (1j) and (1h), (1i) represent

the available flexibility range. Of course, sustainability constraints such as the ones in (1e)

and (1g) ensure that over the prediction horizon of a representative day that the system is

returned to the initial (energy) state. Note that additional constraints are added to (1) based

on operational requirements described in Section 2.4, such as minimizing start-up events and

limiting unnecessary ramping of conversion devices.

Now, in the next sections, we focus on defining and modeling the cost functions, nonlinear

energy conversion and storage processes, and parameterizing the thermal flexibility models

with limited data. Clearly, solving this nonlinear (and non-convex) optimization problem

to optimality is computationally challenging, so we focus on a tractable piecewise-linear

(PWL) approximation of the non-linearities to engender a mixed-integer linear program

(MILP) formulation, which is solvable by today’s MILP solvers and provides a bound on the
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optimality gap.

2.1 Energy economics

Almost all systems are driven by economic incentives and MES are no different. That

is, the focus on operating an MES is always on economic efficiency (i.e., costs), which is

why carbon taxes put a price on carbon. At the core of these costs are utility tariffs from

natural gas and electricity, which are described next and make up the objective function of

the MES optimization problem described in this paper. These costs were pulled from the

existing billing systems in place for both the electrical and natural gas tariffs. The billing

and demand data collected is provided in English Inch-Pound (I-P) units, which is common

for MES and HVAC systems in the U.S. [8, 25]. Key conversions from I-P units to SI units

are provided in Table 1.

Table 1: Unit conversion table between English (I-P) and SI units.

Unit type English Unit (I-P) SI Unit

Temperature 1 degree change Fahrenheit (F) 5
9

degree change C
Power 1 Refrigeration Ton (RT) 3.517 kW
Energy 106 British thermal unit (MMBTU) 293.07kWh
Energy 1 Centum cubic feet (CCF) of natural gas 29.307 kWh

2.1.1 Natural gas

Natural gas is one of two energy sources available to the MES. The rate structure used

in this model is from the energy plant’s actual rate in Vermont and priced at $0.8227/CCF,

which relatively low as the rate is interruptible. Being interuptible means that during times

of peak regional demand and limited supply (in the Northeastern U.S.), the MES can be

forced to switch to fuel oil to reduce natural gas demand in the surrounding region. Since

interruptions only occur for 1-2 weeks per year, it reasonable to simplify the MES and not

consider fuel oil costs and impacts on boiler conversion efficiencies in this work.

Besides natural gas, the utility also offers the cleaner “renewable natural gas” (RNG).

RNG represents natural gas made from methane that is extracted from landfills or livestock

waste and fed into conventional natural gas pipelines. As a large consumer, the MES can

hypothetically elect to purchase RNG at a fixed percentage of their total gas consumed every

month: λRNG ∈ {10%, 25%, 50%, 90%}. For the sake of completeness, the cost and emission

rates related to 100% RNG are provided in Table 2 and has the effect of an adder on natural

gas rates. Clearly, any convex combination of conventional and renewable natural gas results

in a convex combination of the costs and emissions. Thus, the cost of Ggas
in CCF of gas with

7



RNG adder of λRNG is as follows:

f cost
gas (Ggas

in ) :=
T∑
t=1

(0.8227(1− λRNG) + 1.174λRNG)Ggas
in [t]. (2)

This represents a potentially bilinear expression, unless λRNG is fixed a-priori to a constant,

which is what is done in this paper. Specifically, we set λRNG = 0 since RNG trades off

directly with any carbon tax and does not engender any new insights into the MES problem.

Table 2: Natural Gas Rate Parameters

Name/ Info Value(s) Unit

Cost of conventional natural gas (NG) 0.8227 $/CCF
Cost of Renewable Natural Gas (RNG) 1.174 $/CCF
CO2 emissions from NG 11.71 lbs of CO2/CCF
CO2 emissions from RNG 5.01 lbs of CO2/CCF

2.1.2 Electricity

Besides natural gas, the MES has access to a second energy sources in the form of

electricity from the utility Burlington Electric Department (BED). BED’s power is supplied

from a 50MW bio-mass generator, distributed solar PV, wind turbines, and hydro-power

generation and imports, which makes BED’s entire electric supply 100% certified renewable

with no associated CO2 emissions. In fact, BED was the first utility in the U.S. whose supply

was fully certified as renewable [26], which make the MES somewhat unique.

While the MES consists of multiple buildings and each building has its own electric meter

and, depending on it size, its own electric rate, we have chosen to focus on the most common

and higher priced primary service (or Ps) rate, which is described by on/off-peak hours in

Fig. 3 and corresponding rates in Table 3. The Ps rate structure includes time-of-use (TOU)

and seasonally varying energy ($/kWh) and demand ($/kW-month) charges. In addition, we

include the standard fixed account fees and energy efficiency charges, as well as associated

taxes. From historical data, the majority of the costs come from demand and usage charges,

which can vary significantly over the year depending on months of the year and hours of the

day. To compute the total MES electricity input costs from total usage (kWh over 15-minute

intervals), Gel
in[t], we have:

f cost
el (Gel

in) :=
1

4

(
0.00413Gel

in[t] +
∑
t∈on

uonG
el
in[t] +

∑
t∈off

uoffG
el
in[t]

)
(3)

+ (don + 1.6614) max
t∈on

Gel
in[t] + (doff + 1.6614) max

t∈off
Gel

in[t],

where uon/off, don/off ≥ 0 represent usage and demand charges, respectively, during on/off-
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peak periods (t ∈ on/off) of the day for a particular season (winter, shoulder, or summer)

per Table 3. Since we minimize demand charge rates that are strictly positive (with the

efficiency adder), we can reformulate the max terms using an equivalent, linear formulation

with an extra variable and additional inequality constraints:

max
t∈on/off

Gel
in[t] = Ĝel

in[t], for Ĝel
in[t] ≥ Gel

in[t] ∀t ∈ on/off.

Figure 3: Peak hours begin at 6:00am and end at 10:00pm for the winter months while,
for the summer, peak hours are from 12:00pm until 6:00pm. Shoulder months (April, May,
October, November) are always under off-peak rates.

