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A packetized energy management macromodel with
quality of service guarantees for demand-side resources

Luis A. Duffaut Espinosa, Member, IEEE, and Mads Almassalkhi, Senior Member, IEEE

Abstract—Using distributed energy resources (DERs), such as
thermostatically controlled loads (TCLs), electric vehicles (EVs), and
energy storage systems (ESSs) as a way to manage demand has been
known for decades. A demand management scheme that explicitly
considers the individual DER’s local quality of service (QoS) is
known as demand dispatch. Packetized energy management (PEM)
is a demand dispatch paradigm that borrows packet-based concepts
from wireless communications to dynamically manage fleets of DER
at-scale and in realtime via small, discrete fixed-duration/fixed-power
energy packets. PEM addresses QoS in a bottom-up fashion by
having a coordinator authorize/deny incoming requests from DERs
to consume energy packets. This manuscript extends prior work on
modeling a large-scale population (i.e., macro-model) of homogeneous
TCLs and ESSs operating under the PEM paradigm. In particular,
we extend the macro-model methodology to include deferrable
loads (DLs), such as EVs, together with analysis of QoS guarantees.
Comparisons between an agent-based (micro-model) simulation
and the proposed macro-model are presented to validate modeling
accuracy and QoS guarantees.

Index Terms—Distributed energy resources, packetized energy
management, demand dispatch, relay control, modeling.

ACRONYMS

CMC Controlled Markov chain
DER Distributed energy resource
DL Deferrable load
DR Driving mode
EWH Electric water heater
ESS Energy storage system
EV Electric vehicle
MTTR Mean time-to-request
PEM Packetized energy management
PRP Poisson rectangular pulse
PV Photo-voltaic
QoS Quality of service
SB Standby mode
SoC State of charge
TCL Thermostatically controlled load
VPP Virtual power plant

NOMENCLATURE

0N Zero matrix of sizeN-by-N .
IN Identity matrix of sizeN-by-N .
1N Column vector of ones of lengthN .
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βh Proportion of requests accepted for h∈{c,d}.
β−h Proportion of population in h∈{c,d} switching to

standby.
φn Switching mode of n-th DER.
mR Frequency that defines MTTR at the set point.
nc

r ,n
d
r Number of charge (c) or discharge requests (d).

ηsl,n,ηc,n
ηd,n

Standby, charging, and discharging energy loss
parameters of n-th DER.

Ni i-th Poisson process with parameter λi.
Ne Total number of DERs.
N (µ,σ) Normal distribution with mean µ and standard

deviation σ.
ph
ij Transition probability from bin i to bin j for a

specific h∈{c,sb,d}.
preq,h
i Request probability of standby states for h∈{c,d}.
P rate

c,n , P rate
d,n Energy transfer rates of the n-th DER when

charging (c) or discharging (d).
Pdem Aggregated demand power.
Pref Balancing signal or reference power.
qh Vector of population percentages for h∈{c,sb,d}.
uφn,n Power input of n-th DER.
wn End-user event process of n-th DER.
Xh Finite set of states with elements xih for h∈{c,sb,d}.
xp,h Timer state for charging (h = c) or discharging

(h=d) modes.
zn Dynamic state of n-th DER.
z+
n Dynamic state update of n-th DER.
zn,zn Lower and upper dynamic state boundaries.
zset
n Deadband set point of n-th DER.
zSB,zDR Standby (SB) and driving (DR) mode for EVs.

I. INTRODUCTION

Since the early 1980s, aggregated DERs have been known to be
capable of significant actuation in bulk power systems [1]. Yet, since
then, the technology deployment on this front has been underwhelm-
ing. However, recently, demand management has become the center-
piece of bold renewable portfolio standards as the means to integrate
large-scale, intermittent renewable generation. In [2], the authors
illustrate how fleets of DERs can be employed in transmission
and distribution system operations to manage the variability from
renewable generation and to provide relevant grid services. A fleet
of DERs in this context may consists of TCLs, such as electric water
heaters (EWHs), bidirectional ESSs, such as Enphase’s AC Batteries,
and DLs, such as EVs. These principles were expanded upon in [3]
where a state-bin transition (macro) model was developed for a fleet
of TCLs. The TCLs then transition probabilistically between ON and
OFF based on a broadcasted control signal. While this framework
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depends on solving a challenging state-estimation problem and may
not always be observable [4], it has been analyzed and extended
to include interesting use cases [5]–[7]. Related works with state
bin transition models of TCLs has also focused on higher order
models [8], and compressor constraints [9], and analyzing the
aggregation abstraction error for populations of TCLs [10].

Ineffective management of QoS will drive DER owners (i.e.,
humans) to permanently opt-out of the scheme, which reduces the
availability of flexible resources and limits the long-term viability
of DER coordination programs. A demand management scheme
that explicitly considers QoS is known as demand dispatch [11].
The work based on [4] employs a novel mean-field model that via
linearizations can be well-approximated by a single-input, single-
output (SISO) model for fleets of pool pumps, fleets of TCLs, and
fleets of ESSs [12]. The demand dispatch approach then broadcasts
a single scalar control signal that perturbs the transition probabilities
of all DERs of the same type (from a given baseline) and uses
measured power of the fleet as feedback. This line of work has since
been expanded to include opt-out control to improve QoS [13] and
device-level filter design to consider heterogeneity in the fleet [14].

This manuscript focuses on a demand dispatch framework that
uses low-bandwidth, bidirectional communications between a
device and the coordinator and also includes QoS guarantees via
opt-out control. It is called packetized energy management (PEM)
[15]–[18]. PEM leverages packet-based strategies from random
access communication channels that have previously been applied to
the distributed management of wireless sensor networks (i.e., similar
to ALOHA protocol, but with multiple channels). PEM enables the
delivery of energy to DERs via multiple fixed-duration/fixed-power
(charging or discharging) energy packets, similar to how digital
communication networks enable the transmission of small, kB-scale
data packets rather than bulky files. Unlike other approaches, PEM
is device-driven and does not broadcast a control signal to all DERs.
Instead, PEM, in bottom-up fashion, is designed to have each DER
probabilistically request an energy packet from the coordinator
based on the DER’s local need for energy. This gives the coordinator
the ability to respond in realtime to incoming (asynchronous)
packet request based on grid and/or market conditions. Other
work related to packet-based coordination is [19], where a packet
control algorithm is proposed that requires just binary information
from each DER at each time instant (in bottom-up fashion) and
with the drawbacks of synchronized packet acceptances and the
need for continuously queuing packet requests, which serves as
memory but creates delays in service. This manuscript presents a
complete macro-model for PEM for diverse demand-side resources.
Specifically, the technical contributions are:
i. Generalized modeling of DER end-user events is presented in

the form of Poisson rectangular pulses (PRPs) and analysis
provides key event statistics that are used to improve modeling
of transition probabilities.

