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Abstract— Stochastic Linearization (SL) is a method of
linearizing a nonlinearity that, unlike traditional Jacobian
linearization that is valid only close to the operating point, uses
statistical properties of the input to render the linearization fairly
accurate over a wide range of inputs. In this paper, the method of
SL is applied to optimally design controllers for an aggregation of
distributed energy resources (DERs), called a virtual battery (VB),
by taking into account the solar penetration levels, grid parameters,
and the VB power limits. Analysis and simulation results show
that VB performance can be greatly improved over a baseline
design that ignores VB power limits, and that the controllers
can be adaptively designed to effectively respond to changes in
system parameters. This proves to be a new method for designing
controllers to improve the participation of power-constrained VBs.

I. INTRODUCTION

With increased penetration of renewable generation like solar
photovoltaic (PV), coordinated control of demand-side distributed
energy resources (DERs) in distribution feeders is becoming vital
to supporting a clean energy future. Many works in this area
propose novel control architectures to coordinate and control these
resources. For example, in [1], [2], methods for load frequency
control using DERs are described. In [3], the active and reactive
power of DERs are controlled using information exchange with
neighboring DERs, while in [4], a model predictive control-based
approach is taken. Moreover, a virtual battery (VB) is an abstrac-
tion, i.e., a modeling tool, to capture the flexibility and dynamics of
aggregations of DERs [5]–[7] that enables analysis and design of
controllers. Generally, the objective of VB control (ignoring grid
constraints) is to maximize revenue [8]. Hence, if the output power
of the VBs are controlled, as we seek to achieve this objective, the
VBs may be pushed to their energy or power limits. This requires
controller design to be cognizant of power/energy limits.

While most works on hierarchical control of DERs (e.g. [9])
mainly consider using frequency and voltage droop characteristics
to generate power set-points for DERs using local measurements of
frequency and voltage and compensating for the deviations, in [10],
a previous work by the authors, a novel hierarchical framework for
control of VBs in distribution feeders was proposed, wherein the
deviation in the head node power of the feeder from an economic
trajectory was minimized instead. Unlike most local droop-based
control strategies that are generally not cognizant of the network,
the design of the controller gains was done based on the grid topol-
ogy and device constraints, using the concept of a VB, with power
and energy saturation limits, to represent an aggregation of DERs.

Existing works to tune controller parameters based on saturation
limits are either heuristic [10], or the parameters are not optimized
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[11], which means the full potential of VBs is not unleashed.
Furthermore, no work adaptively retunes the controller parameters
to take into account variable saturation levels using real-time data.
In the case of tuning PID controllers [12], there exist methods like
the Cohen Coon, Internal Model Control, and Ziegler Nichols,
but they also do not provide a mechanism to include the saturation
nonlinearity in the design process. From a technical standpoint,
the challenge is that saturation represents a nonlinearity and the
grid is driven by stochastic inputs, a class of systems for which
control design tools are limited.

While there exist methods for analysis and design of nonlinear
systems in their original form [13], they are usually hard to
implement in practice. Hence, the usual practice is to perform
Jacobian linearization of the system at an operating point, by
evaluating the gradient of the nonlinear function at the operating
point and replacing the nonlinearity with an affine approximation
at that point, and then leverage the methods of linear systems
theory [14], [15]. However, such an approximation is valid
only locally and fails to approximate the behavior in the case
of stochastic inputs that may drive the system away from
the operating point. Quasilinear Control (QLC) is a recently
developed theory for the analysis and design of nonlinear systems
driven by stochastic inputs [16], [17]. It is based on Stochastic
Linearization (SL), which is a method of linearizing a nonlinearity
using the statistical properties of the input to the nonlinearity.
Unlike traditional Jacobian linearization, on which linear control
is based, SL is a global method of linearization that takes into
account both the parameters of the nonlinear system and the
statistical properties of the exogenous signals driving the system.