Table 3: Electric Rate Parameters

Description Value(s) Unit

Energy efficiency demand 1.6614 $/kW-month
Energy efficiency usage 0.00413 $/kWh
Peak demand (winter, shoulder, summer) [25.17, 0, 25.17] $/kW-month
Peak usage (winter, shoulder, summer) [0.103813, 0, 0.095552] $/kWh
Off-peak demand charges 3.45 $/kW-month
Off-peak usage charges 0.067251 $/kWh
CO2 emissions from electricity 0.0 lbs of CO2/kWh

2.1.3 Carbon Emissions

To understand and compare how flexibility and carbon-taxes affect the overall economics,

we need to assign a price to carbon ($/lb-CO2). Based on recent climate change and energy

policy discussions in Vermont (U.S.) and globally, the price is predicted to become anywhere

from $100-5,500/ton-CO2 [2, 27] by 2030, which is the range from which we choose our carbon

tax rates for this MES. Thus, the carbon emission costs are added to f cost
gas (Ggas

in ) + f cost
el (Gel

in)

via the following:

f cost
CO2(Gel

in, G
gas
in ) :=C$

CO2

(
T∑
t=1

0.0Gel
in[t] + 11.71Gg as

in [t]

)
, (4)

which completes the objective function description. Next, we describe models and con-

straints related to energy storage and conversion processes.
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2.2 Energy storage processes

Energy storage processes can be in the form of thermal energy storage (e.g., ice-storage,

heated rocks, molten salt) and chemical energy storage (e.g., Lithium-ion electric batteries).

In this paper we focus on electric batteries. Later, we will also describe flexible buildings as

part of the demand, however, energy flexibility is another source of energy storage that we

leverage in this work, but is not described in this section.

2.2.1 Energy storage model

The main purpose of energy storage is to shift demand in time. For example, both the

grid and the (local) CHP can supply energy storage during charging. Due to the daily

cycling, we assume no standing losses. Thus, energy storage devices are modeled as follows.

Let Ebat[t] denote the state of charge (SoC) of the battery at time-step t. There are

two different conversion processes that incur energy losses associated with operating the

storage device: (1) losses while charging, ηin, at charging rate P bat
in [t] and (2) losses when

discharging, ηout, at discharging rate P bat
out [t]. From these terms, we can model the discrete-

time (first-order) dynamics of the SoC relative to charging and discharging rates and the

energy capacities, Ebat
max[t] of the storage device over prediction horizon t ∈ [0, 1, . . . , T ]:

Ebat[t+ 1] = Ebat[t] + ηinP
bat
in [t]− 1

ηout

P bat
out [t], (5)

0 ≤ Ebat[t+ 1] ≤ Ebat
max. (6)

In addition, there are charging and discharging rate limits, Rbat on charge/discharge

powers. These vary for each device and limit the amount of power supplied to or consumed

from the grid per time step: 0 ≤ P bat
in [t] ≤ Rbat and 0 ≤ P bat

out [t] ≤ Rbat.

Finally, we enforce a sustainability condition on energy storage to ensure consistency

between representative periods in the simulation. This condition ensures that the initial

energy states and terminal energy states of the device are the same: Ebat[0] = Ebat[T ].

Table 4 outlines the battery specifications used in this paper.

Remark (Simultaneous battery charging and discharging). Note that while the formula-

tion for the battery model above permits a feasible solution with simultaneous charging and

discharging (i.e., XSCD[t] := P bat
in [t]P bat

out [t] ≥ 0), the strictly positive prices for electricity

guarantee that, at optimality, XSCD[t] ≡ 0,∀t as long as the original problem is feasible [28].

For details on simultaneous charging and discharging, please see [29]. Thus, it is not neces-

sary to create a separate binary variable to indicate charging/discharging to ensure physically

realizable battery dispatch.
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Table 4: Battery Parameters

Parameters Value

Battery capacity, Ebat
max 308 kWh

Max power rate, Rbat 77 kW
Battery charging losses, ηin 95%
Battery discharging losses, ηout 95%

2.3 Energy conversion processes

Energy conversion processes, defined generally by f conv
el/th in (1) map energy inputs to energy

outputs for the boilers, chillers, and CHP. Converting energy from natural gas to steam or

to electricity and from steam or electricity to chilled water for cooling loads is a process with

which there are associated energy losses (i.e., inefficiencies). These energy losses depend

on the assets and their operations. For example, operating two natural gas steam boilers

(natural gas to steam) at low load relative to one at high load can yield significant efficiency

improvements. Many plants operate under so-called “N + 1 mode” where if any boiler or

chiller were to fail, the remaining devices could pick up the slack. While these constraints

could be added, they have been ignored in this work to focus on the relationship between

flexible demand and economic efficiency and carbon emissions. First, we describe the two

main thermal energy conversion processes (steam and chilled water) before providing their

input-output models and the piecewise linear (PWL) formulation employed in this paper.

2.3.1 Generating steam

The boilers and CHP employ combustion to convert natural gas to steam. The main

difference between the two blocks lies with the CHP doing the conversion indirectly. Specif-

ically, the CHP combusts natural gas (with compressed air) to create hot, high-pressure

gas, which propels a gas turbine to drive an AC generator that converts mechanical energy

to electricity. The resulting hot exhaust gas from the turbine is then used along with a

heat-exchanger to generate steam [30]. As shown in Table 5, the boiler’s steam output is

a nonlinear, non-convex function of the natural gas input while the CHP’s steam output

is assumed to be a linear function of the gas input (since steam is a byproduct of electric

generation). This means the CHP generates steam at constant efficiency. Specifically, in

Table 5, the boiler’s nonlinear steam efficiency varies from 36-93% depending on the asset’s

loading (i.e., output). The CHP is assumed to have a constant steam conversion efficiency

of 53%. However, after their normalized inputs exceeds 20% of their range, the boiler is the

most economical choice for supply thermal demand.

For simplicity and owing to the planning purposes in this paper, we have chosen to ignore

the complexities of mass flow rates of flues, steam loops, electric pumps, and air compressors
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and instead focus on the input-output relations between the different assets. Similarly, if

steam is needed for a process, such as the steam-driven chiller (described next), it is assumed

that operations ensure that steam is at the desired temperatures and pressures. Finally, we

relax the MES operators’ standard procedure and allow boilers and CHP to vent. This will

permit the CHP to provide (valuable) electricity without requiring a steam host, which is a

challenge in Summer time when demand charges are greatest and it’s too warm for a heating

load. Since the price of natural gas is positive and the objective function includes natural

gas cost terms, venting will only occur sporadically.