ii. Development of a generalized bin transition macro-model of
a fleet of diverse DERs under PEM. Unlike the authors’ prior
work in [16], this macro-model is now able to describe a
fleet of packetized EV chargers by including a new explicit
embedding for uncontrollable transitions between modes of
operation, such as “driving” and “charging.”

iii. Analysis of QoS guarantees are provided by including opt-out
dynamics and bounds on uncontrollable end-user events.

iv. Simulation-based analysis provides validation of the macro-
model with deferrable loads and QoS results.

The manuscript is organized as follows. Section II provides a re-
view of PEM fundamentals. In Section III, a description of end-user
events for DERs is given and it is followed by the development of a
bin transition Markov model for PEM. Section IV presents analysis
of QoS guarantees under PEM with particular emphasis on the case
of DLs, such as EVs. The conclusions are given in the final section.

II. FUNDAMENTALS OF PACKETIZED ENERGY MANAGEMENT

The following high-level description summarizes the bottom-up
approach that is PEM and is detailed in [15], [16]:
i) A DER estimates its local state of charge, SoC.
ii) If the SoC is within a predefined range of comfort, the DER,

based on its state, probabilistically requests to consume energy
from the grid at a fixed rate (e.g., 4kW) for a pre-specified
epoch (e.g., 5 minutes) to beget an energy packet (e.g., 0.33
kWh). If the SoC exceeds a local pre-defined range (e.g., too
low), the DER automatically opts out of PEM (to guarantee
QoS) and reverts to a default control mode (e.g., charges) until
the SoC is returned within limits when it opts back into to PEM.

iii) If a request is received, the coordinator or Virtual Power Plant
(VPP) either accepts or denies the DER’s packet request based
on grid or market conditions. If the request is denied, go to
i). If the request is accepted, consume the energy packet and
then go to i).

The above scheme can ensure consumer’s QoS for a heterogeneous
fleet of electric water heaters by including the opt-out control when
the SoC falls below a certain pre-defined threshold. At the same
time, randomization is injected to the request rule based on the local
SoC, which limits synchronization and promotes equitable access
to the grid. Figure 1 illustrates the closed-loop system under PEM.

Fig. 1. Closed-loop feedback system for PEM with Pref provided by the grid or
market operator and the aggregate net-load Pdem measured by VPP.

In a fleet of diverse DERs, the general discrete-time dynamic
model for the n-th DER having SoC zn is given by

z+
n =fn(zn,φn,P

rate
c,n ,P

rate
d,n ,wn), (1)

where fn is a one-dimensional mapping (usually linear or bilinear),
wn is the parameter mapping end-consumer usage to the energy
state, P rate

c,n and P rate
d,n are the energy transfer rates of the n-th DER

when charging (c) or discharging (d), respectively, and φn is the
hybrid state of the DER dynamics. Here φn take values in the
set {c,sb,d} that corresponds to the {charge, standby, discharge}
modes, respectively [15], [16]. In this manuscript, the focus is on
EWHs, ESSs, and EVs (as deferrable loads). The latter represents
the first instance of EVs for a PEM macromodel.
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Since EWHs were presented in [15], [16], consider (1) for an
ESS with background power usage wn∈R and charge (discharge)
rate limits of P rate

c,n (P rate
d,n )>0. Then,

z+
n =ηsl,nzn+uφn,nηφn,n+wn, (2)

where uφn,n is P rate
c,n for φn = c, −P rate

d,n for φn = d and 0 for
φn = sb in [kW], and ηsl,n, ηc,n, and ηd,n are the standing losses,
charging, and discharging parameters, respectively. Herein, an
ESS is modeled as a bidirectional battery, in which, simultaneous
charging and discharging are not possible. Figure 2 illustrates the
ESS probabilistic request mechanism.

In a similar manner, an EV is modeled as an ESS, however,
driving is assumed the only means of discharging1. Therefore, EVs
are modeled as in (2), where φn ∈ {c,sb,d} is the hybrid state
corresponding to charge/standby/driving, respectively, uφn,n=P rate

c,n
[kW] is the control input equal to the EV’s charging rate when
φn = c and uφn,n = 0, otherwise. A key difference between
ESSs and EVs is that wn is dependent on φn. That is, wn=0 for
φn={c,sb} and wn 6=0 is the power consumed by the EV’s battery
when driving (φn=d). Given that the timescale of interest in this
work is hours and minutes, EVs in this manuscript assumes no stand-
ing losses (i.e., ηsl,n=1). Since we will be modeling a population
of EVs, we employ the simplifying assumption that the (average)
discharging rate, wn, is a constant value based on the notion of the
(average) driving speed of EVs. For example, at a speed of 50mph,
the discharging rate is approximately 7kW, which provides 3 hours
(or ca. 150 miles) of continuous driving for a battery with capacity of
22.5kWh, which is reasonable on average [20]. This assumption can
be relaxed by considering a distribution of driving rates rather and is
a topic for ongoing work and outside the scope of this manuscript.

