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Abstract—High penetrations of intermittent renewable energy
resources in the power system require large balancing reserves
for reliable operations. Aggregated and coordinated behind-the-
meter loads can provide these fast reserves, but represent energy-
constrained and uncertain reserves (in their energy state and
capacity). To optimally dispatch uncertain, energy-constrained
reserves, optimization-based techniques allow one to develop
an appropriate trade-off between closed-loop performance and
robustness of the dispatch. Therefore, this paper investigates the
uncertainty associated with energy-constrained aggregations of
flexible, behind-the-meter distributed energy resources (DERs).
The uncertainty studied herein is associated with estimating the
state of charge and the capacity of an aggregation of DERs
(i.e., a virtual energy storage system or VESS). To that effect,
a risk-based chance constrained control strategy is developed
that optimizes the operational risk of unexpectedly saturating
the VESS against deviating generators from their scheduled set-
points. The controller coordinates energy-constrained VESSs to
minimize unscheduled participation of and overcome ramp-rate
limited generators for balancing variability from renewable gen-
eration, while taking into account grid conditions. To illustrate
the effectiveness of the proposed method, simulation-based anal-
ysis is carried out on an augmented IEEE RTS-96 network with
uncertain energy resources and temperature-based dynamic line
ratings.

Index Terms—Model predictive control, chance constrained
optimization, robust optimization, energy constrained resources,
multi-period optimal power flow.

I. INTRODUCTION

CONVENTIONAL generators, such as fast-ramping gas
generators, have provided reliable balancing reserves to

meet the variability of traditional demand. However, with
the increasing penetration of wind and solar PV generation
in power systems, more fast reserves are needed. If these
reserves were provided by conventional thermal generation,
the generators would be operated at reduced power and can
lead to an increase in idling, which is economically ineffi-
cient and increases harmful emissions. Rather than managing
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the net-load variability (i.e., demand minus renewable genera-
tion) with conventional generators, a grid-scale energy storage
system (ESS) can provide fast-acting reserves from rapid
charging or discharging events. However, even though the cost
of an ESS has declined significantly in the last decade, ESSs
remain expensive options. In addition, less costly alternatives,
such as energy services provided by aggregated DERs, are
advancing rapidly [1].

In fact, flexible, behind-the-meter loads, such as thermo-
statically controllable loads (TCLs), electric vehicles (EVs),
and residential batteries, can be coordinated and aggregated
to form a virtual energy storage system (VESS). A VESS
can provide grid services similar those of an ESS, including
synthetic (i.e., demand-side) reserves [2]–[5]. This is due to
the fact that control actions that increase/decrease the power
generated by conventional generators can be equivalently pro-
vided by a decrease/increase in the aggregate demand. While
the core concepts underpinning autonomous demand response
(ADR) can be traced back to the early 1980s [6], [7], the
VESS technology available today is still in the early stages, but
advancing rapidly. Recently, researchers have developed gen-
eralized energy-based models for aggregating and coordinating
DERs that are very similar to that of a classic charge/discharge
battery model [2], [8]–[14]. The VESS model presented
herein adapts the general, first-order energy dynamics found
in [9], including the box constraints on the energy state and
(charge/discharge) power dispatch bounds.

However, a flexible load has its own baseline consumption
that is a function of many exogenous and unknown param-
eters and stochastic processes (e.g., hot water usage, arrival
or departure time of EVs, etc.). In addition, at scale, loads
may not be directly controlled by the aggregator. That is,
the aggregation represents a low-order abstraction of a high-
dimensional system. This model reduction begets estimation
errors that cannot be exactly quantified due to parametric
uncertainty. Specifically, the “uncertainty” considered herein
comes from a combination of two sources: 1) model reduction
error and 2) uncontrollable, unmeasured background distur-
bances. While the model error component can be reduced by
improved modeling, one cannot completely eliminate model
errors when coordinating DERs under imperfect information
and subject to stochastic background processes [15]. Thus,
unlike a physical grid-scale battery, a VESS’s energy state,
energy capacity, and other parameters (e.g., power limits) that
define its available flexibility are inherently time-varying and
uncertain. For example, in [16], the uncertainty (due to DER
failures and repairs) is quantified for a collection of DERs and
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a flexibility capacity-duration-probability curves is constructed
to allow a VESS operator to more effective bid in uncertain
capacity. Thus, to benefit the most from the availability of
uncertain and energy-constrained VESS-based reserves, care-
ful design of predictive control techniques are necessary to
optimize the VESS dispatch.

Since power systems are suffused with constraints and
limits, model predictive control (MPC), with the ability to
consider multiple inputs and outputs and the temporal cou-
pling inherent to energy storage and dynamic line rating
(DLR), makes it a useful tool for corrective dispatch of energy
resources. Therefore, MPC has been widely used for set-
points optimization of grid resources, including demand and
energy storage applications, e.g., please see [17]–[19]. For
a general overview of MPC, please see [20]. MPC operates
the system over a receding horizon by considering forecasts
and power and energy states of the available resources. This
makes MPC a particularly useful method within which, one
can analyze the trade-off between dispatching ramp-rate lim-
ited conventional generators and energy-constrained, uncertain
VESS resources. Authors in [21], [22] solve a stochastic multi-
stage OPF problem that determines power scheduling policies
in order to balance operational costs and network constraint
violations. However, only the solar PV power injection is
assumed to be uncertain, while the dispatchable energy stor-
age devices are deterministic. Unlike that work, we consider
dispatchable energy storage resources that are uncertain and
develop a tractable approach to solve a stochastic multi-stage
OPF problem. Indeed, a predictive technique is presented
in [11], [23], which develops a reserve scheduling framework
that manages uncertain renewable generation and demand-side
reserves. They take into account the uncertainty in the capacity
of the controllable load over multiple periods. However, these
approaches do not consider energy state uncertainty of the
aggregated flexible loads and focus on solving a reserve market
clearing problem every 15 minutes with respect to the static
power limits of the transmission lines. Herein, we propose
to optimize the use of these uncertain VESSs on a minutely
timescale as reserves are activated and we seek to deliver
the required flexibility to absorb the high level of variability
inherent to a sustainable energy future.