There is a significant body of literature in the field of SL. An
overview of the prominent works can be found in [18], [19].
The theory of QLC applies SL to nonlinear feedback systems
frequently encountered by control engineers, extending traditional
control techniques like the root-locus design to stochastic systems
[16], [17], [20], [21]. In [16], the nonlinearities considered are
single-variable and symmetric, while in [17], [20], QLC was
extended to asymmetric nonlinearities. QLC was extended to
multivariate nonlinearities in [22]. SL has been applied to various
control systems with saturation in [20] and time-delays in [21].
In [23], a previous work by the authors, SL was applied for
optimal primary frequency control of power systems with a single
generator saturation.

In this paper, the technique of SL is leveraged to optimally con-
trol VBs. Specifically, this paper illustrates the advantages of using
an SL-based optimization compared to the optimal VB controller
described in [10], [24]. While existing design methods (for linear
controller design of systems with saturation) based on Lyapunov
functions and LMIs [13], [25] treat the saturation as a sector-



bounded nonlinearity and, hence, lead to conservative designs, our
goal is to achieve a non-conservative, optimal design, though with
a small approximation error due to SL. Specifically, we show in
this paper that compared to a baseline design, SL results in more
accurate estimation of signal statistics, SL-based optimization can
reduce head node power deviation from nominal while optimizing
VB usage, and that SL-based optimization can use updated
information to update the controller parameters, i.e., can be made
adaptive. Thus, the original contributions of this paper are:
• An SL-based optimal controller design for control of

networked VBs with fixed power limits (i.e., by modeling
the limits by a univariate saturation function),

• Adaptive SL-based design of VB controllers using real-time
data,

• Analysis on the effect of various system parameters on the
optimization, and

• Simulation-based analysis of the SL-based design to VBs
with variable power limits (i.e., by modeling the limits by
a trivariate saturation function).

The outline of the rest of the paper is as follows. Section II
describes the modeling of VBs and the optimization problem.
Section III briefly reviews SL. Section IV showcases the
advantages of an SL-based optimization over a non-SL based
optimization in improving VB usage while attaining the grid
objective. In Section V, analyses are provided to explore the effect
of various parameters on the capabilities of this method. Section
VI extends the design to VBs with variable power limits. Finally,
Section VII concludes the paper.

II. MODELING AND PROBLEM FORMULATION

A. Virtual Battery Model

In this paper, aggregated DERs are modeled as a VB (consistent
with abstractions in [5], [26], [27]) with a saturation in power
delivered, defined by the lower and upper power limits, Pmin
and Pmax, respectively. The VB is assumed to be operating at a
nominal power set-point denoted by Pset (which can be computed,
for example, optimally at a slower time-scale, as described in
[10]). The input and output of the VB are related by the following
transfer function:

Pu(s)

Pin(s)
=
e−Tds

τs+1
(1)

where Pu(s) is the Laplace transform of the unsaturated output of
the VB, pu(t), and Pin(s) that of the power desired (input) from
the VB, pin(t), τ is a first-order lag, and Td is a pure time delay.

The model of (1) is obtained by taking into account the
following facts [10]: i) The DERs composing a VB turn on/off
(possibly) sequentially, and power electronic components present
inside each VB, both contribute to a net lag τ ; ii) There are
communication delays (generally of the order of 200 ms) between
the head node of the feeder and each VB [28], [29], and delays
associated with disaggregating the control signal into device-level
signals [30]. The delays we consider in the VB model (Td) are
of both these types lumped together.