In this context, the discrete-time implementation of PEM assigns
a probability of requesting access to the grid to the packetized load
n based on its local SoC zn[k] ∈ [zn,zn] and desired set-point
zset
n ∈ (zn,zn) during time-step k (over interval ∆t). This request

probability has been defined by the cumulative exponential distribu-
tion function, P(zn[k]):=1−e−µ(zn[k])∆t, where the rate parame-
ter µ(zn[k])>0 is dependent on the SoC. Denoting by P h

k(n|Q) the
probability that DER n requests a packet for consumption (h = c) or
injection (h = d) given conditionQ is satisfied. While any request
probability function would suffice, the key is a mapping of the SoC
to the request probability that considers the boundary conditions:
i) P c

k(n|zn[k]≤zn)=1 ∧ P d
k(n|zn[k]≥zn)=0,

ii) P d
k(n|zn[k]≤zn)=0 ∧ P d

k(n|zn[k]≥zn)=1,

from which i) gives rise to the following helpful design of µ(zn[k])
for consuming a packet:

µ(zn[k])

=


0, if zn[k]≥zn
mR

(
zn−zn[k]
zn[k]−zn

)
·
(
zset
n−zn
zn−zset

n

)
, if zn[k]∈(zn,zn)

∞, if zn[k]≤zn

(3)

where mR > 0 [Hz] is a design parameter that defines the mean
time-to-request (MTTR) at zset

n . For example, if one desires a MTTR
of 5 minutes when zn[k]≡ zset

n then mR = 1
300Hz. The design of

µ(zn[k]) for injecting a packet is described in similar fashion, but

1We do not consider Vehicle-to-Grid (V2G) capability in this model, but could
be included in future work.

with boundary conditions ii) above. Figure 2 maps boundary condi-
tions to charging and discharging packet requests. Next, we present
a general model for DER end-use events, which is then embedded in
a state bin transition model for PEM for a large population of DERs.

discharge

Fig. 2. Illustrating the charge/discharge energy packet request rates and MTTR for
a generic packetized DER. Note that (3) is represented by the blue line (left to right
top plot). Top plot gives the effect of local state zn (e.g., state-of-charge) on the
packet request probabilities and bottom plot provides the corresponding MTTR of
a packetized DER under PEM.

III. STATE TRANSITION MODEL UNDER END-USER EVENTS

This section develops a state bin transition macro-model for a
large population of packetized DERs, which explicitly captures the
unique packet request-notification dynamics inherent to PEM. In
particular, the cases for TCLs, ESSs and EVs are provided. A macro-
model for a diverse population of multiple DER types with charging
and discharging is comprised of a finite number of homogeneous
populations of DERs coordinated under the same VPP. However,
each class of DERs is affected by different types of end-user
events, which makes the aggregation of homogeneous DERs behave
differently depending upon the DER class. Therefore, discussion is
initially focused on the modeling of end-user events: hot water usage,
unscheduled power consumption/injection, and driving behavior.

A. Modeling end-user events for DERs

The end-user events are uncontrollable and modeled employing
a simple birth/death stochastic differential equation for the process,
wn(t). In this regard, the main assumption for choosing a user model
is that water consumption starts with certain probability and stops
with another. If one thinks of starting (stopping) water events as
independent from each other, then a reasonable assumption is that
these occur with an exponentially distributed inter-arrival time. This
amounts to a Poisson process for starting water events and another
for stopping water events. The parameters of these two processes
can be chosen so that the average time between start and stop events
is related to the average historical usage at some time during a 24-
hour period. These assumptions permit to formulate a model for a
process of this kind in a manner that the aggregate statistics of the
aggregation of a number of these processes can be computed analyt-
ically. For the sake of simplicity, the 24-hour variation is neglected
in our simulations, however, the intensity of usage is modeled with
an appropriate random variable whose mean is fixed. To clarify
notation, the subscript n is omitted hereafter as this section focuses
on a single DER at first (and later we extend to a population average).
Assume that there exists an appropriate probability space (Ω,P,F),
where Ω is the set of events, F a filtration, and P the probability
measure of elements in F. For this purpose, a Poisson rectangular
pulse (PRP) stochastic differential model is employed [21]. That is,

dw(t)=(v(t)−w(t))dN1(t)−w(t)dN2(t), (4)
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whereN1 (N2) is an independent, stationary Poisson point process
with constant rate parameter λ1 (λ2), representing the starting
(stopping) of a random end-user event and v(t) is a random variable
independent of N1 and N2 that describes the intensity of the
end-user event and is appropriate for the type of DER under study.
For example, with an ESS, v may have a symmetric probability
density function with mean approximately zero and with an EV,
driving behavior can be approximated as (4) with v as a random
variable corresponding to the driving speed of the EV. However,
EVs are considered a special type of DER in that they become
unavailable to PEM when driving. This means that when an EV
end-user event occurs the EV’s hybrid state change from sb to d,
and when driving concludes d to sb. This mobility is a fundamental
feature that differentiates EVs from other DERs.

The statistics of the aggregated behavior of end-user events are
employed in the next section for the computation of the (average)
transition probabilities for a fleet of DERs.

1) TCL and ESS populations: A reasonable assumption is that
the end-user event for each DER are independent and identically
distributed random processes. Denote the expected value of the
random process w as w̄(t) := E[w(t)]. Due to the assumed
independence of the processes N1, N2 and v in time, one can
compute the expected end-user event for each DER as

dw̄(t)

dt
=(v̄(t)−w̄(t))λ1+w̄(t)λ2. (5)

The solution of (5) when w(0)=0 is

w̄(t)=E[v]
λ1

λ1+λ2
(1−exp(−(λ1+λ2)t))

The expected event reaches steady state as t goes to infinity. Hence,
the mean of end-user event in steady state is

w̄sst := lim
t→∞

w̄(t)=
E[v]λ1

λ1+λ2
. (6)

The next theorem describes the probability distribution of these
events as the number of devices increases.

Theorem 1: The steady-state aggregation of individual end-user
events, w̄sst, is distributed as N (µw,σw/

√
Ne), where Ne is the

total number of end-user event processes and µw and σw are the
corresponding expected value and standard deviation of the process
w in steady state.
Proof: The proof is based on deriving the differential equation for
the characteristic function of w in (4) from a direct application of
the Itô chain rule for jump processes [22]. Let Fκ(w)=eiκw, then

deiκw=(Fκ(v)−Fκ(w))dN1+(1−Fκ(w))dN2.

By definition, the characteristic function of w is given by
E[Fκ(w)]=:Ψw(κ,t) andE[Ni(t)]=λi. It then follows that

dΨw(κ,t)

dt
=Ψv(κ,t)λ1+λ2−Ψw(κ,t)(λ1+λ2). (7)

In steady state, dΨw(κ,t)
dt =0. Thus,

Ψw(κ,∞)=
λ2+Ψv(κ)λ1

(λ1+λ2)
.

Clearly, the moments of w in steady state can be obtained by
computingE[wn]=(−i)ndΨw(κ,∞)/dt|κ=0. A direct application
of the central limit theorem for i.i.d random variables completes the

proof given that in steady state all end-user events are independent of
each other and identically distributed with the distribution associated
to the solution of (7). Hence one can consider, on average, that a
single DER is driven by a process w̄∼N (µw,σw).