2.3.2 Chilled Water Generation

There are two different types of chillers used in the model, electric and absorption chillers.

The electric chiller converts electricity to chilled water while the absorption chiller converts

steam input to chilled water output. Both devices operate in a similar manner besides

the different inputs and have the same general operating assumptions. For each of them,

heat transfer between the condenser, evaporator and cooling towers are neglected. Instead,

energy in and out are considered with a variable efficiency based on the device’s coefficient

of performance (COP). That is, as was done with boilers and CHP, we have neglected the

chilled water mass flows, pumps, and valves and deal solely with energy flows and lumped

thermal demands, which is reasonable for the planning purposes of this paper.

Next, we describe the input-output relations of these devices and formulate the piece-wise

linear (PWL) model to turn the nonlinear, non-convex efficiency curves into a computation-

ally tractable formulation (albeit by introducing integer variables). Nonetheless, given the

maturity of Mixed integer Problem (MIP) solvers and the underlying MILP formulation, we

can solve to (near) optimally as will be discussed in the results section.

2.4 Piece-wise linear (PWL) formulation

Energy conversion processes, such as f conv(., .) from (1b) and (1c), are generally nonlinear

and non-convex. To ensure a formulation that has a tractable global (near) optimal solution

and outperforms the overly simplified assumption of a constant efficiency, we follow the

work in [10] to replace the nonlinear input-output curves with their PWL approximations.

The empirical1 nonlinear, normalized input-output curves are provided in Table 5 for energy

conversion processes employed by the MES. When there are multiples of the same device

type, the performance curves have been de-rated slightly to differentiate their dispatch.We

have used the linear input-output model described in [3] for modeling chillers and the CHP’s

heat recovery steam generator. This simplifies the formulation but also engenders good

1The input-output curves are a function of historical performance data and original manufacturer data.
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quality models2. That is, while the PWL framework offers superior generalizable modeling

capability over other linear formulations by being able to capture non-monotonic efficiency

curves, it also increases computational complexity significantly. Thus, Table 5 is designed

based on trading off modeling accuracy and computational complexity.

Table 5: Input (X) to output (Y ) performance curves

Device Normalized Performance curve (based on [10])

Boiler Y = −3.797X4 + 5.422X3 − 1.087X2 + 0.162X
CHP (to Electric) Y = 0.362X2 + 0.609X
CHP (to Steam) Y = 0.966X (R2 = 0.968)
Absorption Chiller Y = 1.087X − 0.062 (R2 = 0.998)
Electric Chiller Y = 1.206X − 0.130 (R2 = 0.988)

To generate the PWL approximation, we mostly follow [10] by first defining the maxi-

mum input/output operating ranges for each device. The original nonlinear curve is limited

between those operating points. Next, we select M+1 input-output pairs from the nonlinear

curve, which define M PWL segments. Each PWL segment or bin i = 1, . . . ,M is defined by

a linear expression consisting of a slope, mi and an intercept bi: Y = miX+bi,∀i = 1, . . . ,M .

Thus, at time t and for each device, the input, X[t], and output, Y [t], variables are

created. Each device also has static input limits Xmin and Xmax, as well as a ON/OFF

states, X 1
0
[t] ∈ {0, 1}. If the asset is ON, then (7) ensures that it operates within its limits,

while (8) ensures that the asset does not exceed a pre-defined static ramping limit, Xramp:

XminX 1
0
[t] ≤ X[t] ≤ XmaxX 1

0
[t] (7)

X[t]−X[t− 1] ≤ Xramp (8)

Xstart[t] ≥ X 1
0
[t]−X 1

0
[t− 1], (9)

where (9) tracks startup events with Xstart[t] ≥ 0, which incur a one-time, non-trivial startup

energy penalty, ccost
start that is added to the objective function as

∑T
t=1 c

cost
startXstart[t].

From the PWL setup, we now need to segment the input and output variables. Starting

with the input, we define X[t] as a collection of M bins, Bi[t], that span the input range:

X[t] =
M∑
i=1

Bi[t]. (10)

In (10), the binning of the input is achieved by introducing the binned input variables, Bi

for PWL segment i = 1, . . . ,M . Recall, these M segments are generated from the nonlinear

curve ranging from the minimum operation of the device to the maximum. However, to

ensure that at most one input bin is active to represent the admissible input range of segment

2By “good model” we mean that the coefficient of determination satisfies R2 > 0.95 compared with the
full nonlinear model from data.
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i, we need to limit the number of active bins to at most one:

M∑
i=1

B 1
0
,i[t] ≤ 1, (11)

where B 1
0
,i is the binary (0/1) segment indicator variable for PWL segment i. This ensures

that the device is either OFF or operating within its input range and at the efficiency

determined by the active PWL segment i.

Next, the binary segment indicator values are used to capture the admissible range of

input bin Bi[t] with the segment’s upper and lower limits:

B 1
0
,i[t]Bi ≤ Bi[t] ≤ B 1

0
,i[t]Bi. (12)

Note that these upper and lower segment bounds are defined by the consecutive input point

pairs that make up PWL segment i. Finally, with PWL segment i’s input range defined, we

can define the output in terms of the input bins and the PWL segment line expressions as:

Y [t] =
M∑
i=1

miBi[t] +B 1
0
,i[t]bi (13)

which ensures that that the output Y is always represented by a single active PWL segment

(or none at all, if all binary segment indicator variables are zero). Figure 4 presents an

example for a PWL approximation of a nonlinear, input-output curve with M = 4 segments.

Figure 4: Example of using the PWL approximation for a general device with M = 4
segments and the corresponding input bins and binary segment indicator variables. Note
that the third segment is active in this example (i.e., B 1

0
,3 ≡ 1).
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2.5 Demand

Through the energy storage and conversion processes, the goal of any MES is to supply

the (multi-energy) demand while minimizing economic costs as illustrated in Fig. 2. In this

section, we describe the demand types and highlight the nature of the flexibility in thermal

(building) demand.

