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Abstract—With increasing penetration of solar PV, some
distribution feeders are experiencing highly variable net-load flows
and even reverse flows. To optimize distribution systems under such
conditions, the scheduling of mechanical devices, such as OLTCs and
capacitor banks, needs to take into account forecasted solar PV and
actual grid conditions. However, these legacy switching assets are
operated on a daily or hourly timescale, due to the wear and tear
associated with mechanical switching, which makes them unsuitable
for real-time control. Therefore, there is a natural timescale-
separation between these slower mechanical assets and the responsive
nature of inverter-based resources. In this paper, we present a
network admissible convex formulation for holistically scheduling
controllable grid assets to position voltage optimally against solar
PV. An optimal hourly schedule is presented that utilizes mechanical
resources to position the predicted voltages close to nominal values,
while minimizing the use of inverter-based resources (i.e., DERs),
making them available for control at a faster time-scale (after the
uncertainty reveals itself). A convex, inner approximation of the OPF
problem is adapted to a mixed-integer linear program that minimizes
voltage deviations from nominal (i.e., maximizes voltage margins).
The resulting OPF solution respects all the network constraints and
is, hence, robust against modeling simplifications. Simulation based
analysis on IEEE distribution feeders validates the approach.

Index Terms—Voltage positioning, mechanical switching devices,
holistic scheduling, network admissible formulation.

I. INTRODUCTION

With the increasing penetration of renewable resources in the
distribution grid, maintaining system voltages within acceptable
limits (i.e., minimizing voltage deviations), is a major challenge [1],
[2]. The intermittent nature of solar energy can cause under
and over-voltages in the system [3]–[6] leading to unacceptable
operation. However, solar PV resources are inverter interfaced and
can provide responsive reactive power resources, which can be used
in active network management [7]. Besides these inverter-interfaced
resources, the distribution grid also includes traditional mechanical
devices, such as on-load tap changing (OLTC) transformers, cap
banks, reactors, etc. These discrete mechanical assets are subject
to physical wear and tear and, thus, are usually only operated a few
times during the day with heuristic open-loop policies [8]. However,
with increasing solar PV penetration, it becomes important to
optimize the schedule for the mechanical assets against bidirectional
and variable power flows [9]. However, the mechanical switching
is not suitable for real-time conditions and control and should,
therefore, be utilized on slower timescales to position the predicted
voltage profile (i.e., increase voltage margins) against predicted solar
PV generation. In fact, inverter-interfaced assets, such as solar PV
generation and battery storage, can effectively supply controllable
reactive resources appropriate for these faster time-scales. Therefore,
there is a natural timescale-separation between (slow) mechanical
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and (fast) inverter-based controllable grid assets. DER resources on
slow time-scale act as a form of reactive reserve, allowing the DERs
to fully participate in valuable market services on a fast timescale.
This way mechanical assets maximize margins and optimize
value of DERs. This leads to the challenge of co-optimization of
different types of controllable reactive power resources. Thus, for
the scheduling on slower time-scales, it is desirable to maximize
utilization of the mechanical assets to keep voltages close to
desirable nominal values while using as little as possible of the
responsive inverter-interfaced reactive resources. This effectively
prioritizes the responsive reactive resources for the faster time-scales
to counter variability in net-load (demand minus solar PV).

The aim of this paper is then to present a convex OPF formulation
where the objective function seeks to minimize the deviation of the
predicted nodal voltages from their nominal values. The nonlinear
power flow equations relate the voltages in the network with the
complex power injections. Traditionally, for distribution system
ACOPF formulations, the nonlinear DistFlow model is used, which
considers a branch flow model [10]. Recently, convex relaxation
techniques have been developed to formulate and solve the OPF
problem to global optimality [11], [12]. These convex relaxations
provide a lower bound on the globally optimal AC solution. Several
works in literature such as [13] have shown that under some
conditions these relaxations can be exact and the solution of the
relaxed convex problem is the global optimum of the original AC
OPF problem. However, these conditions fail to hold under reverse
power flows from extreme solar PV, which engenders a non-zero
duality gap and a non-physical solution [14]. Further simplications
from convex models lead to linearized AC power flows, which
have also been shown to be accurate in certain applications. Of
particular interest to distribution system OPF is an extension of the
LinDistFlow model to an unbalanced linearized load flow model,
Dist3Flow, that is obtained by linearization and certain assumptions
on the per-phase imbalances [15], [16]. However, solving linearized
OPF problems, even though computationally efficient, do not
provide guarantees on feasibility or bounds on optimality with
respect to the original nonlinear formulation. This paper uses a
convex approximation of the power flow equations that results in
a network-admissible solution, i.e., all physical network limits are
respected at (global) optimality, while solving in polynominal time.
Hence, the method is robust against modeling errors introduced
from approximations of the non-linear power flow equations.