The previous theorem simply states that the aggregation of PRP
realizations behaves on average as a Gaussian process. It also allows
the computation of PRP aggregation statistics, which is illustrated
next in Example 1.

Example 1: If v∼exp(λ), then µw =λp and σw =λ
√

2p−p2,
where p := λ1

λ1+λ2
. In Figure 3, the average of 2000 water usage

profiles generated following (4) is compared against the aggregation
model given by Theorem 1 with λ = 2.1 liters per minute,
λ1 =1/3600 sec−1 and λ2 =1/800 sec−1. In this particular case,
the mean and standard deviation of the aggregated PRP are 0.3868
and 0.0382, respectively. Using Theorem 1 gives a mean of 0.3818
and standard deviation of 0.0369, which is very close for a small
population of 2000. Hence one can consider, on average, that a
single DER is driven by a process w̄∼N (µw,σw).

0 500 1000 1500 2000 2500 3000 3500
0

5

10

0 100 200 300 400 500 600

0

0.2

0.4

0.6

Fig. 3. PRP simulation. (Top) Realization of one PRP using (4). (Bottom) Average
of 2000 end-user events modeled by PRPs compared against the aggregation given
in Theorem 1 with same parameters as in Example 1.

2) EV population: The modeling of the aggregated behavior
of EVs includes the (mobility) transitions from standby to driving
(SB→DR) and driving to standby (DR→SB). The EV driver
model consists of a two-state Markov chain and is illustrated in
Fig. 4 with p1 the probability of going from SB to DR and p2 the
probability of going from DR to SB. It is assumed that the driving
model is independent of the energy state of the EV population, which
simplifies integration of this model together with the population
model described in the subsequent section. More complex driver
models could be developed and integrated with a PEM macromodel,
but such detailed EV driver models are considered outside the scope
of this manuscript.

Many useful and simple EV driving metrics, such as average
standby and driving times, can be derived from this model. In this
regard, a discrete-time model for only the driving behavior of EVs,
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with time step ∆t , is given byzSB[k+1]

zDR[k+1]

=

1−p1 p2

p1 1−p2

zSB[k]

zDR[k]

. (8)

Clearly, this model permits a non-trivial, unique stationary
distribution for probabilities p1 and p2. The stationary distribution
provides the averaged occupancy of each state, which is the
percentage of the EVs that, on average, are either in zSB or zDR.
Moreover, p1 and p2 can be chosen from driving data [20], as
in Fig. 4b). For example, from this data set, the average driving
duration in urban cities is about 30 minutes, which is what we use in
this manuscript. That is, if π=(πzSB,πzDR)> denotes such stationary
distribution, then one has that πzSB = p2

p1+p2
and πzDR = p1

p1+p2
. Here

the occupancy of the standby states is provided by πSB, and the
occupancy of the driving states is provided by πDR. The number
of time steps that an EV spends driving (also known as sojourn
time) is computed from the transition probability in (8). Denote
with ψ(zDR) the expected number of time steps needed to reach
state zSB given that one starts in zDR and ψ(zSB) if one were to
start in state zSB. Forcing the state zSB to be absorbing, it follows
that ψ(zSB)=0 and ψ(zDR)=1+(1−p2)ψ(zDR), which provides
ψ(zDR)=1/p2. Thus, p2 describes how many time steps an average
EV stays in driving mode, and the actual expected time spent in
driving mode is trivially tzDR =ψ(zDR)∆t=∆t/p2.

Example 2: Consider an EV population where the data shows
that the expected time spent driving is 30 minutes, then p2 =1/120
for ∆t=15 sec. Since the occupancy of the driving state is given by
πzDR , one has that p1 =p2(1/πzDR−1)≈0.00092 for an occupancy
of the driving state of πzDR =0.1.

Fig. 4. a) Simple driving model. zSB is the state in which an EV is in standby mode,
and zDR is the state representing when an EV is in driving mode. b) NHTS data
indicating the average number of arrivals and departures over a 24 hour period [20].

B. Dynamics of State Bin Transitions

In this section, end-user event models are embedded into the state
bin transition description. Consider a population of DERs obeying
some dynamical equation (1) and with common underlying state
space. To create a finite state abstraction (i.e., a macro-model) of
the entire population’s evolution, the state space is discretized in
a manner that the main features of the system are preserved and
the system as a whole is such that the effects of an individual DER
is negligible with respect to the average behavior [23]. Clearly, the
spatial and temporal discretization strongly affects the modeling the
aggregated dynamics [24], [25]. Therefore, in this manuscript, an
appropriate discretization time step ∆t (used to obtain the discrete
model (1)) was chosen so that it is ensured that only contiguous
bin transitions occur [26]. Note that the approach described below
has the capability of overcoming such restriction. The focus of this
manuscript is on DERs that have hybrid one dimensional dynamics
as in (1). More specifically, an interval [z,z] within Z is divided

into N consecutive bins each corresponding to a bin state in X̄ ,
where xi ∈ X̄ corresponds to the interval [zi−1,zi[⊂ [z,z]. Since
(1) includes three types of dynamics (charge/standby/discharge)2,
the state space for the system consists of the union of the full state
space given by X =Xc∪Xsb∪Xd. At time k, the probability mass
function of the system is q>=(q>c ,q

>
sb,q
>
d ) with qh =(q1

h ,···,qNh )>

for h = {c, sb, d}. Note that q contains the percentage of the
population in each state of X . For example, if Ne is the total
number of DERs andN i

e,c is the number of devices in state xic, then
N i
e,c =qicNe. Similarly, the percentage of Ne that is charging and

discharging, and the total power of the system are

yc =ccq, yd =cdq, and y=cq, (9)

where cc = (1>N , 0 ··· 0) ∈ R3N , cd = (0 ··· 0, 1>N) ∈ R3N ,
c=NeP

rate(cc−cd)∈R3N , 1N = (1,...,1)> ∈RN , and P rate is
the average power consumption by the DERs. If the transition
probability between bins qi and qj in q is denoted as pij and
M={pij}i,j=1,...,3N , it then follows that

q[k+1]=Mq[k], (10)

which represents the dynamics of a Markov chain.
The transition rates pij are computed explicitly by considering

how the dynamic state interval corresponding to a particular bin state
is altered by the DER hybrid dynamics. Recall that the main factor af-

Fig. 5. Typical transition rate calculation for charging, standby and discharging states.

fecting these transition rates is the background usage of DERs by the
end-user as modeled in Section III-A with a generic birth and death
process. For EVs, the Markov chain (8) is embedded intoM in (10)
by setting the transition xisb∈Xsb→xid∈Xd to p1 and xid∈Xd→
xisb ∈Xsb to p2 for all i. The above assumes that driving patterns
are independent of the EV’s SoC, however, one can add energy-
dependent transitions, p1(xisb) and p2(xid), based on available data.