2.5.1 Electric Demand

Three years of electrical demand was recorded from the meters of each building and

aggregated to create one representative weekday and weekend-day for each month. The

representative weekdays are illustrated in Figure 5. From these representative seasonal days,

we can construct the seasonal weeks and months.

Figure 5: Average weekday electricity usage per month

To meet the electric demand, electricity is either supplied by the grid EGrid (subject to

the electric rate) or generated in via a CHP Echp (subject to conversion process and natural

gas rate). The electricity supply must satisfy the electric demand, ETot
d (from Fig. 5), any

net demand from the battery P bat
in [t]− P bat

out [t], and any electric chiller demand, ETot
Chw. That

is, the electric power balance requirements is:

Echp[t] + EGrid[t] = P bat
in [t]− P bat

out [t] + ETot
d [t] + ETot

Chw[t]. (14)

2.5.2 Thermal building flexibility

Unlike the electrical demand, there is no single meter from which to measure heating

and cooling demand directly. That is because heating and cooling demands are a func-

tion of the desired level of comfort (i.e., temperature set-points within a building). This

temperature fluctuates around the set-point by a few degrees during conventional thermo-

static operation. By allowing larger temperature deviations around the set-point, there is

greater flexibility in supplying the thermal demand, which intuitively should improve the
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MES economic efficiency, if comfort levels are not significantly impacted. Thus, flexibility

and thermal (heating/cooling) demands are closely intertwined. As the buildings’ tempera-

tures, θset, and the ambient temperature, θamb, change, the building requires either a supply

or removal of heat from the building. Specifically, the thermal flexibility of a building refers

to the allowable temperature range, i.e., high thermal flexibility implies a large temperature

range.

In this model, we employ ambient temperature data available from the local airport and

this data was averaged in a similar manner to the electrical data to provide a representative

dataset for each month. This data set was then used together with the building management

system’s (BMS’s) set-point and a one-dimensional heat transfer model approximation of the

building to model heating, cooling, and ambient thermal losses. The model then assumes

that the set-point temperature was maintained close to the BMS’s set-point, which together

with ambient temperature data and the energy supplied to the building gives us a reason-

able approach to estimate thermodynamic parameters of the buildings. Specifically, (15)

relates the net energy supplied to the building, Ein[t], to the demand-serving assets (heating

or cooling) for a given time period t. Boilers and the CHP can separately supply steam

for heating, STot
d , increasing the building’s temperature while chillers supply chilled water

(cooling), ChwTot
d , to decrease the temperature in the building. The thermal building energy

balance equation is

Ein[t] = STot
d [t]− ChwTot

d [t], (15)

where total steam is supplied by the boilers and CHP and total cooling is supplied by the

two different chiller types. Of course, the absorption chiller allows the steam generated to

be used for cooling instead.

To compute Ein[t] for a building, we need to map Ein[t] to the average building temper-

ature dynamics and, thus, require a heat transfer model [31, 32, 33]. This is given by the

following:

MthCp(θ[t+ 1]− θ[t])
∆t

= (1− ηuseU [t])Ein[t]−R (θ[t]− θamb[t]) (16)

⇒ θ[t+ 1] = θ[t] +
∆t

MthCp

((1− ηuseU [t])Ein[t]−R(θ[t]− θamb[t])) . (17)

On the left-hand side is the building’s temperature θ and thermal mass Mth, while the right-

hand side contains the energy input from the MES Ein, as well as added/lost heat due to

ambient forcing term, θamb, and uncontrollable building occupancy parameter, U [t] ∈ {0, 1}.

The occupancy parameter U [t] = 1 when the building is open/operational; else, U [t] = 0.

That is, ηuseU [t] represents an approximation of the impact of human activity on the building

energy usage (e.g., increased energy loss from opening/closing windows). The terms Mth,
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Cp, R, and ηuse are further explained in Table 9 and detailed in Section 3, where they are

identified from historical demand and weather data.

Remark (First-order models). The first-order thermodynamic approximation of a building

is deemed reasonable in this context due to: i) the high-level, planning objectives of the MES

predictive, optimization problem; and ii) since demand data represent averaged monthly week-

days and weekends. Furthermore, prior works in literature on building models and validation

have concluded that first- and second-order models are sufficiently accurate input-output rep-

resentations of buildings [31].

One of the key contributions of this paper is the parametrization of a flexible building,

which includes the ability of the building to operate within a dead-band around the BMS’s

temperature set-point. The larger the dead-band, the more flexibility the building has. This

allows the building to behave similarly to a thermal energy storage device. The building

can be charged by raising or lowering the temperature relative to the ambient temperature,

and then discharge by not supplying as much heating or cooling and allowing the indoor

temperature move towards the upper or lower dead-band bound (depending on the season).

This can allow for preheating or pre-cooling based on a predicted increase in demand, change

in ambient temperature, or to reduce peak demand. In (18), and (19), the temperature

bounds and the averaging constraint on temperature excursions from the set-point ensure

that the comfort levels are satisfied on average;

θSet −
θflex

2
≤ θ[t] ≤ θSet +

θflex

2
, (18)

1

T

t=T∑
t=1

θ[t] = θSet. (19)

In this paper, we will consider different scenarios where the dead-band is based on θflex ∈

{1, 3, 5, 10, 20}◦F, but that over the course of the day, the average temperature must be

equal to the set-point, which ensures that average comfort is met. As with energy storage,

we impose a terminal consistency constraint on the temperature that, together with the

above constraints, ensure that comfort is achieved on average and that every day starts and

ends at the same temperature set-point: θ[0] = θset = θ[T ]. Next, we use building data to

estimate parameters that define a flexible building.
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3 Identifying flexible building parameters

3.1 One Dimensional Heat Transfer Model Parameters

The first-order thermal building model introduced in (17) assumes a single wall with a

thermal resistance and a mass of air on one side at ambient temperature and a mass of air on

the other side equal to the equivalent thermal mass inside the building. To use this model,

we need to approximate the model parameters (MthCp) and R. Sections 3.1.1 and 3.1.2

discuss how these parameters are estimated from building data.