Discrete devices like the capacitor/reactor banks and line regu-
lators (ON/OFF) and load-tap-changing (LTC) transformers are an
integral part of distribution system operations. Due to the discrete
nature of these devices, including them into an optimization problem
renders the problem NP-hard [17]. To incorporate discrete devices
into convex OPF formulations, the McCormick relaxations [18]
and linearization techniques have been used to incorporate these
devices [19], [20]. In [17], the authors use SDPs (semi-definite
programs) to capture the transformer ratios and then the solutions are



rounded to the nearest discrete tap values, whereas in [21] the load
tap changers and shunt capacitors are both modeled by linear con-
straints using discrete variables, facilitating the linearly constrained
mixed-integer formulation. However, this rounding can cause infea-
sibility issues, which are analyzed in [22] and the authors provide an
MISOCP formulation, which is computationally tractable and con-
verges to a feasible optimal solution. This paper builds upon these
works, but leverages the notion that discrete devices and continuous
resources can offer their flexibility at different time-scales, which
gives rise to a natural prioritization of reactive power resources.

This paper focuses on optimizing discrete control assets in the
grid to maximize both the voltage margins and the availability
of reactive reserves for the faster timescales. This maximization
of voltage margins1 is illustrated in Fig. 1 which depicts larger
voltage margins as we move closer to the nominal. Recent works
in literature such as [23]–[25] have developed control schemes that
achieve voltage regulation through dispatch of flexible resources in
real-time. The work in this paper could provide prediction schedules
for voltage control at faster timescales.

Fig. 1. Illustrating the relationship between voltage margin, nominal voltage and
voltage bounds. Lighter colors represent larger margins.

In general, employing convex relaxations with an objective that
minimizes voltage deviations will lead to a non-zero duality gap [26],
due to being non-monotonic. More general conditions for the exact-
ness of the convex relaxation are shown in [13], [27]. This makes it
challenging to use convex relaxations to formulate the optimization
problem. In many applications, providing network admissibility
guarantees are more valuable than solving to a globally optimal so-
lution [28]. This paper uses the convex inner approximation method
of the OPF problem that exhibits computational solve times similar
to that of linear formulations with the added and crucial benefit that
the formulation guarantees admissible solutions. Furthermore, the
utilization of reactive power from flexible inverter-interfaced DERs
should be minimized, so that this resource can be better utilized at
the faster time-scale. Previous work on minimizing both voltage
deviations and reactive power use has been shown in [29], where
a trade-off parameter is used between the two competing objectives.
Unlike [29], this paper considers control scheme for the integration
of existing discrete mechanical assets and flexible inverters and
provides a systematic method to select the trade-off parameter. To
summarize, main contributions of this paper are the following:

1Minimizing voltage deviations from nominal can be viewed as maximizing
voltage margins.

• A convex inner OPF formulation is developed for the problem
of minimizing voltage deviations from nominal in a distribution
system with guarantees on admissiblility and scalability.

• A voltage positioning optimization (VPO) method is
developed that holistically optimizes the schedule of discrete
mechanical assets while systematically minimizing the need
for continuous inverter-interfaced reactive DERs.

• Simulation based analysis is leveraged to select trade-off
parameters between the use of continuous reactive resources
and voltage margins, which are then utilized to validate the
performance on IEEE test feeders.

The rest of the paper is organized as follows: Section II develops
the voltage positioning optimization (VPO) formulation to include
discrete mechanical assets as a mixed integer program in order to
position the nodal voltages. Section III develops the mathematical
formulation of the convex inner approximation OPF problem that is
then used in the VPO problem to obtain a MILP based VPO. Simu-
lation results on IEEE test feeders are discussed in Section IV and fi-
nally conclusions and future directions are summarized in Section V.

II. VOLTAGE POSITIONING OPTIMIZATION

This section develops the voltage positioning optimization prob-
lem as a mixed integer program (MIP). The nonlinearity associated
with modeling discrete mechanical devices, such as On-load tap
changers (OLTCs) and capacitor banks (CBs), is expressed with
an equivalent piece-wise linear formulation to engender the MIP.

A. Distribution Grid Model

Let R be the set of real numbers, Z be the set of integers and N be
the set of natural numbers. Consider a radial balanced distribution
network, shown in Fig. 2, as a graph G={N ,E}, whereN is the
set of nodes and E is the set of branches, such that (i,j)∈E, if nodes
i,j ∈N are connected, and |E|= n, |N|= n+1. Node 0 which
is assumed to be the substation node with a fixed voltage V0 and
defineN+ :=N\{0}. LetB∈R(n+1)×n be the incidence matrix
of the undirected graph G relating the branches in E to the nodes in
N , such that the entry at (i,j) ofB is 1 if the i-th node is connected
to the j-th branch and otherwise 0. If Vi ∈C and Vj ∈C are the
voltage phasors at nodes i and j and Iij ∈C is the current phasor
in branch (i,j)∈ E, then vi := |Vi|2, vj := |Vj|2 and lij := |Iij|2.
Let Pij be the sending end active power flow from node i to j,
Qij be the sending end reactive power flow from node i to j, pi
be the active power injection and qi be the reactive power injection,
into node i∈N+, rij and xij be the resistance and reactance of the
branch (i,j)∈E and zij = rij +jxij be the impedance. Then, for
the radial distribution network, the relation between node voltages
and power flows is given by the DistFlow equations:

vi=vj+2rijPij+2xijQij−|zij|2lij ∀(i,j)∈E (1)

Pij =pi+
∑

h:h→i

(Phi−rhilhi) ∀(i,j)∈E (2)

Qij =qi+
∑

h:h→i

(Qhi−xhilhi) ∀(i,j)∈E (3)

lijvi=P
2
ij+Q2

ij ∀(i,j)∈E (4)

Clearly, the line losses in (4) are nonlinear, and since it is an
equality constraint, this makes the DistFlow model non convex. In



Fig. 2. Diagram of a radial distribution network from [30].

the remainder of this section, we develop a mathematical model
of the radial network that expresses the constrained variables as
a linear function of the power injections and the branch currents.
Through this approach, we are able to separate the model into
linear and nonlinear components. This will form the basis for our
approach to bound the nonlinear terms, which will then provide
the convex inner approximation of the power flow equations.