Defining u(t) := Pu(t) − Pset, the saturated output of the
VB is then Pb(t) = Pset + satβα(u(t)), where α := Pmin −Pset,

Fig. 1: Nonlinear Feedback System

Fig. 2: Stochastically Linearized System
β := Pmax−Pset, since the DC gains of the first-order transfer
function and of the time delay are both unity, and

satβα(u)=


β, u≥β
u, α<u<β

α, u≤α
. (2)

B. Problem Setup

Consider a distribution feeder with sets of distributed energy
resources (DERs) modeled by VBs (as in the previous subsection)
located at its various nodes. The objective is to control the head
node active power demand of the feeder, such that it tracks an
economic reference by rejecting uncontrolled nodal disturbances,
using available flexibility of the DERs. The control scheme is
shown in Fig. 1, and is adapted from [10]. It consists essentially of a
bank of proportional controllersKi that multiply the error between
the head node power ph(t) of the feeder and a desired economic
trajectory Puf(t) to control the ith VB with the model described
in Section II-A (with suffix i added in all the parameters).

As described in [10], [24], the gains Ki in Fig. 1 can be
designed optimally by first (Jacobian) linearizing the feeder at an
operating point, depending on the nominal set-point Pset,i of the
ith VB and the base load, neglecting the power saturation in the
VBs (see Fig. 2, but withNi=1 andmi=0 - these will be defined
later - essentially, this means locally linearizing all saturations and
removing them from the analysis). This linearization leads to gains
Api, which indicate the sensitivities of the head node active power
of the feeder to the corresponding nodal active power injections.
Next, a stationary Gaussian stochastic process is assumed as
nodal disturbance (representing aggregate random fluctuations
in solar PV over possibly a large geographic region [31]) with
mean µd and standard deviation (SD) σd, and anmth order Padé
approximationRm(Tdis) is assumed for the delay. The gains are
then chosen by minimizing the sum of the variance of the tracking
error, p̂e(t), denoted by σ2

p̂e
, and a weighted sum of the variances

of the control inputs to the VBs, p̂in,i(t), denoted by σ2
p̂in,i

:

minimizeσ2
p̂e +ρ

n∑
i=1

σ2
p̂in,i

(3)

where the variances are computed using the H2-norm of the
transfer functions from the standard white Gaussian noise wd(t)



to p̂e(t) and p̂in,i(t) (setting µd = 0), and ρ > 0 is a constant
chosen according to the power capacity of the VBs.

However, the optimization problem (3) does not include the
saturation nonlinearities due to VB power limits. Note that while
the nonlinear feeder can be linearized with Jacobian linearization,
the saturation nonlinearities in the VBs cannot. This is because the
power flows in the nonlinear system due to nodal injections are
close to that predicted by the linearized feeder and do not change
their region of operation drastically. However, when VBs are
nearly saturated, even a small disturbance can change the region
of operation (by saturating), rendering a Jacobian linearization
inaccurate. Moreover, although the control penalty ρ can be
chosen to be inversely proportional to the power capacity of the
VBs, as done in [10], it is difficult to choose it according to the
saturation level of the VBs and is rather heuristic. Hence, the
focus of this paper is to overcome these problems by leveraging
SL instead of Jacobian linearization to linearize the saturation
functions. The method of SL provides a method to systematically
include the saturation authorities and the saturation level (based
on the operating point) of the VBs into the optimization problem.
Also, it utilizes the statistical properties of the disturbance signal
to linearize the system. In the next section, the procedure of SL
is reviewed before using it to solve the above problem.

III. BRIEF REVIEW OF STOCHASTIC LINEARIZATION

A. Open-Loop

Consider a nonlinear system described by the following
input-output relationship v(t)=f(u(t)), where u(t) is a stationary
Gaussian random process, v(t) is the output and f : R → R
is a piece-wise differentiable function satisfying the following
properties [32]:

1) ∂f
∂u exists and is continuous almost everywhere;

2) |f(u)|<Aexp(ua), a<2, for someA∈R and any u∈R.
The above properties essentially ensure that the derivative of
f(·) is integrable, which is required for the derivation of the SL
coefficients. Please refer to [32] for details.