3.1.1 Approximating thermal mass: MthCp

To determine the thermal mass for the model, data was collected for the total avail-

able building space, e.g., please see Table 6. The number of floors, rooms, wall height and

thickness as well as the floor space and its usage were documented. Gross floor space en-

compasses all usable and structural floor space. Assignable and Non-assignable areas are

differentiated by where normal building usage can (e.g., office space) and cannot take place

(boiler room and HVAC attic space). The Usable floor space is the summation of Assignable

and Non-assignable floor-space. While this is a large space, it mostly represents university

administrative offices, which is not an intense (thermal or electric) load. In addition, the

space has undergone numerous (static) energy effiency improvements.

Table 6: Building Data

Space Gross(ft2) Usable(ft2) Assignable (ft2) Non-assignable(ft2)

Total 243,519 207,853 131,558 76,295

Using this data, we were able to determine the total volume of air within these buildings,

and convert to a thermal mass of air using its density. Walls, windows, doors and air vents

are all lumped together in the thermal resistance term, R, which is approximated next.

3.1.2 Identifying thermal resisitivity parameter: R

The 1D approximation used for the building heat transfer model not only simplifies the

temperature dynamics and optimization, but also the required set of model parameters.

Thermal resistivity is needed to calculate the energy transfer between the buildings to the

ambient surroundings. Using heat transfer relation in (16), it is reasonable to assume that

under conventional building operation that the indoor temperature throughout the day is

small (i.e., (θ[t+ 1]− θ[t]) ≈ 0, which allows us to drop the left-hand side of (16) and get:

0 ≈ Ein[t]−R(θ[t]− θamb[t]) (20)
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This form then states that the losses must be equal to the energy added, as there is no

change in temperature inside the building. From this we can then solve for the thermal

resistivity R in terms of the energy in (which we have from metered data) and the difference

in temperature inside the building (i.e., the BMS’s set-point) and ambient conditions (i.e.,

data from the local airport):

R =
Ein[t]

(θSet[t]− θamb[t])
. (21)

From the available metered interval data we can then set up a large set of equations and

estimate R. Figure 6 shows the distribution of calculated R values for 7 months of data.

Figure 6: Distribution of estimated thermal resistivity R for different seasons based on data.

Interestingly, the mean values of R are consistent across the different months and we are

focusing on an annual average outcome in the simulations, we average the monthly averages

for the 7 months of estimates. This yields an average R = 0.0139 MMBtu/hr-F. Note that

the standard deviation of the distribution of monthly R-values is within ±10% of the nominal

R values for each month, i.e., R ∈ [0.0125, 0.0153]. Ongoing research is studying how to:

(a) improve the estimate of R with time-series temperature data and (b) robustly optimize

energy delivery to a flexible building under parametric uncertainty as in [34, 35].

3.1.3 Estimating building usage term, ηuse

At a university, there can be a significant difference in utilization of the campus build-

ings between seasons (e.g., holidays, summer break, teaching semesters) and weekdays and

weekends (e.g., lectures are on weekdays). This led us to consider estimating a correction

factor for increased/reduced building utilization during day/night and weekend/weekday and

gave rise to the notion of the building usage term, U [t], which is a time-dependent binary

parameter and not a variable that reflect internal building usage and corresponding energy

usage disturbances (or losses) to account for the additional individuals and activity within

the building during semester weekdays as well as the reduction during nights and weekends
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outside of teaching semesters.

On average, ambient temperatures are similar for a representative weekday and weekend

in a given season, so the only real change between these periods is building activity. A similar

change can be found between daytime and nighttime however nights consistently have lower

temperatures. In a given season, the temperature setpoints are also held constant by the

BMS. This means that the same setpoint is used during the day and night as well as weekday

and weekend. Thus, from steam flow and pressure data, as well as, the corresponding ambient

temperature data collected over the past five years, we separated the data into into day and

night bins and also weekday and weekend bins, which led to four data classes and clusters.The

usage term can then be approximated from the centroids of each of the four day-time cluster,

which are shown in Tables 7 and 8 for steam pressure and steam flow. For day and night,

there are a larger temperature drops as well as a smaller drops in the usage term. Between

weekday and weekend daytime usage there is a much smaller drop in temperature but still

a noticeable change in usage.

Table 7: Centroids for steam pressure

Day-Time Pressure (psi) Temp (F)

Weekend-Night 954.84 47.05
WeekDay-Night 963.37 47.20
Weekend-Day 965.93 51.17
WeekDay-Day 969.75 52.03

Table 8: Centroids for steam flow

Day-Time Flow Temp (F)

Weekend-Night 7.54 47.05
WeekDay-Night 7.51 47.20
Weekend-Day 7.51 51.17
WeekDay-Day 7.42 52.01

From this we can estimate that the effect of the internal building activity (not energy

usage) during the weekday leads to approximately ηuse = 1% more energy consumed than

for inactive times at the same temperature. This may be due to doors and windows being

opened as well as more rooms being occupied and requiring additional energy to support. To

be clear, this loss term is only present during weekday and day-time hours of the simulations

and represents an additional (small) forcing term on the buildings to account for increased

activity (relative to other times/days).

Combining the estimates of building parameters allows us to complete our flexible build-

ing parametrization, which is presented in Table 9. Next, we combine the MES model

presented above with the flexible building model presented here to look at the high-level role

that flexible buildings can play on MES and compare it to that of a carbon tax.

Table 9: Heat-transfer parameters for building

Parameter Value(s)

Heat capacity of air, MthCp 0.3 MMBTU/F
Thermal resistance, R 0.01392 MMBTU/hr-F
Usage energy loss term, ηuse 0.01
Usage time steps, Uuse Weekdays: 8am-10pm
Temperature range (flexibility), θflex [1, 3, 5, 10, 20] F
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4 MES case-study: economics & flexible buildings

Combining the models above with representative data and utility energy supply rates,

we performed a number of tests for different scenarios of the available flexibility and carbon

tax. The MES depicted in Fig. 2 is composed of two electric chillers, two absorption chillers,

one large electric battery, one CHP, and two steam boilers. Each energy conversion process

is represented by M = 4 PWL segments, except for the four chillers and the CHP’s steam

supply, which are all represented accurately with a single linear segment. The building

temperature set-point was set to 70◦F for all seasons since the set-points are not updated for

different ambient conditions, seasons, or occupancy. Each season is represented by a month

from summer (July), winter (January), and shoulder months (November), and the seasonal

month is composed of representative weekdays (×22) and weekends (×8).