Figure 5 provides a simple illustration of how a (uniformly
distributed) probability mass in an arbitrary state shifts after ∆t time
as a function of a DER’s dynamics for the hybrid states, c, sb and
d, which in this manuscript follow either (1) or (2) and with respect
to the average end-user event of the corresponding population.
More specifically and dropping the subscript n, denote the solution
of (1) with respect to the hybrid state h ∈ {c,sb,d} and initial

2The ON/OFF dynamics of (1) can be seen as charging/standby dynamics with a
disconnected/inaccessible and trivial discharging dynamics, and the driving dynamics
of EVs simply corresponds to uncontrollable discharging dynamics.
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condition z0 at time k by the mappings Φc
z0(k,w)=Φz0(k,w)|h=c,

Φsb
z0(k,w)=Φz0(k,w)|h=sb and Φd

z0(k,w)=Φz0(k,w)|h=d. LetW
be the average end-user event resulting from the aggregation of pro-
cesses satisfying (4). One can show thatW is a process comprised
of normally distributed random variables having parameters µW
(mean) and σW (standard deviation). In addition, if PW (w) denotes
the occurrence probability ofW=w with w∈ [w,w]3, then P(z=
Φh
z0(t,w)) = PW (w). Therefore, one can map any z0 ∈ [zi−1,zi]

(interval corresponding to bin i) through Φh
z0(t,w) with h∈{c,sb,d}

for all w∈ [w,w]. The mapping gives as an outcome the dynamic
state of the DER after naturally evolving for k∆t seconds. Repeating
this procedure for all z0∈ [zi−1,zi] and normalizing the resulting
histogram of dynamic state outcomes gives the t-seconds-ahead
distribution of the ith bin. The transition probability from bin i to
bin j at an specific hybrid state h∈ {c,sb,d}, ph

ij, is then simply
the probability mass that started entirely in bin i and after t seconds
now overlaps with bin j. This procedure makes the bin transition
probabilities a function of the statistics of the end-user events. The
work in [16], [17] lack such feature and assumed that transitions only
occurred between contiguous bin intervals. Therefore, there was an
apparent mismatch from what the aggregated model produced in re-
lation to what an agent based simulation provided under stressed con-
ditions. Observe that a DER population does not transition to higher
states, as expected, when h={sb,d} since no energy is injected into
DERs while in these modes. For instance, (1) and (2) are driven by
non-negative energy losses or zero-mean bounded damping terms,
thus the only way these can increase their SoC is by charging.

C. The State Bin Model for Conventional DER Dynamics

Without coordination schemes, such as PEM, the DERs nomi-
nally operate based on (conventional) decentralized control logic
that is specific to each DER type. For example conventional TCLs
operate under hysteretic control, which is based on keeping the local
state variable (e.g., temperature) within a dead-band [z,z] of width
zDB and set point zset∈ [z,z]. More precisely, a conventional TCL
transitions to the c state only when z≤z, transitions to sb from a d
state only when z≤z, and transitions to sb from a c state when z≥z.
Clearly, the TLCs’ discharging states are unreachable since a TCL
cannot actively inject power into the grid. Similarly, conventional EV
or ESS control logic can be mapped to a state bin model to consider
an EVs’ charge-upon-arrival rule and average driving behavior and
an ESSs’ solar PV net-metering tariff. Thus, the associated Markov
transition matrixM for a fleet of DERs in (10) can be described by
the following nominal, autonomous (uncoordinated) dynamics:

M :=

 Mc Mc,sb 0N

Msb,c Msb Md,sb

0N Msb,d Md

, (11)

where 0N denotes the N-dimensional zero matrix and Mh, for
h∈{c,sb,d}, is a multi-diagonal matrix containing the probabilities
of staying, going to higher energy states, and going to lower energy
states. Similarly, Mc,sb and Msb,c are responsible for transferring
DERs that exceeds z from c to sb and any DERs that fall below
z from sb to c, respectively. Finally, Md,sb and Msb,d provide the
transition probabilities from d to sb and from sb to d including the
probabilities of uncontrollable transition events following some

3In reality,W is lower (upper) bounded by some fixed valuesw (w).

model comparable to the one described for EVs in Section III-A.
Observe that, by design, the Markov chain associated with M is
irreducible since one can reach any state from any arbitrarily chosen
initial state and is aperiodic due to every state having self-loops.
It follows then that this abstraction possesses a unique invariant
distribution since X is finite dimensional. Next, we augment the
hysteretic control scheme with the probabilistic transitions and
opt-out control inherent to PEM as discussed in Section II.

D. The State Bin Model for Packetized Energy Management

Under PEM, a DER can only switch to charging/discharging
modes for an epoch if the corresponding charging/discharging
packet request is accepted by the coordinator (i.e., VPP). To capture
the unique nature of PEM’s fixed packet duration and the VPP’s
role in authorizing/denying packet requests, we leverage prior
literature on fault-tolerant recovery logic [27] and TCL modeling
with compressor lockout periods [9]. In this subsection, earlier work
on modeling PEM in [16] is adapted and extended to consider EVs.
PEM coordination can be described as a controlled Markov chain.

Definition 1: Let {uk}k≥0 be a sequence of real valued functions
taking values on a set U . A Markov chain {Xk}k≥0 is said to
be a controlled Markov chain (CMC) if its transition matrix
M(u):={qij(u)}1≤i,j≤N satisfies

P(Xn+1 =xin+1|Xn=xin,...,X0 =xi0,un,···,u0)

=P(Xn+1 =xin+1|Xn=xin,un)=pin+1in(un).