The objective of SL is to approximate this nonlinearity by v̂(t)=
Nu0(t)+M , where u0(t) =u(t)−µu is the zero-mean part of
the input u(t), µu the mean of u(t) and v̂(t) the output of the
linear approximation, such that the mean square differenceE[(v−
v̂)2] is minimized [17], [19]. Here the parameterN is called the
quasilinear gain andM the quasilinear bias. For convenient block
diagram manipulation, it is convenient to evaluatem=M−Nµu,
such that v̂(t)=Nu(t)+m (since, in a control system, we do not
have ready access to u0(t), but to u(t)). It can be shown [17]:

N=E[f ′(u(t))], M=E[f(u(t))] (4)

where the expectation is taken with respect to the probability
density function (PDF) of the input u(t).

Specifically, for the saturation nonlinearity defined in (2),
which is piece-wise differentiable, the values of N and M can
be computed from:

N=
1

2

[
erf
(
β−µu√

2σu

)
−erf

(
α−µu√

2σu

)]
=:FN(µu,σu) (5)

M=
α+β

2
+
µu−β

2
erf
(
β−µu√

2σu

)

−µu−α
2

erf
(
α−µu√

2σu

)
− σu√

2π

{
exp

[
−
(
β−µu√

2σu

)2
]

−exp

[
−
(
α−µu√

2σu

)2
]}

=:FM(µu,σu) (6)

where σu is the SD of u(t), erf(x) = 2√
π

∫ x
0
e−t

2

dt is the error
function, and FN(·,·) and FM(·,·) are functions defined to show
the dependence of N and M on µu and σu. For more details,
please refer to [17], [20].

B. Closed-Loop

Now consider that the nonlinearity f(·) is present inside a
closed-loop system that is otherwise linear. As can be seen from
(4), to find the SL of this nonlinearity, we need the PDF of the
input to this nonlinearity, u(t). However, since the input signal de-
pends on the nonlinearity’s output through the feedback loop, such
PDF is not readily available. Hence, we assume that the system has
been stochastically linearized and that the moments (specifically,
the mean µu and SD, σu) of the input to the nonlinearity, u(t), are
approximated by the corresponding moments of the corresponding
input û(t) (µû and σû) in the linearized system (this leads to only a
small error for plants with a low-pass filtering nature [17]), and pro-
ceed with the SL of the nonlinearity as in the open-loop case using
(4) [18]. However, note that, in this case, µû and σû themselves de-
pend onN andM due to feedback and can be written as a function
of system parameters and reference/disturbance statistics using the
H2-norm and DC gains of the corresponding transfer functions, as
shown in the next section. Hence, closed-loop SL involves solving
the following transcendental equations inN andM :

N=FN(µû(M),σû(N)), M=FM(µû(M),σû(N)) (7)

where FN and FM are as defined in (5)-(6). MATLAB®’s
fsolve command provides a convenient way to solve these
equations numerically. This completes the process of SL.

IV. OPTIMAL CONTROLLER DESIGN FOR
VIRTUAL BATTERIES USING STOCHASTIC LINEARIZATION

In this section, the procedure of SL is applied to the optimal
controller design for VBs, and simulation results are shown to
illustrate the effectiveness of the approach.

A. Formulation using SL

Leveraging the method of SL, the nonlinear system in Fig. 1 can
be approximated using (7) by an equivalent linear system shown
in Fig. 2, where the saturation function for the ith VB, satβiαi

(ui),
has been replaced by an equivalent quasilinear gainNi and a bias
mi =Mi−Niµûi such that Mi is the quasilinear bias and µûi
is the mean of the input to the saturation, ûi(t)=Pû,i(t)−Pset,i.

As seen from (7), calculation ofNi,Mi requires knowledge of
µûi, and σûi, and hence, these variables depend on each other and
all other system parameters. Considering that the system is operat-
ing in the stationary regime, the values of σûi can be found using
the transfer function from the nodal disturbance wd(t) to P̂u,i(t):

σûi=

∥∥∥∥∥ FΩd
(s)Ki

1
1+sτi

Rm(Tdis)

1+
∑n
i=1Ki

1
1+sτi

Rm(Tdis)NiApi

∥∥∥∥∥
2

σd (8)



(a) VB Usage - No SL (b) VB Usage - SL

(c) Head node power - No SL (d) Head node power - SL

Fig. 3: VB Usage and Head Node Power. This is for VBs with
fixed power limits (i.e., univariate saturation).