Five different flexibility levels are considered:

θflex ∈ {1(none), 3(low), 5(medium), 10(high), 20(extreme)},

and tested under four carbon pricing ($/ton-CO2) scenarios: $0, $100, $150, and $2000 per

ton-CO2. While these carbon prices go beyond the political realities today, they are in line

with recent UN reports and recommendations that range from $135-5500 per ton-CO2 [2].

The MES model is then cast as a mixed-integer linear program (MILP) with a repre-

sentative season-day electric load and temperature profile that has a time-resolution of 15

minutes (i.e., 96 time-steps). Note that this model has about 2000 binary variables that

are coupled temporally and spatially due to batteries, thermal flexibility, ramp-rate con-

straints, start-up costs, and It is implemented with Julia (v6.4.1) in JuMP (v.0.18.5) with

GUROBI (v8.1) with a 1800 second time or 0.3% optimality gap solver limit imposed for

each representative run. With five flexibility conditions, four different carbon prices, two

representative days per season, and three seasons, the results represent 120 different MILP

solutions.. The simulations were conducted on an Intel core i7 laptop with 16GB memory.

All solutions presented are certified to be within 3.86% of the globally optimal solution with

an overall average optimality gap below 0.6%, which is reasonable in the context of the

averaged seasonal representative periods and model approximations.

Remark (MIP Gap). To be clear, the MIP Gap represents an upper bound on the optimality

gap between the solver’s integer-relaxed solution and the best integer-feasible solution. This

means that a solution may indeed be globally optimal (but not provably so) and still have

a MIP Gap > 0%. Thus, the MIP Gap reflects a certificate of optimality more than an

optimality gap for a pre-determined solver time limit.

In that context, Table 10 lists the average MIP Gap for all (season, flexibility) pairs
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over the four carbon price and two day-of-week scenarios. The Winter and Shoulder months

generally achieve solutions that are well within the 0.3% limit of the global optimum before

the 1800-second limit is up, which is the time limit imposed on the solver in this work.

The Summer period represents a more complex system as the boilers and CHP can sup-

ply the steam-driven chillers that tightly couples multiple energy conversion processes and

cost variables and leads to solution pairs that are within 2.7% of the global optimum after

1800 seconds. Note that from the results, we find that the objective function (that combines

energy and CO2 costs) reduces monotonically as flexibility increases, which is what is ex-

pected from globally optimal solutions and indicates that the MIP-Gap is unlikely to have

a significant impact on the conclusions.

Furthermore, given that the Winter and Shoulder solutions have very small MIP-Gaps,

the occupancy correction factor, ηuse = 0.01, in the model seems useful. For the Summer so-

lutions, the larger MIP-Gap makes it unclear exactly how strongly the occupancy correction

factor affects the solution.

Table 10: Solver MIP-Gap (%) for different flexibility and seasons

Flex 1 3 5 10 20

Winter 0.14 0.19 0.24 0.22 0.15
Summer 0.25 1.03 2.33 2.69 1.53
Shoulder 0.15 0.14 0.15 0.18 0.16

Figures 7-9 show the simulation results for an average day in each representative season:

the forecasted operating costs and carbon emissions resulting from each flexibility, θflex,

and carbon price scenario. The left figures represent the cost and emissions as flexibility

increases. Across all left figures, the costs and emissions decrease with increased flexibility

for the $0/ton-CO2 price scenario. This is due to improved economic efficiency which aligns

with reduced emissions in this Vermont system with access to 100% carbon-free electric

utility service. Note that these result also highlight how this MES is limited in its ability

to supply heating demand from the electric grid. This inflexibility in energy conversion is

illustrated in Winter (Fig. 7(Left)) and Shoulder (Fig. 9(Left)) seasons with savings and

emissions that are relatively insensitive (< 1.5%) to building flexibility and carbon pricing.

Only under extreme $2000/ton-CO2 pricing (not visualized in the left figures) is it optimal

for operators to shut OFF the CHP and procure electricity from the grid and bring ON a

second boiler. This is shown in Figs. 7(Right) and 9(Right) with a large increase in grid

imports and reduction in gas imports for only the most extreme carbon pricing scenario.

The resulting cost increases are in the range of 60-230% with a reduction in CO2 emissions

of 38%-55%.
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Figure 7: Simulation results for an average Winter season day for different levels of flexibility
and carbon prices. Left : Energy costs and resulting emissions to understand (a) economics
and (b) emissions. Right : energy imported from (a) grid and (b) gas pipeline suppliers to
understand effects of flexibility and carbon prices.

Figure 8: Simulation results for an average Summer season day for different levels of flexibility
and carbon prices. Left : Energy costs and resulting emissions to understand (a) economics
and (b) emissions. Right : energy imported from (a) grid and (b) gas pipeline suppliers to
understand effects of flexibility and carbon prices.

The average Summer day scenario is the most interesting in this setting. Physically,

this is because this MES is most interconnected in its ability to supply cooling demand

from steam (boilers and CHP driving absorption chiller) and electricity (battery and CHP

driving the electric chiller). That is, in this MES case study, for Summer scenarios, building

flexibility on its own appears to offer an alternative to carbon pricing. This is because with

a 100% renewable energy utility, electrification becomes beneficial to carbon reduction goals.

This shift in electricity imports is shown in Fig. 8(Right) for the extreme $2000/ton-CO2

price scenario and achieves an 84% reduction in CO2 emissions with a 60% increase in energy

costs.
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Figure 9: Simulation results for an average Shoulder season day for different levels of flexibil-
ity and carbon prices. Left : Energy costs and resulting emissions to understand (a) economics
and (b) emissions. Right : energy imported from (a) grid and (b) gas pipeline suppliers to
understand effects of flexibility and carbon prices.

4.1 Role of flexibility on economics and emissions

Increasing flexibility decreases overall economic energy costs under all carbon pricing sce-

narios. In the Winter and Shoulder seasons, the emissions decrease uniformly with increasing

flexibility as well, which highlights the alignment between economic efficiency and reduced

emissions for this MES – however, the effect of flexibility and carbon pricing is negligible in

this MES. Thus, the focus of analysis is place on the Summer scenario. In the Summer case,

the trade-off between CO2 and energy economics can lead to relative increases in emissions

for increased flexibility, but overall positive CO2 pricing reduces emissions compared with

having no price in place. Specifically, without a price on carbon, building flexibility in the

Summer scenario alone is able to reduce economic costs by 3.5% and emissions by 7.4%.