Under high penetrations of renewable generation, the result-
ing power flows make it challenging to reliably operate
a power system under conventional static thermal (MVA)
limits [24]. Instead, we consider the dual role of temperature-
based dynamic line rating (DLR) on transmission operations as
it relates to integrating VESSs (by providing thermal inertia)
and increased renewable generation (by temporarily increasing
line flow limits). The temperature-based rating is a function
of line sagging requirements, which determines the maximum
thermal expansion of a conductor (i.e., conductor temperature)
to satisfy a minimum ground clearance height [25]. With DLR,
significant operational flexibility can be gained by coupling the
line electrical and thermal behaviour and inertia at the cost of
additional sensing [26], [27]. Thus, temperature-based ratings
provide the real-time apparent power capacity of lines based
on actual and estimated operating conditions, which allows a
predictive controller to naturally leverage feedback to ensure

reliable operating conditions without having to employ overly
conservative limits on the lines’ power transfer capabilities.
That is, the relationship between nonlinear AC line flows and
uncertain VESSs is challenging to study in the static sense, but
with feedback, the DLR formulation can dynamically adapt to
these complex interactions, which is exactly how the proposed
risk-based VESS dispatch approach complements the overall
DLR scheme.

The contributions of this manuscript are the following: (i) as
far as the authors are aware, prior work on stochastic optimal
power flow (OPF) methods focuses mainly on the uncertainty
of power injections (e.g., wind and demand), which temporally
decouples the OPF problem and avoids the challenges of multi-
period optimization under uncertainty, e.g., [28], [29]. Unlike
those works, this paper presents a general VESS model with
uncertainty in both the estimate of the state of charge and the
prediction of energy capacities and incorporates this uncertain
VESS into a stochastic, multi-period OPF framework; (ii) by
integrating uncertain energy resources with the electro-thermal
coordination of line temperature dynamics, we are able to
leverage the inertia and the complementary time-scales for
control of both energy storage and line limits to effectively
manage uncertainty and grid constraints over multiple time-
steps; and (iii) with an analytical reformulation, we present a
risk-based, chance-constrained MPC (RB-CC-MPC) approach
that co-optimizes the delivery of responsive VESS resources
against the operational risk inherent to the VESSs’ uncer-
tain energy capacities and states of charge. We then show
that this risk-based approach consistently outperforms robust
and deterministic approaches under different levels of available
information on the nature of the VESSs’ uncertainty.

The rest of this paper is organized as follow. In Section II,
we summarize the proposed control framework and discuss the
role and interactions of the OPF problem within a reference-
tracking, predictive controller. Section III details the system
models while Section IV describes the nature and management
of uncertainty in a chance-constrained formulation. Section V
introduces the novel risk-based chance-constrained approach
to manage uncertainty. Via a simulation-based case-study
on the IEEE RTS 96 test system augmented with VSSEs,
Section VI illustrates the analytical formulation and com-
pares the proposed risk-based method against deterministic
and robust approaches. Section VII summarizes the key results
and describes future work directions.

II. SYSTEM OPERATION AND CONTROL

Based on updated forecasts of demand and renewable
generation, economic dispatch computes a secure and econom-
ically optimal schedule for the available generators. However,
the uncertainty inherent to solar PV and wind forecasts, as
well as uncertainty in electrical demand, results in power
imbalances that make previously computed set-points sub-
optimal. Rescheduling the generators frequently and signifi-
cantly accumulates cycling costs and economic penalties to
the system operator [30]. With responsive VESS resources
and temperature-based DLR, corrective power system oper-
ations that leverage feedback represents a valuable and inher-
ently robust and dynamic alternative to conventional spinning
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Fig. 1. Overview of control scheme showing controller including economic
dispatch (slow) and corrective MPC (fast) part and how each part is related
to the power grid.

reserve. Corrective control refers to the coordination of respon-
sive grid resources immediately after a disturbance occurs
to drive the system back from an economically sub-optimal
or stressed system state to an economically optimal normal
operating state [18]. An overview of the proposed uncertainty-
aware control strategy is provided in Fig. 1.

While the focus of this paper is on the corrective part of the
controller, the details of the standard ED can be found in [31]
and are beyond the scope of this paper. Thus, the output of the
market layer (Pref

G in Fig. 1) satisfies techno-economic objec-
tives such as cost and security. Since the proposed corrective
controller’s time-step Ts (≈ 1 minute) is much shorter than the
updated of the market-based reference signals coming from
ED (≈ 15 − 60 minutes), linear interpolation is employed to
form the reference trajectory.

In the faster control layer, the VESSs represent aggregated
DERs and provide flexibility in the form of synthetic balancing
reserves. Therefore, based on the dynamic states (i.e., power
and energy states of VESSs, power states of generators and
thermal states of the transmission lines) and forecasts of the
system and available resources, the trajectory-tracking MPC
produces a corrective dispatch every minute to respond to fore-
cast errors and other disturbances. The MPC minimizes the
deviation of generators and flexible loads from the economic
reference trajectory while satisfying physical and operational
grid constraints. The goal of this manuscript is then to develop
and present a risk-based, multi-period OPF formulation that
explicitly considers the uncertainty of VESSs in the optimal
dispatch. The predictive VESS and OPF models are presented
next.