From the incidence matrix B of the radial network and following
the method adopted in [30], (2) and (3) can be expressed through
the following matrix equations:

P=p+AP−ARl Q=q+AQ−AXl, (5)

where P = [Pij](i,j)∈E , Q = [Qij](i,j)∈E , p = [pi]i∈N+ ,
q = [qi]i∈N+ , R = diag{rij}(i,j)∈E , X = diag{xij}(i,j)∈E ,
l = [lij](i,j)∈E and A = [0n In]B− In, where In is the n×n
identity matrix and 0n is a column vector of n rows.

Defining C = (In − A)−1, DR = (In − A)−1AR, and
DX =(In−A)−1AX, allows us to simplify (5) to:

P=Cp−DRl Q=Cq−DXl, (6)

Remark. The matrix (In −A) is nonsingular since In −A =
2In−[0n In]B=2In−Bn, whereBn :=[0n In]B is the n×n
matrix obtained by removing the first row ofB. For a radial network,
the vertices and edges can always be ordered in such a way that B
and Bn are upper triangular with diag(Bn)=1n, which implies
that 2In−Bn is also upper triangular and diag(2In−Bn)=1n.
Thus, det(2In−B

′
)=1>0 and In−A is non-singular.

Similarly, (1) can be applied recursively to the distribution
network in Fig. 2 to get the matrix equation:

[vi−vj](i,j)∈E=2(RP+XQ)−Z2l (7)

where Z2 :=diag{z2ij}(i,j)∈E . Based on the incidence matrix B, the
left hand side of (7) can be formulated in terms of the fixed head
node voltage as:

C>[vi−vj](i,j)∈E=V−v01n (8)

where V :=[vi]i∈N+ . Based on (8), (7) can be expressed as:

V=v01n+2(C>RP+C>XQ)−C>Z2l (9)

Substituting (6) into (9), we obtain a compact relation between
voltage and power injections shown below.

V=v01n+Mpp+Mqq−Hl (10)

where Mp =2C>RC, Mq =2C>XC and
H=C>(2(RDR+XDX)+Z2)

Remark. The matrix H is non-negative, when the underlying
distribution network is either inductive (X is non-negative),
capacitive (X is non-positive) or purely resistive (X is zero matrix).
This fact helps in obtaining the convex inner approximation

described later in the paper in Section III. Substituting the values
of C, DR and DX into the expression of H, gives:

H=(In−A)−>[2(R(In−A)−1AR+X(In−A)−1AX)+Z2].

To show H is non-negative, we just need to focus on A and
(In−A)−1. Due to the definition, A is non-negative and In−A
has positive diagonal entries and non-positive off-diagonal entries
and is, hence, a Z-matrix. Also, In−A=2In−Bn and 2In−Bn is
an upper triangular matrix. Hence its eigenvalues are positive, so it
is also a non-singular M-matrix (i.e., a Z-matrix whose eigenvalues
have non-negative real part). Non-singular M-matrices are a
subset of a class of inverse-positive matrices, i.e., matrices with
inverses belonging to the class of non-negative matrices (all the
elements are either equal to or greater than zeros) [31, Corollary
3.2]. Hence, (In−A)−1 is a non-negative matrix. As A is also
a non-negative matrix, then H is clearly non-negative whenever
matrix R is non-negative and either X is non-negative (i.e., all
lines are inductive), X is non-positive (i.e., all lines are capacitive)
or X is zero (i.e., all lines are purely resistive).

Apart from the nonlinear relation (4) of l to P, Q and V, (6)
and (10) is a linear relationship between the nodal power injections
p, q, the branch power flows P ,Q and node voltages V. The
nonlinearity in the network is represented by (4), as the current term
l is related to the power injections and node voltages in a nonlinear
fashion. Including this term into the optimization model would
render the optimization problem non-convex, however, neglecting
this term could result in an inadmissible linear OPF solution. In
the next section, we model the discrete grid resources such as
OLTCs and capacitor banks, which will then be used to formulate
the voltage positioning optimiazation problem.

B. Discrete device nomenclature
Consider the distribution grid defined in Section II-A, where
D,C ⊆N+ represent the sets of nodes with DERs and capacitor
banks, respectively, and T ⊆E is the set of branches with on-load
tap change transformers (OLTC) or voltage regulators. The tap-ratio
for the OLTC/regulator at branchm∈T is denoted by tm with the
tap position defined by ntr

m∈Z, e.g. ntr
m∈{−16,...,0,...,+16}. The

number of capacitor bank units is ncp
i ∈Z at node i∈C. Denote qg,i

as the controllable DER reactive power injection at node i∈D and
bi as the capacitor bank admittance at node i∈C.