The values of µûi can be obtained by finding the transfer functions
from µd, andmi to P̂u,i(t) and evaluating their DC gains, which
leads to:

µûi=(Puf−µd−
n∑
j=1

MjApj)Ki (9)

whereMj are functions of µûi and σûi, obtained using (6).
The values ofNi,Mi can thus be found by substituting (8)-(9)

into (7) for eachNi,Mi, σûi and µûi , which results in a system
of 2n transcendental equations in the unknowns Ni and Mi, for
i= 1,...,n. Note that compared to Jacobian linearization, which
assumes Ni = 1, mi = 0, SL provides 0<Ni < 1 and mi not
necessarily 0, such that the statistical properties of the signals in the
linearized system and the nonlinear system match closely. Thus,
SL-based optimization involves formulating the optimization
problem described in (3) by considering the values of Ni, Mi

(and thusmi=Mi−Niµûi) while evaluating σP̂e
and σP̂in,i

:

minimize σ2
P̂e

+ρ
∑n
i=1σ

2
P̂in,i

subject to: (8),(9),i=1,2,...,n
Ni=FN(µû(Mi),σûi(Ni)),i=1,2,...,n
Mi=FM(µû(Mi),σûi(Ni)),i=1,2,...,n

(10)

where:

σP̂e
=

∥∥∥∥∥ FΩd
(s)Ki

1+
∑n
i=1Ki

1
1+sτi

Rm(Tdis)NiApi

∥∥∥∥∥
2

σd

and σP̂in,i
=KiσP̂e

.
Note that (10) defines a static optimization problem that

is dependent on system parameters (like σd) that can be
estimated and/or measured. If the system parameters change,
the optimization can be re-done. This adaptive nature of SL is
discussed in more detail in Section IV-C.

B. Simulation

1) Setup: The simulation setup consists of an IEEE 37-node
feeder (single-phase equivalent) [33], with two VBs at two

TABLE I: Signal Statistics

Quantity With
No SL With SL Improve-

ment (%)
SD of VB 1 Power (P) 15.2 kW 9.9 kW 35.2
SD of VB 2 P 14.8 kW 10.3 kW 30.1
Mean of Head Node P 713.8 kW 709.2 kW 0.6
SD of Head Node P 33.9 kW 30.0 kW 11.8
Cost 3609.3 kW2 1121.9 kW2 68.9

(a) Non-SL (b) SL

Fig. 4: Optimal Cost, evaluated over one minute intervals. Y-axis
is in log scale.

different nodes (specifically, 701 and 737), where the base loads
are 140 kW each. The upper and lower power limits of the VBs
are taken to be 20 kW and -20 kW respectively. The nominal
power set-points are optimally found to be 20 and 18 kW (using
the optimal set-point dispatcher described in [10]) to meet a head
node power demand of 700 kW, resulting in a highly saturated
system. The maximum state-of-charge capacities of the VBs were
taken to be 80 kWh (representing a maximum of four hours of
operation at maximum power capacity) each. The time constants
of the first-order VB model were taken to be 600 ms and 400
ms respectively, and the time delays to be 100 ms and 200 ms
respectively. We assume Gaussian random active and reactive
power noise injected into certain locations of the feeder (as is
expected, for example, due to random cloud cover). A 10 min
simulation was performed using both the SL-based optimization
and the non-SL-based optimization to illustrate the effectiveness
of SL. The value of ρ was assumed to be 0.1 and a 3rd order Padé
approximation was considered for the delays in both cases.