However, as we increase the price of CO2, we see expected increases in energy costs offset

by decreases in CO2 emissions. This trade off in energy efficiency and CO2 emissions is

expected from the objective function; however, as the level of building flexibility increases,

the energy costs of a CO2 pricing policy can be greatly reduced by flexibility. Indeed, for

$100/ton-CO2 and $150/ton-CO2 price scenarios, increased flexibility leads to relative cost

reductions of up to 4.9% and 8.9%, respectively. This indicates that an MES operator should

seek to strategically increase the coupling between heating, cooling, and electric demands in

case of a carbon pricing and leverage building flexibility.

Table 11 shows the percentage reduction in CO2 from positive carbon pricing policies

relative to the nominal flexibility-only case. That is, a value of 0% represents that for

fixed flexibility value, θFlex, that the $0/ton-CO2alone scenario can achieve the same CO2

reduction as with a carbon price. Clearly, flexibility significantly reduces the gap between

having and not having a carbon price policy (or tax) in place. In fact, it is important to point

out that (1) flexibility alone can significantly reduce CO2 emissions without a carbon tax

and (2) with a carbon tax, flexibility can reduce the cost of implementing the policy. This is
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an important outcome from this paper and shows that for a MES, like the one in Vermont,

where electricity is already clean, thermal flexibility alone can have similar impact to a carbon

tax. And this system is not particularly complex (i.e., limited options for dispatching assets),

which highlights the need to further study (analytically and experimentally) this relationship

between beneficial electrification, smart buildings (and thermal storage), and the impact of

a carbon tax.

Table 11: Comparing carbon tax with no tax for Summer scenario (% CO2 reduction)

Flexibility 1 3 5 10 20

$0/ton-CO2 0 0 0 0 0
$100/ton-CO2 11.8 11.1 10.8 1.7 0.8
$150/ton-CO2 22.2 19.8 16.5 11.5 9.3

Table 12: Relative CO2 reductions (%)

Flexibility 1 3 5 10 20

Winter

$0/ton-CO2 0 0.5 0.7 1.0 1.5
$100/ton-CO2 0 0.5 0.7 1.0 1.5
$150/ton-CO2 0 0.5 0.7 1.0 1.5

$2000/ton-CO2 0 0.5 0.7 1.0 1.4

Summer

$0/ton-CO2 0 1.5 2.6 4.4 7.4
$100/ton-CO2 0 0.9 1.8 -1.6 1.1
$150/ton-CO2 0 -2.4 -7.1 -12.9 -11.7

$2000/ton-CO2 0 0.4 0.1 4.2 11.5

Shoulder
$0/ton-CO2 0 0.9 1.3 1.7 2.3

$100/ton-CO2 0 0.9 1.3 1.7 2.3
$150/ton-CO2 0 0.9 1.3 1.7 2.3

$2000/ton-CO2 0 2.2 3.7 5.2 6.8

Table 13: Relative costs reductions (%)

Flexibility 1 3 5 10 20

Winter

$0/ton-CO2 0 0.4 0.4 0.7 1.0
$100/ton-CO2 0 0.4 0.4 0.7 1.0
$150/ton-CO2 0 0.4 0.4 0.7 1.0
$2000/ton-CO2 0 0.1 0.1 0.7 0.2

Summer

$0/ton-CO2 0 0.7 1.2 2.1 3.5
$100/ton-CO2 0 0.6 1.1 3.3 4.9
$150/ton-CO2 0 1.5 4.0 7.2 8.9
$2000/ton-CO2 0 1.9 4.8 6.6 8.3

Shoulder
$0/ton-CO2 0 0.7 1.1 1.4 1.9

$100/ton-CO2 0 0.8 1.1 1.4 1.9
$150/ton-CO2 0 0.8 1.1 1.4 1.9
$2000/ton-CO2 0 0.5 0.9 1.3 1.7

Unlike Table 11, which compares the effect of carbon pricing on CO2 emissions, Tables 12

and 13 show the relative impact of increased flexibility in reducing CO2 emissions and energy

costs for all four different carbon pricing policies. Interestingly, these results show that

increased flexibility uniformly reduces economic costs (i.e., each row has increased reductions

from left to right). This is because flexibility is used to co-optimize energy and carbon to

minimize overall costs. More importantly, the results also indicate that flexibility alone

(without carbon tax) reduces CO2 emissions for each carbon tax scenario (as illustrated in

Figs. 7(Left)-9(Left)). Indeed, outside of the Summer scenario, we see that flexibility may

be a useful mechanism to reduce both economic costs and emissions in a Vermont MES. For

the summer, the flexibility is used to drive down costs by emitting > 10% extra CO2 to

reduce energy costs by > 7% for the $150 per ton-CO2 price scenario. The $100/ton-CO2

case achieves a reduction in emissions and economics of 1.1% and 4.9%, respectively, from

extreme (20◦F) flexibility. Impressively, thermal flexibility in the Summer sees significant

emission (4−12%) and economic (≈ 8%) gains in the case of extreme ($2000) carbon pricing.

Thermal flexibility alters how the MES chooses to dispatch its assets. Next, we consider

the optimized asset dispatch (i.e., actual optimal solution) for the specific scenario with
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$0/ton-CO2 carbon price for a weekday’s demand in each of the three seasons and for the

two building flexibilities 1◦F (None) and 20◦F (Extreme). Figure 10 shows the ambient

(exogenous input) and internal (optimized) temperature of the buildings in the Winter while

Figs. 11 show the optimized electric and heating sources and conversions, including the

flexible buildings’ optimized heating building load. Note that the difference between electric

demand and electric supply (i.e., CHP and grid imports) is made up by the battery, which

charges when “Net battery” is negative and discharges when positive. Also, the CHP is

allowed to vent steam, which is treated as a load as illustrated in Fig. 13a around hour 5.