C. Voltage positioning optimization formulation

The focus of this work is to maximize both the voltage margins
and the availability of reactive reserves for the faster timescales
i.e., position voltages within tighter bounds V and V, and prioritize
the use of mechanical (discrete) assets over more flexible reactive
resources, qg. Hence the objective minimizes a function of qg and
the voltage deviation terms for the upper and lower bounds, V+

v
and V−v , respectively. The VPO formulation is described next.

Given a radial, balanced, and single-phase equivalent
representation of a distribution feeder, denote the VPO problem
as (P1), which is expressed as a mixed-integer nonlinear program
(MINLP) as follows:

(P1) min
qg,i,ntr

m,ncp
i

n∑
i=1

q2g,i+αi(V
+

v,i+V
−

v,i) (11a)



subject to:

V=v01n+Mpp+Mqq−Hl (11b)

lijvi=P
2
ij+Q2

ij ∀(i,j)∈E (11c)

q=qg−QL+Qcp (11d)

0=vi−t2mvj ∀m∈T (11e)
0=tm−(1+τmn

tr
m) ∀m∈T (11f)

0=Qcp
i −vibi ∀i∈C (11g)

0=bi−yc,in
cp
i ∀i∈C (11h)

Vmin≤V≤Vmax (11i)

V−V−v ≤V≤V+V+
v (11j)

V+
v ≥0,V−v ≥0 (11k)
qg,i≤qg,i≤qg,i ∀i∈D (11l)

ntr
m≤ntr

m≤ntr
m ∀m∈T (11m)

ncp
i ≤n

cp
i ≤n

cp
i ∀i∈C (11n)

ntr
m,n

cp
i ∈Z ∀m∈T ,∀i∈C (11o)

where qg,i is the DER reactive power generation at node i and V +
v,i

and V −v,i represents the voltage violation terms for the upper and
lower bound respectively, at node i. The parameter α is chosen
to trade-off between the use of flexible reactive resources and
maximizing voltage margins. The equality constraints (11b) and
(11c) represent the power flow equations relating the voltages and
currents in the network to the power injections, whereas (11d) repre-
sents the nodal reactive power balance, with QL being the reactive
net-demand and p=−PL with PL being the active net-demand.
The constraints (11e) and (11f) define the relation between the tap
ratio and the tap position with τm∈R being the tap step, whereas
the limits in (11m) define bounds on OLTC tap position with ntr

m

and ntr
m being the lower and upper tap position limit. The relation

between capacitor bank admittance (bi) and reactive power injected
by capacitor banks (Qcp

i ) is given by (11g), whereas the relation
between capacitor bank admittance and number of capacitor bank
units with yc,i∈R being the admittance of a single capacitor bank
unit is given by (11h) and (11n) gives bounds on the capacitor bank
units with ncp

i and ncp
i being the lower and upper bound on number

of capacitor bank units. The box constraints in (11i) are the network
voltage limits with Vmin and Vmax being the lower and upper
network voltage limit. The constraint in (11j) represents the tighter
voltage bound constraints that seek to position the voltage close
to nominal using the tighter inner voltage bounds V and V. This
ensures that the reactive power resources are utilized to position the
voltage within the tighter voltage bounds. The box constraints (11l)
represents the DER reactive power generation limits for each
generator node with qg,i and qg,i being the lower and upper limit on
generation and finally, (11o) constrains the transformer tap positions
and the number of capacitor bank units to be discrete set of integers.

(P1) represents the VPO problem for a radial distribution network.
Note that nonlinear equality constraints (11c), (11e) and (11g) and
the integer constraint (11o) represent non-convex constraints and
make the OPF problem NP-hard. The nonlinearity related to the
transformer taps and the bilinear term for the capacitor banks are
approximated with piecewise linear (PWL) constraints as shown
in the next section, whereas the nonlinearity due to the powerflow

equations represented by (11c) is dealt with through convex inner
approximation illustrated in section III

D. OLTC and capacitor bank modeling
The voltage relation between the nodes across an OLTC is given

by (11e) and (11f). Note that the equality constraint (11e) represents
a non-convex constraint and makes the OPF problem NP-hard.
The nonlinearity related to the OLTC taps is approximated with
piecewise linear (PWL) constraints in (13a)-(13d) to obtain an
accurate representation as described in [21] and summarized next.
The coupling between vi,vj,tm can be expressed as:

vi=t
2
mvj≈t2m,0vj+

ntr
m−n

tr
m+1∑

p=1

∆tm,pvj, (12)

where ∆tm,p=t2m,p−t2m,p−1, {tm,0,tm,1,tm,2,...,tm,K} represent
the fixed tap ratio settings of the OLTC connected at branchm and
ntr
m−ntr

m+1 is the index of tap position ntr
m. Next, we use binary

variables {sm1 ,sm2 ,...,smK} with adjacency conditions smp ≥ smp+1,
p= 1,2,...,K−1 to represent the operating status of the OLTC
branch and the following group of mixed-integer linear constraints
exactly describe the OLTC connected at branchm in (12):

vi=t
2
m,0vj+

K∑
p=1

∆vmp (13a)

0≤∆vmp ≤smp v∆tm,p (13b)

∆tm,p(vj−(1−smp )v̄)≤∆vmp ≤∆tm,pvj (13c)

smp+1≤smp ,p=1,2,...,K−1. (13d)

Similarly, for capacitor banks, the relation between capacitor bank
admittance and number of capacitor bank units is given by (11h).