2) Results and Discussion: Fig. 3 shows the power delivered
by one of the VBs, both by not using SL (Fig. 3a) and using SL
(Fig. 3b). It can be seen that there is significant saturation using
the controller gains designed without SL. This is because there is
no knowledge of VB power bounds in that design. Moreover, the
variability of the head node power shown in Fig. 3c is also high.
However, with SL-based design, the saturation and variability of
VB power are significantly reduced, along with a reduction in the
head node power deviation (Fig. 3d) from the desired value of 700
kW. The mean and SDs of the signals were found numerically
after the simulations, and the improvements are summarized in
Table I. Note that although a single simulation is reported here
to illustrate the effectiveness of SL, other simulations performed
with the similar conditions also resulted in similar improvements
with SL. Of course, the exact system parameters will dictate how
effective SL will be in a given situation, and we discuss the effect
of some system parameters in Section V.



Fig. 5: Headnode power. Statistics are evaluated over one minute
intervals.

(a) Non-SL (b) SL

Fig. 6: Saturation of VBs

C. Data Driven SL Formulation

Since the SL process mentioned in the previous section takes
into account all system parameters (as in (10)), the controller
gains can be designed adaptively, considering changes in system
parameters (such as saturation limits in VB power) or exogenous
signal statistics (such as the mean and SD of the head node power).
In situations when these parameters can be estimated using
real-time data, e.g., using Kalman filters, recursive least squares,
or running averages [34]), the controller gains can be adaptively
re-tuned based on this data. If done sufficiently slowly, the system
stability is not comprised, though the proof of this is a topic for
future research. This subsection illustrates the effectiveness of SL
for adaptive control of VBs by using updated head node power
statistics at regular intervals.

1) Setup: The same system is considered as described in Sec-
tion IV-B.1. However, in this case, the disturbance statistics µd and
σd are estimated over a running window of two minutes using mea-
sured head node statistics and the linearized system model. The
VB optimization problem is run every minute using updated head
node power (over the last two minutes), first by not using SL and
then using SL. As before, ρ was assumed to be 0.1 in both cases.

2) Results and Discussion: First, the results indicate several
advantages of an SL-based optimization over a non-SL based
optimization. For instance, Fig. 4 shows the calculated (using (8)-
(10)) and actual optimal cost (by numerical simulation) over every
one minute interval. It can be seen that non-SL based optimization
method grossly underestimates the cost that it minimizes (Fig. 4),
by more than an order of magnitude, whereas the SL based opti-
mization, due to knowledge of updated VB bounds and noise statis-
tics, estimates the cost more accurately. Moreover, using the im-
proved estimation of the statistics of the error and the control input
in SL-based optimization, a slightly lower value of SD can be ob-
tained and the mean of the head node power with SL is also slightly

(a) Controller Gain 1 (b) Controller Gain 2

Fig. 7: Controller Gains

closer to the desired value (Fig. 5). The mean is lower due to the ad-
ditional bias term that is added due to SL in the operating points of
the VBs. With SL, the amount of saturation in VB power is reduced
by about 10-30% (Fig. 6), indicating that VBs are being pushed
lesser to their limits. This is a major advantage of an SL-based
design compared to the non-SL-based design and results in much
lesser usage of power to achieve the same or better grid objective.

Second, the adaptive nature of SL is specifically highlighted in
Fig. 7. Unlike the non-SL based optimization, whose solution (i.e.,
optimal gains) is independent of noise statistics or VB bounds
(since σ2

d is just a multiplying factor for, and µd does not feature
in, the objective function (10), whileNi=1 andmi=0 always),
the SL-based optimization takes into account this information
about the system to find the quasilinear gain/bias and updates the
gain accordingly (Fig. 7). Hence, the SL-based optimization is
adaptive, unlike the non-SL based optimization.

V. ANALYSIS ON EFFECT OF PARAMETERS

In this section, we provide the results of simulations to show the
effect of various system parameters on the SL-based optimization
procedure. This provides various insights into the design and
analysis of nonlinear stochastic systems using SL.