A. Nomenclature

The key mathematical symbols are defined next to provide
a common reference. However, all mathematical symbols are
also described as they are introduced in the remainder of the
manuscript:

cG,i cost of deviating from the reference for gener-
ator i;

cT,ij cost of temperature overload on line (i, j);
PG,i power output of generator i;
RG,i maximum ramp rate of generator i;
�PG,i change in power output of generator i;
PGi (PGi) minimum (maximum) production of genera-

tor i;
PL,n real power consumed by load n;
pij real power flowing on line (i, j);

ploss
ij real power loss on line (i, j);

�Tij temperature overload on line (i, j) with respect
to T lim

ij ;
Pch,i(Pdis,i) charging (discharging) power of VESS i;
Pch,i(Pdis,i) maximum charging (discharging) power of

VESS i;
ηch (ηdis) charging (discharging) efficiency of VESS i;
Si state of the charge of the VESS i;
Si(Si) maximum (minimum) energy limit of the VESS

i;
Rch(Rdis) maximum charging (discharging) ramp rate of

VESS i.

III. PREDICTIVE MODEL FOR CORRECTIVE CONTROL

The corrective MPC scheme is summarized by the
following:

1) At time k, with estimates of initial state of the
charge (SOC), line temperatures, generator operat-
ing points, updated net-load forecasts, and updated
generator economic dispatch schedule, the MPC
solves a finite-horizon open-loop optimal control
problem, over interval [k, k + M]. This produces a
schedule of control actions that describe charging
(discharging) rates for VESS and re-dispatch signals for
generators.

2) Apply only the control actions corresponding to time k.
3) Measure/estimate the system’s dynamic states based

on the realized demand and renewable generation at
time k + 1.

4) Go to 1).
The open-loop MPC optimization problem is defined below

for a power system network E = (N ,L) with bus i ∈ N and
line (i, j) ∈ L. The sets G and V represent conventional gener-
ators and VESSs, respectively. The objective function seeks to
minimize the deviation of generator outputs from the sched-
uled set-points while penalizing line temperature overloads as
follows:

min
PG,Pch,Pdis

k+M∑

l=k

⎛

⎝
∑

∀i∈Ng

cG,i

(
PG,i[l] − Pref

G,i[l]
)2

+
∑

∀ij∈E
cT,ij�T̂ij

2

⎞

⎠

s.t (1a)

Power balance: ∀i ∈ N ,∑

n∈�G
i

PG,n[l] =
∑

n∈�L
i

PL,n[l] +
∑

n∈�B
i

Pch,n[l] − Pdis,n[l]

+
∑

j∈�N
i

pij[l], (1b)

Conventional generators: ∀i ∈ G,

PGi[l + 1] = PGi [l] + �PGi[l], (1c)

PGi ≤ PG,i[l]≤ PG,i, (1d)

−TsRG,i ≤ �PGi [l]≤ TsRG,i, (1e)
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Temperature-based line rating: ∀ij ∈ L,

pij[l]= bij
(
θi[l] − θj[l]

)+ 1

2
ploss

ij,k , (1f)

ploss
ij [l]= Rij

(
bij
(
θi[l] − θj[l]

))2
, (1g)

�ploss
ij [l]= ploss

ij [l] − ploss
ij,∗ , (1h)

�Tij[l + 1]= τij�Tij[l] + ρij�ploss
ij [l], (1i)

�T̂ij[l]= max(0,�Tij[l]), (1j)

VESSs: ∀i ∈ V,

0 ≤ Pch,i[l]≤ Pch,i, (1k)

0 ≤ Pdis,i[l]≤ Pdis,i, (1l)

−TsRch,i ≤ Pch,i[l + 1] − Pch,i[l]≤ TsRch,i, (1m)

−TsRdis,i ≤ Pdis,i[l + 1] − Pdis,i[l]≤ TsRdis,i, (1n)

Si ≤ Si[l + 1] = Si[l] + Ts

(
ηch,iPch,i[l] − 1

ηdis,i
Pdis,i[l]

)

≤ Si, (1o)

Si[k]= Sest
i,k (1p)

where �G
i , �L

i , �B
i and �N

i represent set of generators,
demands, energy storage devices (VESSs), and neighboring
nodes connected to node i, respectively. Constraints (1b)
to (1p) must be satisfied for ∀l ∈ [k, k + M − 1] where
the four groups of constraints in the MPC formulation are
described below. Next, we discuss each group.

A. Power Balance in (1b)

Based on Kirchhoff’s laws, the net power flow into any
node must equal the net power flow out. Generators may inject
power, PG and loads may consume power PL at each node i.
If VESSs are available at a node, then positive (negative),
Pch−Pdis, corresponds to additional consumption (generation).

B. Conventional Generators in (1c) to (1e)

Each conventional generator is described by its production
state, PG, which must be within generator limits, as shown
in (1c) and (1d). Furthermore, due to the thermal nature of
the generators, the ramp rate of generators are limited to their
ramp-rate limit, RG, as shown in (1e). VESSs are particu-
larly helpful to overcome limitations imposed by the ramp-rate
limits.

C. Transmission Lines in (1f) to (1j)

The temperature-based line ratings provide a mechanism
through which the uncertain power injections from renewable
generation can be absorbed and directed via MPC’s feedback
and the optimized VESSs dispatch. The heat gain of transmis-
sion line (i, j) is a function of ohmic losses (i.e., I2

ijrij). Thus,
it is necessary to include line losses in the power flow model.
Since all values are per-unit (p.u.), and the voltage magni-
tudes of all buses are close to 1 p.u., the magnitudes of the
current and power flows on the respective lines are approx-
imately equal (i.e., |I| ≈ |S|). Therefore, line losses can be
effectively approximated in proportion to the square of the
power flow [18], [26]. In general, the AC power flow between
bus i and j, pij, is the solution to a set of nonlinear, algebraic

equations. To ensure a tractable approach at the timescale of
interest, a suitable convex relaxation of the AC power flow
equation has been adopted from [17]. Since the MPC executes
on a fast timescale relative to the VESS and line temperature
time-constants and the linearized model is updated via feed-
back from estimating line losses, ploss

ij,k , line temperatures, and
VESS states, the model is sufficiently accurate for control on
AC transmission networks.