If Qcp
i represents the reactive power injection from capacitor

banks at node i, then:

Qcp
i =vibi=

ncp
i∑

p=1

(vibi,p) (14)

represents the bilinearity, where {bi,1, bi,2, ... , bi,K} are the
admissible admittance values of controllable capacitor banks at
node i. Similar to the formulation in (13a)-(13d), for the capacitor
bank at node i, (14) can be equivalently expressed by the following
set of linear constraints [21]:

Qcp
i =

K∑
p=1

Qs
i,p (15a)

0≤Qs
i,p≤uipvbi,p (15b)

bi,p(vi−(1−uip)v̄)≤Qs
i,p≤vibi,p (15c)

uip+1≤uip,p=1,2,...,K−1. (15d)

where binary {ui1,ui2,...,uiK} represent the operating status of the ca-
pacitor bank units on node i. Based on the linear modeling of OLTCs
and capacitor banks in this section, we now present the mixed-integer
program to solve the voltage positioning problem with the piecewise
linear formulation of OLTCs and capacitor banks as shown in (P2).

(P2) min
qg,i,sp,up

n∑
i=1

q2g,i+αi(V
+

v,i+V
−

v,i) (16a)



subject to: (11b)−(11d),(11i)−(11o) (16b)
(13a)−(13d),(15a)−(15d) (16c)

The VPO problem presented in (P2) is convex in the continuous
variables except for the nonlinear constraint in (11c). One possible
solution is to employ convex relaxation techniques to the nonlinear
constraints and obtain an SDP or SOCP formulation. However,
several works in literature such as [26], have shown that employing
convex relaxations with an objective that minimizes voltage
deviations will lead to a non-zero duality gap. On the other hand,
linearized OPF techniques, even though computationally efficient,
do not provide guarantees on feasibility or bounds on optimality.

To overcome these challenges associated with the nonlinearity
of the power flow equations, the next section describes the convex
inner approximation method of the OPF problem.

III. FORMULATION OF THE CONVEX INNER APPROXIMATION

To obtain the convex inner approximation, the approach
presented bounds the non-linear terms in the power flow equations
and develops an admissible model that is robust against modeling
errors due to the nonlinearity. This means that the technique ensures
that nodal voltages, branch power flows, and current magnitudes
are within their limits at optimality.

The optimization problem (P2) is non-convex due to the
constraint (11c). In order to obtain an inner convex approximation
of (P2), we bound the nonlinearity introduced due to (11c). Let
lmin∈Rn and lmax∈Rn be the lower and upper bound on l∈Rn,
respectively. Then based on these values and provided that the
matrices DR, DX, Mp ,Mq and H are positive for an inductive
radial network [32], define:

V+ :=v01n+Mpp+Mqq−Hlmin (17)

V− :=v01n+Mpp+Mqq−Hlmax. (18)

If lmin and lmax are known, then the optimization problem (P2) can
be modified to a convex inner approximation of the OPF problem.
In the proceeding analysis we will provide a method to obtain an ac-
curate representation of these bounds. In [32], we provided conserva-
tive bounds on the nonlinearity based on worst case net-demand fore-
casts. In this section, we present rigorous analysis to obtain tighter
lower and upper bounds on the nonlinearity using local bounds.

Consider the nonlinear term in the power flow equations given
by (11c). From the second-order Taylor series expansion, lij can
be expressed as:

lij≈l0ij+J>ij δij+
1

2
δ>ijHe,ijδij (19)

where l0ij is the value of lij at the forecast net-demand and δij, the
Jacobian Jij and the Hessian He,ij are defined below.

δij :=

Pij−P0
ij

Qij−Q0
ij

vi−v0i

 Jij :=


2P0

ij

v0
i

2Q0
ij

v0
i

− (P0
ij)

2+(Q0
ij)

2

(v0
i )

2

 (20)

He,ij :=


2
v0
i

0
−2P0

ij

(v0
i )

2

0 2
v0
i

−2Q0
ij

(v0
i )

2

−2P0
ij

(v0
i )

2

−2Q0
ij

(v0
i )

2 2
(P0

ij)
2+(Q0

ij)
2

(v0
i )

3

 (21)

where the superscript 0, (.)0, denotes the nominal values at the
forecasted net demand for all variables (.) in (20) and (21). The
eigenvalues of the Hessian He,ij are all non-negative, with two
of the eigenvalues being strictly positive and one is zero. As the
Hessian is positive semi-definite, the nonlinear function lij is
convex. If a function is convex then the linear approximation
underbounds the nonlinear function [33], i.e.,

lij≥l0ij+J>ij δij=:lmin,ij ∀(i,j)∈L (22)