A. Effect of Control Penalty

First, the value of the control penalty ρ is varied. In this specific
study, the delay is neglected. This is because delays are not
accurately modeled when the bandwidth of the control system
is high, which can occur with high values of controller gains, or
due to modeling errors resulting from discrete-time simulation of
the continuous-time system, unless the sampling time is very small.

The effect of ρ on the optimal cost is displayed in Fig. 8a.
The solid lines show the value of the cost obtained numerically
from a 10-minute simulation of the VBs, while the dotted lines
show the calculated cost. It can be seen that with small ρ, the
non-SL-based design is not able to reduce the actual cost due to
no knowledge of bounds. Effectively, for very small ρ, the control
input is not penalized much, and hence its variability is high and
the VB ouput is saturated. For large ρ, the costs from both the
non-SL and the SL-based optimizations converge since, for large
ρ, the control action is highly penalized, and thus there is no VB
saturation. However, SL captures the cost more accurately due
to the knowledge of bounds, and hence, it can make the actual
cost smaller even for small values of ρ.

B. Effect of the number of VBs

Since SL involves solving a system of transcendental equations,
the computational complexity increases as the number of



(a) Effect of ρ. Axes are in log scale. (b) No. of SL function evaluations vs.
number of VBs

Fig. 8: Effect of VBs on SL and optimization

equations increases. For each VB added, there are added two
equations involving Ni and Mi. To quantify the computational
complexity, the number of evaluations of the SL functions for
fixed controller gains were noted as the number of VBs were
increased. This would roughly indicate a lower bound on the
number of evaluations required of the SL functions when they are
part of the optimization problem as equality constraints, as solving
the optimization problem involves finding a solution to these
SL equations. The equations were solved using a modification
of the Powell hybrid method, as implemented in MINPACK
[35] (other numerical methods were also tried, like the Broyden
method, but this was the best in terms of the number of function
evaluations). The results are shown in Fig. 8b. It can be seen that
with the increase in the number of VBs, the number of function
evaluations (for solving SL equations with fixed controller gains)
also increases, indicating that SL becomes more computationally
expensive, but grows polynomially rather than exponentially.

VI. EXTENSION
TO VARIABLE VIRTUAL BATTERY POWER BOUNDS

A. Modeling

In practice, the power limits of the VB’s underlying DER
aggregation are generally not constant [7]. The DERs that make
up a VB can choose not to participate in providing grid services
due to user preferences or to avoid Quality-of-Service (QoS)
violations, leading to a change in the power and energy limits.
To deal with such a case, a trivariate saturation in the VB model
can be considered, where instead of the saturation authoritiesα and
β being constants in (2), they are time-varying, i.e., α(t) and β(t):

satβ(t)
α(t)(u(t))=


β(t), u(t)≥β(t)

u(t), α(t)<u<β(t)

α(t), u(t)≤α(t)

(11)

when α(t) < β(t), and 0 otherwise (since then there is no
flexibility and the VB output is nominal, i.e., pb(t)=Pset).

B. Multivariable SL

1) Open-Loop: Equation (11) describes a trivariate nonlinearity.
To find SL of this nonlinearity, (4) is not applicable. Hence, we
apply the procedure of multivariable SL described in [22], where
instead of (4), the quasilinear gain N vector and the bias M are
computed for a multivariate function f : Rn→R using:

N=E[∇f(u(t))]:=GN(µ,Σ), M=E[f(u(t))]:=GM(µ,Σ)
(12)

(a) No SL (b) With SL

Fig. 9: VB Actuation. The red lines indicate time-varying power
limits.