IEEE Standard 738 [25] defines the current-temperature
relationship of bare overhead conductors and has been
employed herein to calculate the conductor temperature. To
allow for a tractable implementation of MPC scheme, temper-
ature dynamics of transmission lines are linearized around the
equilibrium point T∗ = T lim, where T lim is computed from
steady-state conditions with line current at ampacity (i.e., set
ploss∗

ij = (Ilim)2rij, where rij is the per-unit resistance of line ij).
The linearized temperature dynamics of the transmission lines
are given by (1i). Since line losses are approximated in pro-
portion to the square of the power flow (1g), its respective
constraint is non-convex in θij. Therefore, a convex relaxation
is employed (i.e., ploss

ij ≥ Rijb2
ij(θi −θj)

2) that is provably bind-
ing at optimality for lines that are overloaded since �T̂ij is in
the objective function as detailed in [18]. This achieves the
desired measure of control over the line flows.

The MPC scheme computes control actions that drive line
temperatures below limits, and, as long as they are below
limits, there is no benefit in further reducing line tempera-
tures. The non-convex constraint in (1j) achieves this purpose.
However, the non-convex constraint can be relaxed with an
equivalent (convex) linear formulation:

�T̂ij[l] = max
(
0,�Tij[l]

) ⇐⇒ 0 ≤ �T̂ij ∧ �Tij ≤ �T̂ij.

All together, this implies that our “lossy-DC” grid model
formulation is convex. Next, we describe the convex VESS
model.

D. Virtual Energy Storage System in (1k) to (1p)

In this paper, responsive VESSs, which are available
throughout the network, have a baseline consumption (i.e.,
aggregated baseline consumption of individual flexible loads
in a VESS), and are allocated as balancing reserves. Note also
that the VESS models used in this manuscripts are agnostic
to the specifics of the coordination scheme. By shifting the
VESS’s controllable load in time, the VESS can respond to the
mismatches caused by forecast errors. Any decrease (increase)
in the consumption of the VESS relative to the baseline can
be translated as discharging (charging) the VESS. Each VESS
is described by an estimated SOC and the amount of power
it provides to (consumes from) the grid. At time k, the initial
SOC of a VESS is given by a dynamic state estimator (1p)
and the SOC of a VESS over the prediction horizon is defined
by the discrete integrator dynamics as shown in (1o). Non-
negative scalar Pch (Pdis) represents charging (discharging)
power of a VESS and the charging (discharging) efficiency
is denoted by ηch (ηdis). Since heating and cooling of TCLs
(e.g., water heater) occurs at different time-scales, unlike prior
works on VESS, we have separated out the net-charging effect
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into charging and discharging variables. This generalizes the
formulation and permits different rates (i.e., efficiencies) of
charging and discharging.

Charging (discharging) power and SOC of the VESSs are
subject to constraints (1k), (1l) and (1o) where Pch (Pdis) and
S (S), respectively, represent maximum charging (discharging)
power and the maximum (minimum) energy capacity of VESS.

Since VESSs represent the aggregate effects of coordinated
DERs, they inherit the characteristic timescales of the coordi-
nation schemes that underpin them. That is, in general, coor-
dination schemes do not offer instant control over all DERs
in a fleet, but are subject to separate internal control, actu-
ation, and communication loops [32]. These cyber-physical
control considerations generalize themselves as ramp-rate lim-
its on the charging (Rch) and discharging (Rdis) of VESSs as
shown in (1m) and (1n). At high levels of renewable pen-
etration, since the VESS’s are responsive, they represent a
valuable resource to overcome demand-supply imbalances.
However, unlike a conventional generator, the VESS’s energy-
constrained characteristics necessitate careful management of
its state of charge.

Remark 1 (Simultaneous Charging/Discharging): For most
physical ESSs, simultaneous charging and discharging is not
physically realizable, which necessitates complex schemes to
guarantee an optimal realizable solution [17]. However, since
a VESS coordinates a large population of diverse DERs, a
VESS can engender simultaneous charging and discharging
commands across the population, e.g., please see [33], [34],
where residential batteries can strategically discharge to indi-
rectly supply demand for (concurrently charging) hot water
heaters that would otherwise become too cold. This VESS
capability avoids the need for non-convex, complementarity
constraints (i.e., Pch,i[l]Pdis,i[l] = 0).

Unlike grid-tied batteries, the amount of flexibility available
to the system operator is time-varying and uncertain, which is
the focus of this manuscript. That is, the flexibility available to
the system operator from a VESS can be translated into upper
and lower bounds on the VESS’s energy state. These upper
and lower bounds are functions of different stochastic quan-
tities, such as human behavior and weather. To capture these
considerations, VESSs herein are formulated probabilistically
and are modeled with chance constraints.

IV. UNCERTAINTY MANAGEMENT

Individual flexible loads are subject to device-specific back-
ground effects (such as hot water usage or EV driving
patterns), however, a VESS represents a macro-level object.
Thus, these time-varying and stochastic background processes
are aggregated and realize themselves as uncertainty in the
VESS’s estimated energy bounds and state. For example, the
upper energy capacity limit of the VESS is uncertain and must
be estimated and predicted from a separate data-driven model.
That is, the flexibility offered by each device is uncertain and
represents an independent random variable (i.e., background
usage of each device is independent). Therefore, a VESS’s
energy capacity can be approximated as an aggregation of
random variables. Moreover, in contrast with the grid-scale

Fig. 2. Uncertainty in estimation of VESSs energy capacity (red) and initial
SOC (green). The variance of uncertainties increases over time as the distance
from current time step increases. The mean of the red distribution may also
change randomily thru the prediction horizon, as long as it is predicted well.

batteries, the actual SOC of the VESSs can not be mea-
sured directly and a dynamic state estimation method could
be employed to estimate the SOC of a VESS at each time
step (e.g., an Extended Kalman Filter, such as in [35] for an
example of a VESS with state estimation). State estimation of
a VESS’s SOC is subject to uncertainty inherent in any state
estimation method. In addition, due to the nature of Kalman
filters, the noise process represents another stochastic effect.