The upper bound on the nonlinearity is obtained next and the
convex inner approximation based on these bounds is presented.
Applying Taylor’s theorem to the expansion, the upper bound on
the nonlinear function lij is given by:

|lij|≈|l0ij+J>ij δij+
1

2
δ>ijHe,ijδij| (23)

≤|l0ij|+|J>ij δij|+|
1

2
δ>ijHe,ijδij| (24)

≤l0ij+max{2|J>ij δij|,|δ>ijHe,ijδij|}=:lmax,ij (25)

Based on this upper and lower bound determined, we can now
formulate the complete convex inner approximation VPO problem
by modifying (P2) as:

(P3) min
qg,i,sp,up

n∑
i=1

q2g,i+αi(V
+

v,i+V
−

v,i) (26a)

subject to: (17),(18),(22),(25) (26b)
(13a)−(13d),(15a)−(15d) (26c)

Vmin≤V−;V+≤Vmax (26d)

V−V−v ≤V−;V+≤V+V+
v (26e)

(11d),(11k)−(11o) (26f)

The optimization problem (P3) represents the convex inner
approximation of the VPO problem that provides a network
admissible solution. This formulation includes discrete mechanical
assets resulting in mixed-integer linear program (MILP) Voltage
Positioning Optimization problem.

A. Iterative algorithm for improving solution

In this section, we present an iterative algorithm that achieves
tighter bounds on the non-linearity. The lower and upper bounds
obtained in previous section can be conservative depending upon the
initial net-demand forecast. Without Algorithm 1, if we only solved
(P3) once, it could result in a conservative inner approximation,
which would lead to reduced performance. This is because the
operating point x0 could be close to the no-load condition, i.e.,
P0
ij =Q0

ij ≈ 0, which means that the Jacobian would be close to
zero per (20) and the first-order estimate of lmin and lmax would be
close to l0 per (22) and (25). This results in conservative feasible set
for (P3) and Algorithm 1 overcomes this by successively enhancing
the feasible solutions by updating the operating point and the
Jacobian (and the Hessian) with the optimized decision variables,
sometimes called the convex-concave procedure [33]. Algorithm 1
shows the steps involved in the proposed iterative scheme, where
qg
∗(k) and Qcp∗(k) represent the solution of (P3) for the kth



iteration of Algorithm 1, whereas q(k) represents the net-reactive
power injection at iteration k. It is assumed that the initial operating
point satisfies qg and Qcp both being zero and, hence, q(0)=−QL.
Finally the result of Algorithm 1 is given by the cumulative sum
of the iterates, i.e., qg =

∑k−1
i=1 qg

∗(i), Qcp =
∑k−1

i=1Q
cp∗(i).

Algorithm 1: Successive feasible solution enhancement
Result: qg, Qcp, ntr

1 Input: QL, f(x0), ε
2 Run AC load flow with q(0)=−QL⇒ J(0),He(0)
3 Initialize k=1, error(0)=∞
4 while error(k−1)>ε do
5 Solve (P3)⇒qg

∗(k),Qcp∗(k),ntr∗(k), f(x∗k)

6 Update
∑k

i=1(qg
∗(i)+Qcp∗(i))−QL⇒q(k)

7 Run AC load flow with q(k)⇒ J(k),He(k)
8 Update error(k)= ||f(x∗k)−f(x∗k−1)||∞
9 k :=k+1

10 end
11 qg =

∑k−1
i=1 qg

∗(i), Qcp =
∑k−1

i=1Q
cp∗(i), ntr =ntr∗(k−1)

Theorem III.1 proves the feasibility and convergence of solutions
obtained through Algorithm 1.

Theorem III.1. Every iterate of Algorithm 1 is AC feasible and
the iterates converge to a locally optimal solution.

Proof. Let χ be the feasible set of the underlying, nonconvex
ACOPF from (P1) with convex objective function f(.) given in (11a)
and letx0=

[
P(p,q) Q(p,q) V(p,q) l(p,q)

]>
be a feasible

AC operating point, i.e., x0∈χ, that depends on (p,q) injections.
Also, define the feasible set of the convex inner approximation (P3)
based on x0 as Ψ0(x0). Now, let x∗1 be the optimal solution of (P3),
then x∗1∈Ψ0(x0) and x0∈Ψ0(x0) and by definition of inner ap-
proximation Ψ0(x0)⊆χ. Also since x∗1 is the optimal solution, then
f(x∗1)≤f(x0). This process can be repeated so that, for the kth iter-
ation (k∈N+), Ψk−1(x

∗
k−1)⊆χ is the feasible set of (P3) and x∗k∈

Ψk−1(x
∗
k−1) is the optimal solution of (P3) with f(x∗k)≤f(x∗k−1).

This implies that each iterate is an improved solution that is feasible
and continuing this process yields a non-increasing sequence:
{f(x∗k)}k∈N+

that is bounded below by zero (since f(x)≥0∀x∈
χ). Thus, by the greatest-lower-bound property of real numbers, we
know infk∈N+{f(x∗k)}∈ [0,f(x0)] exists. Since {f(x∗k)}k∈N+ is
non-increasing and bounded below, by the monotone convergence
theorem [34], error(k) := ||f(x∗k)−f(x∗k−1)||∞→ 0 as k→∞.
Thus, we have proven that application of Algorithm 1 converges
to an AC feasible, locally optimal solution, x∗, through a sequence
of successively improved AC-feasible iterates, x∗k, and that x∗

improves on the original objective by ||f(x∗1)−f(x∗)||∞.