Additional results are presented for Summer and Shoulder seasons in Figs. 12-15. Note

that Summer includes another figure on cooling sources, which are used to pre-position

energy in the building with the chillers output. The Shoulder season operates in a similar

manner to Winter. The key to the economic and emission improvement gains in the Summer

simulation with flexibility is from greatly improved efficiency. Notice that both heating and

cooling in Fig. 13c and 13e operate during most of the day but on the lower end of their

range (i.e., the low, inefficient 0.1-0.2 MMBtu/hr range of operations) when no flexibility

is available. However, with flexibility, heating and cooling moves to sporading, but much

more efficient operating points (i.e., the high, 0.5 MMBtu/hr range per device). While the

sporadic dispatch incurs additional startup costs, they are much smaller than the efficiency

gains.

Remark (Flexibility and ramping). The MILP formulation includes ramp-rate limits on

energy converters to limit excessive ramping, which, in practice, reduces efficiency, increases

wear and tear, and, thus, should be avoided. The ramp-rate limits were added (per plant

operator’s recommendations) to capture the effects of ramp-up limits and minimum start-up

time for boilers, which is on the order of 15-30 minutes and necessary to build up pressure in

the boiler’s drum. Flexibility has interesting effects on the asset dispatch across the Winter,

Summer, and Shoulder periods. Without flexibility the assets have to responds rapidly to

changes in demand which increases ramping (and creates the spiky dispatch on the left side

of figures). The optimizer uses building flexibility to stage the equipment to avoid sudden

jumps and cycling.).
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(a) No flexibility (b) Extreme flexibility

Figure 10: Winter indoor and ambient temperatures

(a) Winter electric with no flexibility (b) Winter electric with high flexibility

(c) Winter heating with no flexibility (d) Winter heating with extreme flexibility

Figure 11: Optimal dispatch for winter

(a) No flexibility (b) Extreme flexibility

Figure 12: Summer indoor and ambient temperatures
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(a) Summer electric with no flexibility (b) Summer electric with extreme flexibility

(c) Summer heating with no flexibility (d) Summer electric with extreme flexibility

(e) Summer chillers with no flexibility (f) Summer chillers with extreme flexibility

Figure 13: Optimal dispatch for Summer

(a) No flexibility (b) Extreme flexibility

Figure 14: Shoulder indoor and ambient temperatures
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(a) Shoulder electric with no flexibility (b) Shoulder electric with extreme flexibility

(c) Shoulder heating with no flexibility (d) Shoulder heating with extreme flexibility

Figure 15: Optimal dispatch for Shoulder

Finally, it is worth pointing out that the amount of energy saved is relative to the ambient

temperature and the base amount of energy needed without flexibility. In winter, a 20 degree

increase in building flexibility (extreme) sees an equivalent of almost 80,000 BTUs of thermal

energy storage. While in the summer, 20 degrees of flexibility is the equivalent of reducing

load by 8,000 BTUs throughout the day.

Unfortunately, the building flexibility does not affect the electric supply side in Winter

and Shoulder seasons as evidenced by the identical dispatch of the CHP and battery and

import from the grid in Figs. 11a and 11b and Figs. 15c and 15d. Due to the rate structure’s

high demand charges and, as evidenced in Figs. 7(Right)-9(Right), the CHP is dispatched

for any realistic carbon price scenario. compared with natural gas, it will always be more

cost effective to run the CHP and use the battery to reduced peak usage as much as possible

independent of what happens on the cooling and heating side. The battery charges early

in the day (as negative electric supply in Figs. 13a and 13a) to then use the stored energy

during peak hours to cut the peak demand and usage from the grid, this is the largest cost

saver and the strategy does not change with added flexibility. This dispatch pattern might

tilt towards more flexible buildings and gas assets, if we changed BED’s electric supply from

100% renewable to, say, 50% renewable and applied a carbon-tax, which could now increase

the price of electricity substantially and make the electric battery too expensive to dispatch.

A large-scale sensitivity study along with this model could aid policy-maker rank a number

of policy-options by their effectiveness across the MES.
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4.2 The need for policy and flexible building technology

Under a carbon tax, the operation strategy for the MES does not change significantly since

the electric utility (i.e., electric supply) is 100% renewable.Further increasing the carbon tax

would eventually cause the system to switch to focus on mitigating natural gas consumption.

Increased flexibility means less cooling or heating is required thereby less resources are used

and, more importantly, the resources are used more efficiently to ensure less fuel is used

to supply demand. Furthermore adding more flexible buildings and electric heating to the

system would give the MES tool more options over which to optimize and costs and emissions

performance. However, adding more flexibility to the MES comes at the cost of convenience

to occupants, so there is a need to develop technologies that anonymously and autonomously

unlock flexibility without noticeably sacrificing comfort of the MES occupants. This puts

the onus on design and operation of modern buildings, especially those that are energy

conscious, to take full advantage of this intrinsic thermal storage to improve MES operations

and efficiency, reduce emissions further, and manage costs.

5 Conclusion and future work

In this paper, we aimed to identify the effects of flexibility within a Vermont-based MES.

The electric, heating, and cooling demand, as well as, thermal and physical parameters for

the equivalent building model were derived using historical MES data while the internal,

nonlinear energy processes that drive the results were modeled using PWL approximations

to estimate asset input-output performance. This MES was then formulated as a 24-hour,

day-ahead MILP planning problem with a resolution of 15-minute time-steps and tested

seasonally for different flexibility and carbon tax scenarios. It was then shown that increased

thermal flexibility not only reduces costs of operation but also can positively impact and

reduce emissions. For this reason, flexibility may be more valuable in Vermont (and other

high renewable electricity settings) than just a carbon tax, especially if the technology in

place or the building design is constructed in a manner that can take the advantage of

flexibility.

For future work, we seek to augment building data sets with time-series temperature data

and perform high-fidelity building validation across different thermal building models and

demonstrate the ability of flexibility to improve efficiency and study the effect on ramping and

cycling of assets. In addition, this paper indicated that Winter and Spring are too “inflexible”

in their MES capabilty and would benefit from electric-to-heat resources like heat-pumps and

hot water storage [24] to increase it’s ability to benefit from flexible buildings. We are also

interested to study how uncertainties in predicted demand and building model parameters
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affect the results and how a robust implementation may offer another avenue for directional

recommendation that does not negatively affecting occupants. Finally, we would be excited

to pursue testing with the physical plant division at the university to validate these results in

a realistic setting to quantify the CO2 reductions and savings possible with flexible buildings.
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