Note that the exact probability distribution from which the
random variables are drawn that describe the energy capacity
prediction and SOC estimation errors is generally not known.
However, while the distribution may not be known, a VESS
operator can leverage available historical and online data to
estimate first and second moments of the energy capacity
prediction and SOC estimation errors [16]. In addition, it is
reasonable to consider that the VESS’s underlying distribu-
tion may satisfy certain conditions, such as being unimodal
or having finite support. Without loss of generality, in this
manuscript, we consider the case where the VESS operator
does not know the exact distribution, but has information that
suggests that the distribution is unimodal.1 An illustration of
the uncertain estimation of a VESS’s energy capacity and
SOC is illustrated in Fig. 2. Note that in this manuscript, we
make no assumption on the specific distribution of the estima-
tion errors. However, for simulation purposes, the estimation
errors are realized as normally distributed random variables to
simplify simulation setup.

Definition 1 (Dynamic capacity saturation (DCS)):
Charging and discharging commands of the uncertain VESSs
can be optimized with just the first moment, which we
denote as the Deterministic case. However, the underlying,
uncertain VESS energy capacity may realize itself unexpect-
edly and saturate in the energy state, which zeros out the
charging rate of the optimized control (power) action. We
call this saturation phenomenon dynamic capacity saturation
(DCS) [9], [19]. DCS may lead to unexpected power imbal-
ances in the power system. To regulate these unexpected
DCS-induced power imbalances, grid operators must rely on

1A unimodal distribution is one with a clear peak and includes distributions,
such as Gaussian, uniform, and chi-square distributions. For details, please
see [36].
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(expensive) generation to supply the difference based on their
participation factor di, as shown below:

�PGi[k + 1] = −di

∑

i∈Nb

max

{
Si[l + 1] − Si

Ts
, 0

}
. (2)

A. Chance Constrained Formulation

Chance constrained optimization is employed to reduce the
risk of DCS and to solve an optimization problem with uncer-
tain parameters. The chance constraints should be satisfied
with a predefined probability level 1−ε, where ε ∈ (0, 1) is the
acceptable-worst-case violation level. Reducing risk increases
system reliability and operational cost, which implies a clear
trade-off. Within the context of pay-for-performance ancillary
services [37], the operational costs are defined herein by the
generators’ reference-tracking errors.

Chance constrained optimization problems can be solved
with a probabilistically robust scheme, inspired by the so-
called scenario approach. In the scenario approach, the chance
constraint is substituted with a finite, but large number of
deterministic constraints corresponding to different realiza-
tions of the underlying uncertainty space [38]. By employing
an adequate number of scenarios from this set (i.e., N >> 1),
the approach is able to provide a-priori guarantees of sat-
isfying the chance constraint. The scenario-based approach
is useful in offline planning studies when the uncertainty is
complex and captured via historical data, as it makes no
assumption on the underlying distribution of the uncertainty.
However, the number of scenarios required is a function of ε

and the number of uncertain parameters can grow very large.
If the underlying problem is convex, there exists techniques
to reduce the number of scenarios and mitigate computa-
tion by reformulating the problem into a robust optimization
problem [39].

Indeed, if an accurate analytical model of the uncertainty
distribution is known, the method analytical reformulation
can be employed to transform the chance constraint into a
robust, deterministic constraint [40]. In contrast to the sce-
nario approach, the analytical reformulation does not require
sampling complex distributions or large data-set. This means
that only a single reformulation for each chance constraint is
needed, which makes implementation tractable at the timescale
of interest [41].

Next, we introduce the chance constraints related to the
uncertain variables of the VESS (i.e., energy capacity and
SOC) and briefly describe the analytical reformulation to
derive a convex program. The formulation is presented with
respect to the upper energy capacity limit of the VESS, but
the lower limit can be handled in a similar manner. Note that
unlike much of the literature of analytical reformulation in
power systems, the work herein focuses on uncertain, con-
trollable (time-coupled) energy resources rather than power
injections.

B. Analytical Reformulation of Chance Constrained Problem

Recall, the evolution of the SOC of the ith VESS over the
prediction horizon (i.e., l ∈ [1, M]), is related to the estimated

SOC of the ith VESS at time k (i.e., Sest
k,i) and charging

(discharging) control actions as follows

Si[l] = Sk,i +
l∑

m=1

�Si[m] (3)

where �Si[l] := �Ts(ηch,iPch,i[l]−η−1
dis,iPdis,i[l]) is the change

of SOC at each timestep due to charging or discharging
actions.

At time k, the estimated SOC of VESS i is assumed
to be a random variable centered on its true mean (i.e.,
Sest

k = Sact
k,i + ξs,i), where the SOC estimation errors denoted

by ξs ∈ RNB , with μs ∈ RNB as its mean and δs ∈ RNB as
its standard deviation. Any VESS technology that does not
directly measure each DER’s energy state frequently requires
a dynamic state estimator that is specific to the model and
information exchanges that underpin each specific VESS.
However, this work makes no assumption on specific estima-
tion and prediction methods. It is only assumed that these
methods are uncertain and that the mean and variance of the
initial SOC estimation errors can be estimated by offline or
online data-driven approaches. In addition, due to the i.i.d.
nature of DERs’ end usage, estimation of the energy capacity
of the ith VESSs can be modeled as a random variable around
its true mean (i.e., Sest,i = Sact,i + ξc,i), where ξc ∈ RNB

denotes the VESSs’ capacity estimation error, with μc ∈ RNB

as its mean and δc ∈ RNB the standard deviation, which can be
determined from data-driven information scheme as in [16].