where GN(·, ·) and GM(·, ·) are functions representing the
dependence of N and M on µ and Σ, the mean and covariance
matrix of u(t) respectively. Note that µ is composed of µu, µα,
and µβ (the means of the inputs u(t), α(t), and β(t), respectively),
and the covariance matrix Σ is composed of σu, σα, and σβ
(their corresponding SDs), and ρuα, ραβ, and ρuβ (the correlation
coefficient between u(t) and α(t), that between α(t) and β(t),
and that between u(t) and β(t) respectively). Assuming that α(t),
β(t), and u(t) form a trivariate Gaussian process, on substituting
the nonlinear function (11) for f(·) in (12), the value ofN can be
found as follows: N = [N1N2N3]T =E[∇sat(u(t),α(t),β(t))].
Here note that since the saturation function is not differentiable
at certain points, the gradient∇ has to be taken piecewise.

2) Closed-Loop: Now consider the feedback system of Fig.
1, but with trivariate saturation in VBs instead of univariate
saturation. Since αi(t) and βi(t) are intrinsic properties of the
ith VB and are not influenced by the nodal disturbance d(t), we
assume that the values of µαi, µβi, σαi, σβi, ρuαi, ραβi, and ρuβi
are known (based on, e.g., historical data), and evaluate µûi and
σûi as before from (8)-(9), in place of µui and σui (due to the
same reason mentioned in Section III-B). Then, similar to (7), the
SL of the closed-loop system is performed by solving:

Ni=GN(µ̂i(M),Σ̂i(N)), Mi=GM(µ̂i(M),Σ̂i(N))

where µ̂i and Σ̂i in the stochastically linearized system denote
the moments corresponding to µi and Σi in the nonlinear system.
This completes the SL procedure of the closed-loop system. For
more details, please refer to [22].

C. Simulation

1) Setup: To illustrate the SL of the system with trivariate
saturation, an IEEE 37-node feeder with a VB of 600 ms time
constant and 100 ms time delay at one of its nodes was considered
for the simulation. The time-varying upper and lower power
limits of the VB were taken to Gaussian, with 40 and−40 kW as
mean respectively, and 6 kW as the SD (for both limits). For the
optimization, the value of ρ was taken to be 0.1. The power limits
were assumed to be uncorrelated to the input to the saturation.

2) Results: The results are shown in Fig. 9. It can be seen that
with SL, the VB power is significantly less variable than that by
not using SL. The SD of the VB power in case of no SL is 28.5
kW and that with SL is 14.9 kW (an improvement of 47.7%). The
mean head node power with no SL is 715.1 kW and with SL is
710.2 kW (an improvement of 0.7%) while the SD of the head
node power with no SL is 32.6 kW and with SL, it is 29.7 kW
(an improvement of 8.9%). The overall cost function improved



from 9826.5 kW2 (no SL) to 1042.3 kW2 (SL), an improvement
of 89%. Moreover, it was observed that if the VB power limits
were not assumed stochastic while designing the controller gains,
but in reality they were, the actual optimal cost would increase
by 2.3%, the SD of VB power by 6%, and the head node power
mean by 0.1%. These serve as preliminary results to illustrate that
variable power bounds can be handled in the context of VBs. A
full exposition of this idea is a topic for the future.

VII. CONCLUSION

In this paper, an SL-based method of optimizing the power
delivered by VBs in distribution feeders is described. Since SL
takes into account VB power limits and other system parameters,
it provides a superior method of analysis and design of gains op-
timally. Simulation results show that compared to a non-SL-based
optimization, SL results in a more accurate estimation of signal
statistics. They also indicate that SL-based optimization can reduce
head node power deviation from the nominal while optimizing VB
usage and can use updated information to change the gains, i.e.,
is adaptive. Some analysis on the effect of the control penalty ρ in
the cost function shows that even at small values of this parameter,
with proper models of the devices, SL can lead to a reduction in
the cost. Moreover, it is shown that with an increased number of
VBs, the computational complexity of SL increases. Finally, the
design is extended to VBs with variable power limits. Future work
includes conducting studies on the numerical efficiency of the
process, and design using a discrete-time version of SL.
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