Since the above problem is convex in the continuous variables,
the MILP can be solved effectively and provide good feasible
solutions [35]. The formulation (P3) minimizes the utilization of
reactive power from flexible DERs, prioritizing mechanical assets
as a result. The formulation positions the voltage within the tighter
voltage bounds, close to nominal, while the voltage violation terms
V+

v V−v ensure feasibility of the solution.
In Section IV, simulations involving standard IEEE test networks,

e.g., see [36], show that the results of this analysis holds for these

radial distribution network. Simulation-based analysis is conducted
on IEEE-13 node and IEEE-37 node system to check the validity of
the approach on standard networks and analyze how tighter voltage
bounds affect the utilization of DER reactive power at optimality.

IV. SIMULATION RESULTS

In this section, simulation tests are conducted on IEEE test cases
and validation of the results is performed with Matpower [37] on a
standard MacBook Pro laptop with 2.2 GHz of processor speed and
16 GB RAM. Simulation results illustrate the validity of the VPO
problem (P3). The optimization problem is solved using GUROBI
8.0 [38], whereas the simulation is performed with AC load flows
in Matpower. In all the simulation results, the system was solved
to a MIP gap of under 0.01%.

Fig. 3. IEEE-13 node distribution network with added DERs at leaf nodes.

For the IEEE-13 node shown in Fig. 3 and IEEE-37 node test
case shown in Fig. 8, optimal reactive dispatch schedules from (P3)
are fed to an AC load flow in Matpower. The IEEE-13 node test case
is modified to include capacitor banks at nodes 7 and 11, besides
having an OLTC connecting nodes 3 and 12. Each capacitor bank op-
erates with 10 increments with each increment being 50 kVAr. Apart
from these mechanical resources, DERs are placed at leaf nodes 5, 7,
8, 10, 11 and 12 with each DER qg,i at node i having a range of -100
to +100 kVAr. In all the test cases the value ofα is chosen to be .001.

The comparison of the output voltages of the optimizer (upper
and lower bounds) and the AC power flow solver over two iterations
are shown in Fig. 4a and 4b respectively. The optimal value changes
from 3.6414×10−6 (pu) to 3.196×10−6 (pu), while the OLTC
tap position stays fixed at position 2. From the figures, it is shown
that the actual voltages are within the determined bounds and the
voltage bounds converge to the AC power flow solution.

In another simulation conducted on the IEEE-13 node system, we
study the sensitivity on the reactive power utilization and the voltage
violation term. Fig. 5a shows the variation in the total flexible reac-
tive power consumption as the parameter α is varied, with the nomi-
nal value ofα being highlighted. Similarly, Fig. 5b shows the change
in the total voltage violation term as we sweep across α, illustrating
that as α increases the voltage violation term reduces as expected.

Fig. 6a shows the variation of the total flexible reactive power
as the lower voltage bound is increased, showing the trade off
between positioning voltage closer to nominal and the utilization
of flexible reactive power resources, with the nominal value of V
used being highlighted. Similarly, Fig. 6b shows the variation in the



(a) (b)

Fig. 4. (a) Comparison of the actual nodal voltage with the upper and lower bound
voltages for the first iteration. (b) Comparison of the actual nodal voltage with
the upper and lower bound voltages for the second iteration. The objective value
changed from 3.614×10−6 to 3.196 ×10−6 with a value of α chosen being 0.001
and the OLTC tap position at tap position 2 in both iterations.

(a) (b)

Fig. 5. (a) Variation in the total flexible reactive power consumption with change
in α, (b) Variation in the total lower voltage violation term with change in α.

(a) (b)

Fig. 6. (a) Variation in the total flexible reactive power consumption with change
in V, (b) Variation in the total lower voltage violation term with change in V.

total voltage violation with the increase in the lower voltage bound,
showing a similar trend.

Simulations are also conducted by considering a daily predicted
24-hour load profile shown in Fig. 7a obtained from real load data
measured from feeders near Sacramento, CA during the month
of August, 2012 [39]. Figure 7b shows the predicted aggregated
reactive power supply from DERs over the horizon, whereas Fig. 7c
shows the predicted aggregate cap bank reactive power supply,
illustrates that as the load in the system increases, the aggregate
utilization of reactive power from capacitor banks also increases
and follows a similar trend. Figure 7d shows the optimal OLTC
tap positions over the prediction horizon.

Fig. 9a shows the comparison between the reactive power supply
between the case using capacitor banks and the case without the
use of capacitor banks, showing that capacitor banks supply part
of the reactive power reducing the burden on DERs. Fig. 9b shows

(a) (b)

(c) (d)

Fig. 7. (a) Predicted 24-hour normalized load profile, (b) optimized schedule of
aggregate reactive power from DERs utilized over the 24-hour horizon for IEEE-13
node system, (c) optimized schedule of the total reactive power from capacitor banks
(at 1 p.u voltage) over the 24-hour horizon, (d) optimized OLTC tap position for
IEEE-13 node system over the 24-hour horizon.

the comparison between the voltage violation terms between the
case using capacitor banks and the case without capacitor banks,
showing that the voltage violations are very small and hence the
system violations are within the specified tighter voltage bounds.