Then, for ∀i = 1, . . . , NB the following constraints are
equivalent:

P

(
Sact

k,i +
l∑

m=1

�Si[m] − Sact,i ≤ 0

)
≥ 1 − ε (4)

P

(
Sest

k,i − ξs,i +
l∑

m=1

�Si[m] − Sest,i + ξc,i ≤ 0

)
≥ 1 − ε (5)

Sest
k,i +

l∑

m=1

�Si[m] ≤ Sest,i − f −1
i,ε

√
δ2

s,i + δ2
c,i + ρcs

i δc,iδs,i, (6)

where f −1
i,ε denotes a safety-factor function and ρcs

i is the corre-
lation coefficient of capacity and initial SOC estimation error
for VESS i [42]. Thus, robustness against the uncertainties nat-
urally begets an uncertainty margin that is the product of the
safety-factor function and the variances and defines how much
the constraint is tightened. The safety-factor function is defined
by the information available on the underlying distribution
of the uncertainty. For example, if we know that the uncer-
tainty is normally distributed, then the safety-factor function
is given by the (less conservative) inverse cumulative density
function (cdf) of the standard Gaussian distribution. If we do
not know the exact distribution, but have evidence that it is
unimodal, the safety-factor function can be computed numeri-
cally with the Chebyshev generating function (CGF) [36], but
is more conservative. Finally, if we can only estimate first
and second moments of the distribution and have no other
information about the VESS’s uncertainty, then we have to
be robust against arbitrary distributions, which can also be
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Fig. 3. Comparing the effects of having different information available about
the VESS on the VESS’s safety-factor function. Larger values imply more
conservative use of available flexibility. The results in this paper are based on
choosing ε = 0.05.

achieved with the CGF [42]. The CGF allows us to take into
account the severity of potential violations, which produces a
very conservative outcome. This is expected since we do not
assume any information about the distribution and still want
to be robust against ε-worst cases.

Figure 3 illustrates the safety-factor functions for these
different information scenarios. Clearly, knowing the exact
distribution or even information that prescribes a unimodal
distribuution leads to a reduction in conservativeness com-
pared with only knowing the first two moments. The specific
f −1
i,ε for each of these three scenarios can be analytically or

numerically2 computed as:

f −1
i,ε :=

⎧
⎪⎪⎨

⎪⎪⎩

√
1−ε
ε

, forarbitrarydistribution
(

1−ε
eε

)1/1.95
, forunimodulardistribution√

2 erf−1(1 − 2ε), forGaussiandistribution

(7)

The unimodular approximation shown in Fig. 3 is based on
fitting a simple function (dashed green line) to the exact
numerical values from [36] (solid blue line). The approxima-
tion results in a simplified, closed-form safety-factor function
with a relative error less than 15% for ε < 0.20 (and less than
5% for ε < 0.10) and is an inner approximation (i.e., more
conservative).

Remark 2: With an aggregation of flexible loads, knowing
the exact parameters of the VESS (e.g., state of charge and
energy capacity) by measuring each DER separately is chal-
lenging in real-time once coordinating DERs at scale. Thus,
we do not assume we know these values; only that we can
estimate the mean and variance of the parameters. These esti-
mates could come from data analytics that are re-run every
couple of hours or days to update/true-up predictive models
of the energy capacity and SOC estimators. Indeed, sparse
live measurements available to the VESS may improve the
estimates of the underlying distribution online (e.g., detect uni-
modal conditions and reduce moment uncertainty [36]). That
is, sparse live data streams may play an active role in updating
the VESS parameters to reduce conservativeness of the robust
and risk-based schemes [16], [22].

2The safety-factor function for the unimodular distribution presented herein
is a simple analytical approximation based on the exact numerical solution
from [36].

V. RISK-BASED APPROACH

For a given chance constraint P(f (x, ξ) ≤ b) ≥ 1−ε, where
x and ξ are decision and uncertain variables, the magnitude of
constraint violation is a function of ξ and is given by y(ξ) =
f (x, ξ) − b. Negative y indicates constraint satisfaction while
positive y implies constraint violation. The chance constraint
limits the probability of violation (y > 0) to a predefined risk
limit, ε. Since chance-constrained approaches ignore the sever-
ity of the constraint violation, the approaches are conservative
and a closed-loop chance constrained MPC (CC-MPC) imple-
mentation may lead to reduced performance of the system
(by significantly reducing the available flexibility). Authors
in [43], consider the severity of a constraint violation, by
weighting the probability of the constraint violation by the
magnitude of the constraint violation.

In applying chance constraints, there is a clear trade-off
between high reliability (i.e., conservative uncertainty margin
for VESSs) and low nominal cost (i.e., use as much VESS as
possible), which depends on how risk limits are chosen. Risk
limits are generally chosen as a predefined parameters (e.g.,
ε ∈ (0.90 0.99)) based on the importance of the constraint.

Unlike the robust approach that limits the SOC of VESSs
to a predefined robust limit Srob, we propose a novel risk-
based approach that allows the solution to exceed the robust
limit at each point in time. This is possible by introducing
the operating risk, R, which is a new decision variable. Thus,
performance and risks can be co-optimized, which leads to the
following multi-objective optimization problem:

min
PG,Pch,Pdis,R

k+M∑

l=k

J1[l] + J2[l] (8a)

s. t. (1b) to (1p),

Ri[l] = max
(
0, Si[l] − Srob,i

)
, (8b)

Ri[l] ≤ Ri, (8c)

Ri = Sest,i − Srob,i (8d)

where

J1[l] :=
∑

∀i∈Ng

cG,i

(
PG,i[l] − Pref

G,i[l]
)2 +

∑

∀ij∈E
cT,ij

(
�T̂ij[l]

)2

J2[l] :=
∑

∀i∈NB

cR,i(Ri[l])
2

The robust limit can be computed by analytical reformula-
tion or scenario based approach or determined by using expert
knowledge. As the risk-based MPC receives updated estimates
at each time step, the cost of risk, cR, can be designed such
that it penalizes risk early in the horizon and lowers the penalty
later in the horizon. Larger cR indicates higher cost and higher
security and it is necessary to reach a good balance between
risk of a VESS DCS and nominal tracking performance. To
relate the value of improving tracking performance and the
associated increase in operational risk, an efficient frontier
for the tracking performance versus operational risk can be
computed [44].