Note that the resulting matrix M(u) must be a (column)
stochastic matrix for any choice of u ∈ U . As usual, the prob-
ability mass function of a CMC is computed similarly using
q[k + 1] = M(u[k])q[k] given an initial distribution q[0] and
control policy u(x)[k] : X → U for k = 0,1,.... The underlying
transition matrix over which PEM is implemented is (11), but
with Msb,c =Mc,sb =0N and Msb,d and Md,sb accounting only for
uncontrollable transitions. In this section, our model assumes that
any DER in the top/bottom states in Xc, Xsb and Xd that transitions
in the next time step outside of [z,z] will remain in those top/bottom
states. This assumption is relaxed in the next section where the opt-
out mechanism is introduced in order to avoid using absorbing states.

Before detailing the PEM request coordination mechanism,
consider the following CMC with controlled transition rates
βh = diag{β1

h , ... , β
N
h } with βih ∈ [0,1] and h ∈ {c,d} as the

percentage of the standby population in state xisb that transitions to
charge/discharge and βh,sb =diag{β1

h,sb,...,β
N
h,sb} with βih,sb∈ [0,1]

and h∈{c,d} the percentage of the charging/discharging population
in state xih that transitions to standby. The relative transition rates
of charging, discharging and standby devices to a different state
in q is then given by the transformation:

q̄[k]=M̄(β[k],βsb[k]) q[k], (12)

where β :=(βc,βd)
>, βsb :=(βc,sb,βd,sb)

>, and

M̄(β,βsb):=

 IN−βc,sb βc 0N

βc,sb IN−βc−βd βd,sb

0N βd IN−βd,sb

, (13)

where IN denotes the N-dimensional identity matrix.
Once M̄(β, βsb) has switched some DERs to a new
charge/standby/discharge mode, the matrix M makes the
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DERs in q̄ evolve with the natural dynamics inside each mode of
operation. It then follows that

q[k+1]=Mq̄[k]=MM̄(β,βsb)q[k], (14)

which is a CMC as shown by the next theorem.
Theorem 2: Let β[k], βsb[k] ∈ R2N×N be defined as in (12)
∀k ≥ 0. The sequence {Xk}k≥0 of random variables Xk taking
values in X and probability distribution satisfying (14) is a
controlled Markov chain as described by Definition 1 with input
u[k]=(1>2Nβ[k],1>2Nβsb[k])>∈R4N .
Proof: The proof is straightforward since matrices (11) and (13)
are stochastic for any choice of β,βsb, and the product of stochastic
matrices is a stochastic matrix.

The details of PEM model are provided next in a manner that,
when applying Theorem 2, it is concluded that the resulting PEM
model is a CMC. Unlike the CMC in (14), the PEM scheme is based
on charging and discharging requests coming from the standby
population as a function of bin state (e.g., based on temperature for
TCLs and state-of-charge for ESSs and EVs). Thus, the number
of charging and discharging requests are paramount for modeling
DERs in PEM. Define

q+
h [k] :=Treq,hqsb[k] (15)

where Treq,h = diag{preq,h
1 , ... , preq,h

N }, p
req,h
i := 1 − e−µh(Z

m
i )∆t

is the request probability assigned to xisb by (3) with respect
to the mid-point of state bin i and h = {c, d}. The number
of charging/discharging requests received by the VPP is then
nh
r[k] :=1>Nq

+
h [k]. It is assumed that each bidirectional ESS cannot

request to both charge and discharge at the same time. This implies
that if both packet types were requested during time-step k, they
cancel each other out and no request is made. Therefore, for each
individual DER, since a charging and a discharging request occur
independently: Treq,c and Treq,d are replaced in (15) by

Treq,c,Cd
=Treq,c(IN−Treq,d) and Treq,d,Cc

=Treq,d(IN−Treq,c),

respectively. Thus, under PEM, the VPP determines the proportion
of accepted charging/discharging packets (βc[k] for charging and
βd[k] for discharging). Upon a packet being accepted by the VPP,
the DER transitions to the new state.

Due to the pre-determined duration of packets, the model needs
to capture the dynamics of the active and expiring packets from the
charging and discharging populations, which introduces two sets
of timer states. That is, given a packet epoch δ, the sampling time
step ∆t, and two timer states vectors xp,h∈Rnp with np=bδ/∆tc
and h={c,d}, the timer dynamics are given by

xp,h[k+1]=Mp,hxp,h[k]+Cp,hβhq
+
h [k], (16)

where Cp,h ∈ Rnp×N is responsible for allocating the
new charge/discharge population into their corresponding
charge/discharge timer states. In reference to the matrix Cp,h, for
any DER whose packet is accepted, there is a state zc (zd) such that
Φc
zc

(δ) = z (Φd
zd

(δ) = z). Therefore Cp,c (Cp,d) interrupts packets
to prevent exceeding z (falling below z). That is, if zi+1 < zc
(zi+1>zd),Cp,c (Cp,d) allocates all DERs requesting charging pack-
ets from bin [zi,zi+1] into the timer state x1

p,c (x1
p,d). Otherwise, it

allocates the DER with zj>zc (zj<zd) in the timer state xjp,c (xjp,d)

TABLE I
EWH SIMULATION PARAMETERS

Parameter Value Unit

Simulation period 600 mins
Sampling period, ∆t 15 s
Specific heat capacity (Water), c 4.186 kJ / (kg-◦C)
Water density, ρ 0.99 kg / liter
Ambient insulation losses, τn 150 hr
Heater Capacity, Ln 250 liters
Set-point temperature, zsetn 52 ◦C
Dead-band temperature, zset,DB

n 0.12zsetn
◦C

PEM temperature bounds, zset,PEM
n 0.08zsetn

◦C
PEM request parametermR 1

300
Hz

Input heat transfer rate, P rate
c,n 4.5 kW

Heating efficiency, η 100 %
Ambient temperature, zamb 14 ◦C
Inlet temperature, zin 14 ◦C

with j=b(δ−tcj)/∆tc (j=b(δ−tdj)/∆tc) and tcj (tdj) the time that
the DER takes to move its state from zj to z (z) – this captures the
PEM concept of interrupted packets. The timers provide a formula
for the percentage of DERs whose packet expires. That is, β−h :=

x
(np)
p,h /

∑np

i=1x
(i)
p,h, where x(i)

p,h is the i-th component of xp,h. Abusing
of the notation, consider the particular β and βsb in (14) given as β=
(βcTreq,c,Cd

,βdTreq,d,Cc
)>, βsb =(β−c IN ,β

−
d IN)> where βc and βd are

now scalars with values in [0,1]. Therefore, a simple algebraic pro-
cedure yields the PEM population dynamics and represents a CMC:

q[k+1]=M(I+M+
β[k]−M

−
βsb[k])q[k]

=M̄(β[k],βsb[k])q[k], (17)

where

M−
βsb

:=


β−

c IN 0N 0N

−β−
c IN 0N −β−

d IN

0N 0N β−
d IN

, M+
β :=


0N βcT

req,c,Cd
0N

0N −βcT
req,c,Cd
−βdTreq,d,Cc

0N

0N βdTreq,d,Cc
0N

.