Fig. 8. IEEE-37 node distribution network [25].

Further simulations are conducted on IEEE-37 node system
shown in Fig. 8. In this case cap banks are positioned at nodes
724, 725, 728, 732, 736 and 741, whereas flexible DERs are placed
at leaf nodes 714, 731, 734, 744 and 775 and the load profile
shown in Fig. 7a is used. For the IEEE-37 node system also, each
capacitor bank operates with 10 increments with each increment
being 10 kVAr and each DER has a range of -100 to +100 kVAr.
Similar results are observed with regards to the reduction in reactive



(a) (b)

Fig. 9. (a) Comparison of reactive power supply between the case using capacitor
banks and without capacitor banks for IEEE-13 node system. The figure compares
the total reactive power supply from DERs and cap banks (Total DER+CB (w/
CB)) with the reactive power supply only from DERs when cap banks are utilized
(Total DER only (w/ CB)) and with DER reactive power supply when cap banks are
not utilized (Total DER only (w/o CB)) , (b) Comparison of total voltage violation
over time between the case using capacitor banks and without capacitor banks for
IEEE-13 node system.

(a) (b)

Fig. 10. (a) Comparison of reactive power supply between the case using capacitor
banks and without capacitor banks for IEEE-37 node system. The figure compares
the total reactive power supply from DERs and cap banks (Total DER+CB (w/
CB)) with the reactive power supply only from DERs when cap banks are utilized
(Total DER only (w/ CB)) and with DER reactive power supply when cap banks are
not utilized (Total DER only (w/o CB)) , (b) Comparison of total voltage violation
over time between the case using capacitor banks and without capacitor banks for
IEEE-37 node system.

power utilization from flexible resources with the inclusion of
capacitor banks as shown in Fig. 10a. Similarly, Fig. 10b shows
the comparison of the voltage violation terms illustrating that the
tighter voltage bounds are maintained. Further, Fig. 11a shows the
optimal OLTC tap positions over the prediction horizon, whereas
Fig. 11b shows the comparison between voltages obtained from
the optimzer (upper and lower bound) and Matpower at node 775
of the IEEE-37 node system over the prediction horizon.

Finally, Fig. 12 shows the increase in solve time (over one
iteration) as the number of devices increases in the network. It can
be seen that the convex formulation scales well with the increase
in problem size.

Through these simulation results, it is observed that the voltage
positioning algorithm results in a network admissible solution that
prioritizes the utilization of mechanical assets over flexible resources
to position the voltage close to nominal and hence could be utilized
for voltage control of mechanical assets in distribution networks.

V. CONCLUSIONS AND FUTURE WORK

This paper introduces a holistic voltage positioning algorithm to
optimally schedule mechanical switching devices, such as on-load
tap changing transformers and capacitor banks, together with
more responsive DERs in a distribution grid. The optimization

(a) (b)

Fig. 11. (a) Predicted OLTC tap position for IEEE-37 node system over the 24-hour
horizon. (b) Comparison of the actual nodal voltage at node 775 with the upper and
lower bounds over a 24-hour horizon for IEEE-37 node system

Fig. 12. Solve time for IEEE-37 node system with number of devices (capacitor
banks) in the network over one iteration.

program makes maximum use of mechanical resources to position
the voltage close to nominal using tighter inner voltage bounds to
counter the predicted hourly variation of renewable generation. At
the same time, the scheduling of responsive reactive resources from
DERs is reduced, making them available at the faster time-scale
to counter fast minute-to-minute variation inherent to renewable
generation. The optimization problem is formulated as a MILP
through an convex inner approximation of the OPF ensuring
network admissible solutions. The optimization problem is validated
via simulations on the IEEE-13 node and IEEE-37 node test feeders
and the results are compared with AC load flows from Matpower.
The results validate the approach.

Future work will focus on the multi-period extension by
considering the time-coupling introduced due to energy storage
and ramp-rate limits. Of particular interest is the problem of
restricting the frequent tap changes of OLTCs in distribution
networks that has been previously highlighted in [9]. The VPO
formulation is well-suited for limiting the switching of tap-changers
by introducing tap change rate constraints in the multi-period
optimization formulation. Furthermore, we are seeking to extend
the results to consider the effects of uncertainty in the VPO.

It is important to note that this current manuscript considers radial,
balanced, and inductive distribution feeders. However, realistic
distribution feeders are sometimes meshed, often unbalanced, and
usually a mix of inductive and capacitative lines, which means that
extending this work to a full, three-phase AC formulation is valuable
towards utility practice. In the power systems literature, the chal-
lenges associated with the optimization of more general unbalanced
systems has been widely discussed and represent challenging, open



technical problems [19], [28], [40]–[42]. Thus, we are interested in
leveraging these recent results to extend the convex inner approxima-
tion formulation to unbalanced and meshed networks in future work.
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