The risk-based MPC seeks to drive the SOC of VESSs
below the robust limit, but once below the robust limit, there is
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Fig. 4. Illustrating the evolution of the SOC of a VESS with respect to
the estimated capacity and robust bound and the corresponding risk imposed
on the system performance. The variance of uncertainties grow over time
as the distance from current time step increases. The green circles highlight
the points with zero added risk. On the other hand, the red circles demon-
strate when the VESSs’ SOC is greater than the robust limit and takes on an
increased, but weighted risk of DCS.

no incentive to further lower the SOC, as shown in (8b). This
constraint reformulated as a set of linear constraints: 0 ≤ Ri[l]
and Si[l] − Srob,i ≤ Ri[l]. Figure 4 illustrates an example of
the SOC of the VESS with respect to the estimated capacity
of the VESS and its robust limit.

Thus, the three approaches developed herein are: deter-
ministic, robust, and risk-based. They are summarized as
follows:

I. The deterministic method dispatches VESSs with respect
to just the first moment (averages) for the estimated SOC
and predicted energy capacity.

II. The robust method dispatches VESSs with respect
to robust limits calculated with analytic reformulation
(illustrated with the unimodular and Gaussian distribu-
tional assumptions).

III. The risk-based chance constrained (RB-CC) method
co-optimizes reference-tracking performance and oper-
ational risk of DCS. Note that by sweeping cR from
0 → ∞, the performance of the controller changes from
the deterministic approach to the robust approach.

Recall that unlike the existing literature on chance con-
strained optimization in power systems, this work considers
the uncertainty of time-coupled energy variables on a fast time
scale for corrective control.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, the proposed control scheme in Fig. 1 is
demonstrated on an augmented version of the IEEE RTS-96
power system test case. The system is detailed in [45]. All
optimization problems are solved in MATLAB and AMPL
using the solver GUROBI. MPC employs a simplified lin-
ear model to compute all optimal control actions. However,
the plant model is the AC network, with line tempera-
ture computed based on the non-linear thermodynamic IEEE
Standard 738 conductor temperature model to accurately cap-
ture the effects of implementing the MPC actions. The aim of
this case study is to demonstrate generator reference-tracking
performance with uncertain VESSs while considering physical
constraints of the power system. Since no data regarding the

TABLE I
THREE LARGE VESSS SIMULATION PARAMETERS

TABLE II
VESS UNCERTAINTY PARAMETERS

actual estimation errors is available, the estimation errors are
generated from Gaussian distribution, which satisfy the uni-
modular condition. Under this condition, we can compare the
performance of the controller when the robust bound is cho-
sen based on the unimodular (Chebyshev) assumption with
no other knowledge of the distribution and the less conserva-
tive Gaussian assumption. Since the IEEE RTS-96 system is
designed as a highly reliable system with high thermal rat-
ings for lines, nominal thermal ratings are reduced by 40%
to reduce line temperature limits to a range of 60-70◦C. The
network parameters are shown in Table I.

Initially, the system is at steady-state (i.e., generators follow-
ing exactly an economic trajectory and VESS resources being
available for balancing reserves), but at time t = 5 mins, the
system experiences a net-load disturbance (e.g., forecasted net-
load) that requires VESS balancing reserves to provide 10%
decrease in the net-load (i.e., 855 MW) to minimize unnec-
essary generators ramping. In order to have a realistic case,
VESSs are sized and initialized differently as shown in Table I
to compare the performance of the proposed RB-CC method
aginst deterministic and robust approaches, NT = 100 trials
(i.e., realizations) are performed for two different scenarios of
uncertainty as shown in Table II. Since the baseline consump-
tion and consequently the capacity of VESSs are dependent
on the same types of uncertain parameters, capacity estima-
tion errors of VESSs are assumed to be correlated. The sum of
squared error (SSE) of reference tracking of generators over
the entire simulation time

JGen :=
N∑

l=1

∑

i∈Ng

(
PG,i[l] − Pref

G,i[l]
)2

(9)

is used as the tracking MPC performance metric.
To better understand the role of uncertainty on the

performance of the system, the MPC problem is solved under
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TABLE III
COMPARING MEAN AND STANDARD DEVIATION OF TRACKING

PERFORMANCE OF THE MPC (I.E., JGEN ) UNDER FULL-INFORMATION,
DETERMINISTIC, ROBUST, AND RB-CC APPROACHES

the assumption that the true capacity and state of the charges
of the VESSs are available to the controller (full or perfect
information) and shown in Fig. 6. This provides a base-
line against which to compare the tracking performance of
deterministic, robust, and RB-CC approaches. Note that even
under the full information assumption, since the VESSs are
energy-constrained resources, the tracking error is not zero.
That is, the optimal solution involves regulating both gen-
erators and VESS resources against ramp-rate limits. Mean
and standard deviation of the reference tracking of generators
JGen, for full-information, deterministic, robust, and RB-CC
approaches under the different scenarios of uncertainty for
(unimodal) Chebyshev and Gaussian approaches are shown in
Tables III. The robust approach is used as a benchmark to eval-
uate the proficiency of the proposed RB-CC approach. Smaller
SSE, implies lower tracking error. Poor performance of the
deterministic approach is due to dispatching VESSs with-
out considering the second moment of the uncertainty which
increase the risk of DCS. By employing the robust approach,
chances of DCS are low, but the method is overly-conservative,
which under-utilizes the VESS flexibility. However, with the
proposed RB-CC approach, the controller is able to opti-
mally trade off the flexibility available from the VESSs while
explicitly considering the uncertainty by accepted increased
risk when it is most valuable to do so. Therefore, with both
(unimodal) Chebyshev and Gaussian methods, the RB-CC
outperforms the corresponding robust approaches. Note that
the Gaussian method outperforms the unimodal Chebyshev
method (as expected) since the assumption of a Gaussian
distribution is much stronger than a unimodular assumption.
Also, since the unimodal Chebyshev assumption yields a very
conservative robust bound, the RB-CC approach can achieve
significant improvements by taking (a calculated) risk. In fact,
for low uncertainty, the RB-CC (unimodal Chebyshev) has
similar performance to Robust (Gaussian).