A full schematic diagram for the PEM dynamics is given in Figure 7.
This section concludes with an illustrative simulation of a

population of 2000 EWHs aimed at validating the state bin transition
model developed for PEM. The model for the n-th EWH is given by

z+
n =zn+∆t

(
P rate
n zn
cρLnη

− zn−zamb

τn
− zn−zin

60Ln
wn

)
, (18)

where the parameters of (18) are provided in Table I and the end-user
events, wn, are PRPs with the same parameters as in Example 1.
The simulation initially accepts all charging requests (βc =1) until
all incoming requests are denied after minute 120 (βc =0). Figure 6
shows the result of such experiment and compares the resulting
power output of the agent based (running each individual TCL and
then aggregating the outcomes) and macro-model simulations. On
average the error in power between these simulations never exceeds
8% throughout the entire simulation time of 10 hours. For QoS,
the error in SoC was found to be less than 0.1◦C, which amount to
less than 1% relative error with respect to the agent-based average
SoC. Furthermore, the DER standby distributions for accepting
all requests (at minute 100) and denying all (at minute 400) for
both the agent base and macro-model simulations are presented to
illustrate how close the distributions are for both simulations.
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Fig. 6. Comparing macro-model and a realization of a micro-model simulation of
2000 EWHs for a 10-hour accept-all/deny-all VPP experiment. Power response and
distributions of the standby populations (accepting and denying) are provided.

IV. QOS GUARANTEES AND DIVERSE DERS

When managing demand, it is critical to be cognizant of end-
consumer QoS. For example, when coordinating EWHs, people will
opt out en masse from water heater DR programs, the first time they
experience cold showers. However, before discussing QoS guaran-
tees for EWHs, ESSs, and EVs consider the following definition.

Definition 2: A coordinator (or VPP) providing grid services is
said to guarantee QoS if for a pre-specified SoC range and set-point
zset, there exist conditions under which the average SoC of the
DER population is greater than or equal to zset.

One way to guarantee QoS is with opt-out control, which has
been explored in the context of demand dispatch, e.g., see [15],
[28], but not for a PEM-based macro-model. The opt-out control
mechanism for PEM is described at the beginning of Section II
in ii). Thus, DERs whose dynamic state are lower than z exit
PEM (move to charge or exit ON) and join a new set of energy
states constituting the Opt-Out mode (denoted by ⊕). On the
other hand, if the dynamic state is too high, packet interruptions
provided by the timer’s matrix Cp,h for h={c,d} in (16) avoid the
need for a separate opt out (i.e., exit OFF). Interestingly, adding
opt-out operation to the PEM macro-model only requires a simple
augmentation of states with their corresponding transition rates as
shown in Figure 7. That is, q is redefined as q>=(q>⊕,q

>) with

q[k+1]=Mexit(I+M+
β[k]−M

−
βsb[k])q[k] and y[k]=cq[k], (19)

where I+M+
β −M

−
βsb

adds a diagonal block identity matrix and
uses zeros elsewhere since qopt are unaffected by β, βsb. Note that

Mexit :=

 M⊕ M	pem

M⊕pem M

,
where M⊕ is a sub-matrix of M that has all rows and columns
corresponding to states higher than the pre-specified PEM re-entry
bound removed. Finally, M	pem (M⊕pem) provides the transition
probabilities of exiting (re-entering) PEM. A depiction of the
transition diagram for a DER population under PEM with opt-out
control is provided in Figure 7.

A. QoS for EWHs and ESSs

For this type of DERs, Definition 2 implies that there must exist
some β such that cq(β)≥zset, where q(β) is the invariant distribu-
tion associated to β. Naturally by making β=(βc,βd)=(1,0) for
all times, the system reaches its maximum average dynamic state,

  

  
  

 

Fig. 7. Transition diagram of a DER population under PEM with opt-out control.

Fig. 8. Average SOC for EVs as a function of driving time and the probability of
going from standby to a driving state (SB→DR). The solid and dashed red lines
indicate two level sets for constant p1. The red dot indicates the value for p1 and p2)
for the maximum occupancy of driving states for which the fleet’s QoS is guaranteed
to reach 80% SOC.

and the system is in equilibrium, which also fixes βsb. Since end-
user events for EWHs and ESS do not alter their hybrid state, QoS
guarantees are provided by adding the opt-out dynamics as in (19).

B. QoS for EVs

The end-user events for EVs (i.e., driving) do change the hybrid
state. This renders some EVs unavailable to PEM, which couples
QoS guarantees to the (average) EV driving model. Next, we employ
the simple driving model introduced in Section III-A and formulate
a condition under which EVs can also guarantee QoS. The condition
will be in terms of the average drive time, which is related to p2

and the probability of going from driving (discharge) to standby.
Figure 8 shows the relationship between the average state of

charge of a population of EVs as a function of departure rate p2

and the probability of going from standby to driving (equal to p1),
where one can see that when the departure rate surpasses a threshold
for an specific p1 guaranteeing QoS is not possible. Recall from
the discussion about the driving model that the probabilities p1 and
p2 are independent of each other and that they can be chosen so that
they follow data such as that from NHTS [20] (see Figure 4b). For
a fixed driving state occupancy, it is possible to compute a bound
for the maximum average driving time that a fleet of EVs should
have so that QoS is guaranteed, which amounts to a bound on p2.
Recall that by fixing the driving states occupancy and p2, p1 is
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automatically fixed. Moreover, setting β=(0,1) and assuming that
cars return to standby from driving independent of their energy state,
the Markov transition matrix for EVs has the formA+p2B, where
A is an irreducible and aperiodic column stochastic matrix andB
is such that its columns add to zero. The invariant distribution of
the evolution equation q[k+1]=(A+p2B)q[k], for a fixed p2, is
computed by solving Ãq∗= b̃ with

Ã :=

I−(A+p2B)

1>N

q∗ and b̃ :=

0N×1

1

.
This system of algebraic equations has 3N+1 equations with 3N
unknowns, where one equation is redundant due to the fact that
the the dimension of the nullity of I−(A+p2B) is one. Therefore,
a least square procedure provides a unique solution q∗ that is the
desired stationary distribution. Specifically,

q∗=(Ã>Ã)−1Ã>b̃

=((I−(A+p2B))>(I−(A+p2B))+1N1
>
N)−11N .

Since p2<<1 for any practical scenario, then

q∗≈Q−1
1 1N−p2Q

−1
1 Q2Q

−1
1 1N , (20)

where Q1 = 1N1
>
N + IN − (A + A> − A>A) and

Q2 = A>B + B>A − B − B>. The condition that must be
satisfied for guaranteeing QoS is zset≤cq∗, where q∗ is related to
p2 via (20) and the dependence on β is omitted given that it was
previously fixed. Thus, a bound for p2 is given by:

p2≤
cQ−1

1 1N−zset
cQ−1

1 Q2Q
−1
1 1N

Observe thatQ1 =Ã>Ã|p2=0 is always invertible because Ã|p2=0

has full column rank. From the discussion at the end of Section
III-A, an occupancy of the driving states of πzDR = 0.1 with
p1 =0.00092 gives the exact threshold p2<0.00053, whereas the
approximation yields papprox

2 <0.00051. In other words, the exact
calculation says that one can guarantee QoS when the average drive
is less than 471.72 minutes (for ∆t=15 sec), and the approximation
gives 488.8 minutes as the driving time threshold. Figure 8 shows
the curve corresponding to the parameters above as well as the curve
that intersects the set point at 30 min driving time. These parameters
are in agreement with a fleet of EVs at off-peak driving hours of the
day which is when EVs become a real flexible resource and are well
beyond the 30 min average driving time assumed for the simulations
in this manuscript. For instance, the driving state occupancy for
guaranteeing QoS with 80% of average charge (accepting all
charging requests and rejecting all discharging requests) and 30 min
average driving time is approximately 37% (see Figure 8).

C. Illustrative simulation with tracking and QoS awareness

A fleet of 1000 EWHs, 1000 ESSs, and 250 EVs are modeled
using the macro-model developed in Section III-B and presented
in Figs. 9 and 10. The EWHs for this simulation have the same
parameters shown in Table I. The ESS models here are representative
of Tesla’s PowerWalls (2.0), which have battery capacity of 13.5
kWh, charge and discharge efficiency of around 95% (roundtrip of
92%), and a maximum (continuous) power rating (P rate

c,n =P rate
d,n ) of

5.0kW. It is assumed that the battery owner charges or discharges the

battery based on a Gaussian random walk with a minimum power
draw of 1.5 kW in either direction. This could be representative
of excess or deficit solar PV production. EVs, on the other hand,
are assumed to have an electric driving range of 150 miles and an
electric driving efficiency of 7 miles-per-kWh. The PEM system
has the task to track a detrended and scaled regulation signal [29].
The most important observation is that under the conditions for
guaranteeing QoS one can construct a rule for acceptance such that
the three populations work together to balance their output power
with respect to the given reference in a manner that average SoC
is close to the predefined set points. The specifics of this tracking
problem and how the populations work in tandem are detailed in [30].
In addition, Figure 10 shows the number of requests from the three
populations as a function of time. The VPP chooses a percentage
of these charge and discharge packet requests in order to balance
the regulation signal provided by the system operator as a reference.
Note also that the QoS for each population is maintained around
its predefined set point even though the populations are providing
power balancing dynamically (i.e., without predictive optimization).
As can be seen in Fig. 9, the EWHs and EVs effectively provide
the bias while the ESS provide the corrective (together with EWHs)
for tracking the regulation signal. Furthermore, to achieve desired
tracking of the reference regulation signal, the ESS population’s
average SOC deviates slightly (< 5%) from the desired set-point,
which increases the number of ESS discharging requests. The inter-
nal feedback offered by the population’s packet request mechanism
drives the availability upward/downward flexibility. In this case,
the ESS population alone can offer more downward flexibility
(discharge) than upward flexibility (charge) when the VPP receives
more discharge requests than charge requests. Of course, if the
reference signal was biased downward, the populations would have
to deviate from their SoC set-point to achieve satisfactory tracking
performance, which would effectively discharge the populations
over time and lead to an increase in the number of charge requests.
After discharging for sufficiently long, the opt-out mechanism
built into PEM would override the request-response mechanism
and devices would opt-out and tracking performance would be
negatively affected. The coupling between discharge/charge duration
and tracking performance is the subject of ongoing work and has led
to development of improved PEM-VPP controller designs [30] and
energy-based modeling of PEM population to capture the battery-
like, energy-power relations.

V. CONCLUSION AND FUTURE WORK

This manuscript presented a macro-model for the aggregation
of a system comprised by DERs. The approach was based on
a bottom-up DER coordination methodology called PEM. The
macro-model was described as a controlled Markov chain that
included the mechanics of accepting, active, and expiring packets
with the help of two timers to differentiate charging and discharging
packet requests. Finally, QoS guarantees were given for TCLs and
ESS with an opt-out mechanism while QoS guarantees for EVs
were provided in terms of EVs’ average arrival and departure rates.

Future work involves addressing heterogeneity of the macro-
model either by clustering or by a set-based Markov model.
Moreover, the dependence of end-user event rates and magnitudes
on opt-out conditions is currently being explored by the authors
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Fig. 9. (Top) The result of a fleet comprised of 1000 EWHs, 1000 ESSs and
250 EVs tracking a regulation reference signal (Middle) Individual contribution
of EWHs, ESSs and EVs to balance the regulation signal (Bottom) The average
SoC for EWHs (◦C), ESSs (%) and EVs (%).

Fig. 10. Number of charging and discharging requests from the EWH, ESS and
EV standby populations.

to study time-of-day changes in dispatchable demand. Finally,
incorporating live grid conditions into the PEM macromodel is of
interest to grid operators and aggregators.
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