Histograms for the total squared tracking error (JGen) for
the deterministic, robust, and RB-CC cases for Gaussian
and Chebyshev robust bound are shown in Fig. 5. Note
that, for both Gaussian and Chebyshev methods, under high

Fig. 5. Histogram of the squared tracking error under deterministic,
robust and RB-CC approaches. For visualization purposes, trials with squared
tracking error of greater than 2000 are categorized in the last bin.

Fig. 6. Cumulative squared tracking error (bottom plot) and evolution of
the energy state of the charge of the VESSs (top plot) under full information,
deterministic, robust, RB-CC approaches for one randomly chosen trial.

levels of uncertainty, the deterministic formulation becomes
susceptible to DCS, which reduces average closed-loop track-
ing performance while the RB-CC formulation outperforms
the robust approach.

It is shown that regardless of how the robust bound is chosen
(e.g., Chebyshev, Gaussian), the corresponding RB-CC outper-
forms the Robust approach. Therefore, for the rest of the paper,
we focus on the unimodal Chebyshev method, which does not
need exact knowledge of the underlying VESS distributions.

Figure 6 shows the cumulative generator squared tracking
error and time-series evolution of the SOC of the VESSs for
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Fig. 7. Role of the risk cost, cR on the tracking performance and the total
risk imposed to the power system.

one of the 100 trials. The robust approach dispatches VESSs
considering their robust SOC limit, which results in reduced
tracking error performance at the beginning compare to the
deterministic approach. However, as time goes on and the
SOC of VESSs approach their limits, the chance of DCS and,
consequently, the need for corrective actions increases, which
results in reduced tracking performance for the deterministic
case. Since the RB-CC approach explicitly considers the risk-
performance trade off in the optimization, DCS is prevented
and high tracking performance is achieved.

To further investigate the effectiveness of the proposed
method, the three large VESSs (one located in each region),
are replaced by nine smaller VESSs (three located in each
region) and location and parameters of small VESSs are shown
in Table IV. To have a realistic case, VESSs are designed to
have different capacity and initial SOC. Intuitively, smaller
VESSs should reduce the severity of DCS events, but increase
their frequency. The same analysis has been carried out on the
system with the small VESSs under high uncertainty scenario
and as results are shown in Fig. 7 and Table V, the RB-CC
outperforms the robust approach significantly.

To illustrate the role of risk cost, cR, on the tracking
performance and total risk imposed to the power system, we
scale the risk cost, cR ∈ [0, 100] where cR ≈ 0 begets the
Deterministic approach and cR > 40 approximates the Robust
approach. Figure 7 shows the optimal trade-off between the
tracking performance JGen, total operational risk that MPC
accepts and risk cost. As expected, for small cR, the con-
troller dispatches VESSs with respect to the expected energy
capacity limit, disregarding the robust limit. This results in
larger total risk, more DCS and poor tracking performance.
For large cR, VESSs are dispatched conservatively and while
the VESSs are dispatched at a very low risk level, parts of the
flexibility offered by VESSs are declined.

VII. CONCLUSION AND FUTURE WORK

This paper studies the performance of a bi-level receding
horizon predictive optimal power flow problem for manag-
ing variability with uncertain, flexible grid assets, such as
VESSs. Since the SOC and capacity of VESSs can not be
measured directly, a dynamic state estimator and simplified
VESS aggregate model must be employed, which introduce

TABLE IV
PARAMETERS OF NINE SMALL VESSS

TABLE V
NINE SMALL VESSS UNDER HIGH UNCERTAINTY

Fig. 8. Performances of the deterministic, robust and RB-CC method are
analyzed in presence of nine VESSs (three in each region). (left) Comparing
average tracking performance of deterministic, robust and RB-CC approaches.
(right) Histogram of the squared tracking error under deterministic, robust and
RB-CC approaches. For visualization purposes, trials with squared tracking
error of greater than 2000 are categorized in the last bin.

uncertainty. This uncertainty in energy-constrained resources
gives rise to the notion of dynamic capacity saturation (DCS).
To overcome DCS, uncertainty can be managed by employ-
ing robust approaches. However, there is a sensitive trade-off
between robustness of the optimized dispatch and closed-loop
performance of the system. Indeed, robust approaches may
lead to a conservative (high-cost) solution. Therefore, we intro-
duced a RB-CC approach under which the operational risk is
optimized with respect to the dynamic states of the VESSs
over a receding horizon. The numerical studies indicate that
RB-CC outperforms other methods and significantly reduces
DCS while maintaining good tracking performance.

Future work will focus on further reducing conservative-
ness by augmenting the VESS uncertainty models with finite
distributional support since we know that state-of-charge and
energy capacities are non-negative entities [42]. However,
finite distributional support gives rise to additional linear
matrix inequalities (LMIs), which turns the formulation into
a semi-definite program (SDP), which is numerically more
sensitive than what is presented herein. In addition, while
the simulation results herein include a correlation between
the VESSs’ capacity estimation errors, we are interested in
further generalizing sources of uncertainty and correlations
between the VESSs. For example, the role of uncertain VESS
power limit forecasts on corrective dispatch are of theoretical
and practical interest. Secondly, we are interested in studying
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how managing uncertainty in the VESS with the risk-based
approach affects the line-temperature regulation problem in
the presence of disturbances from renewable generation. The
problem formulation can already support this study, but the
focus is different from what is presented so far. Finally, we
are interested to explore linearized or convex AC formula-
tions that can actively correct any possible voltage excursions
to ensure that voltage profiles can be regulated effectively.
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