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Abstract—Due to their large power draws and increasing adoption
rates, electric vehicles (EVs) will become a significant challenge
for electric distribution grids. However, with proper charging
control strategies, the challenge can be mitigated without the need
for expensive grid reinforcements. This manuscript presents and
analyzes new distributed charging control methods to coordinate EV
charging under nonlinear transformer temperature ratings.

Specifically, we assess the trade-offs between required data commu-
nications, computational efficiency, and optimality guarantees for dif-
ferent control strategies based on a convex relaxation of the underlying
nonlinear transformer temperature dynamics. Classical distributed
control methods such as those based on dual decomposition and
Alternating Direction Method of Multipliers (ADMM) are compared
against the new Augmented Lagrangian-based Alternating Direction
Inexact Newton (ALADIN) method and a novel low-information,
look-ahead version of Packetized Energy Management (PEM). These
algorithms are implemented and analyzed for two case studies on resi-
dential and commercial EV fleets with fixed and variable populations,
respectively. The latter motivates a novel EV hub charging model that
captures arrivals and departures. Simulation results validate the new
methods and provide insights into key trade-offs.

Index Terms—EV charging, fleet, distributed optimization,
packet-based coordination, ADMM, ALADIN, dual decomposition

I. INTRODUCTION

As renewable generation is increasingly deployed, powering our
transportation system from the electric grid, instead of fossil fuels,
will reduce emissions and climate change impacts. In addition,
falling lithium-ion battery prices [1] and low maintenance costs [2]
will further increase adoption rates for both residential and commer-
cial EVs. However, there are certain challenges associated with the
increased adoption of electric vehicles. Specifically, uncoordinated
charging from electric vehicles can lead to demand that exceeds
the rating of the distribution substation power transformer [3]. The
MVA-scale transformers have cores that are immersed in mineral oil
for improved heat transfer. However, EVs will increase the loading
on a transformer and result in a higher hot-spot temperature, which
is the transformers highest internal temperature. The hot-spot tem-
perature is a major factor in transformer wear-and-tear and aging as
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the hot oil will break down the winding insulation faster [4]. To accu-
rately model the transformer hot-spot temperature dynamics, a high-
order, non-linear thermodynamic model, such as the IEEE Standard
C57.91-1995 (e.g., Clause 7 and Annex G) is often used [5]. How-
ever, low-order predictive transformer models (similar to those used
herein) have been a topic of research for many years, including accu-
rate regression-based [6], [7] and machine-learning [8], [9] models
for online estimation and operation and piece-wise linear approxima-
tions [10] for planning purposes. Some of these models are also capa-
ble of adapting to different forced air/direction oil operating modes.

Thus, it is desirable to manage the charging rate of EVs with re-
spect to the transformer’s hot-spot temperature limit and EV-specific
objectives and constraints, which can be formulated as a multi-period
scheduling problem. Due to a potentially large number of EVs and a
long (over-night) prediction horizon, this scheduling problem can be
computationally intensive and require full state information, which
can raise data privacy concerns. Techniques such as primal or dual
decomposition are helpful in decoupling a large scheduling problem
with coupling constraints into many smaller problems. Two classical
algorithms for this purpose are dual decomposition and Alternating
Direction Method of Multipliers (ADMM). In this manuscript, we
present two novel distributed methods and compare them against
the two classical methods in terms of how effectively they converge
to a solution (i.e., processing), the required data communications
(i.e., privacy), and optimality of the solution (i.e., performance).

For a general comparison of non-centralized control techniques
in electric power systems, please see the survey in [11].1 There
are numerous papers that utilize dual decomposition [15], [16] and
the ADMM approaches [17]–[22] to solve various EV charging
problem formulations. Other works employ novel and creative
approaches, such as [23], [24], which coordinate EV charging under
static transformer and voltage constraints using dual decomposition
with reactive power compensation [23] and a shrunken-primal-dual
sub-gradient algorithm that achieves valley-filling (grid-centric)
objectives [24]. In [25]–[27], the authors leverage game theory for
large populations of EVs, where the average charging dynamics
can be steered to a globally optimal solution with fast convergence
on the order of 1-100 iterations depending on system parameters.

The above works focus on specific information scenarios, such as
full information, shared (neighbors), or decentralized (non-shared)
information. However, with increased interest in controlling EV

1We remark that the notions of distributed and decentralized computation are not
unified in the literature. Here we use the terminology from the optimization commu-
nity [12], [13], where distributed computation allows a small amount of central coor-
dination activity and decentralized computation avoids central coordination and relies
on neighbor-to-neighbor communication only. We remark that in the control systems
context, decentralized algorithms do not allow for any communication exchange [11],
[14], while algorithms comprising a coordinator are denoted as hierarchical.
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charging comes a growing concern for protecting EV owners’ infor-
mation. This can be achieved by reducing the need to communicate
information to a central coordinator and, instead, use peer-to-peer
technologies to enable transactive energy trading [28], [29].

In this paper, we compare the privacy offered by the classical
algorithms of Dual Ascent and ADMM and new EV charging algo-
rithms, i.e. the Augmented Lagrangian-based Alternating Direction
Inexact Newton (ALADIN) method [30] and the Packetized Energy
Management (PEM) [31]–[34]. This comparison is based on protect-
ing valuable customer information, such as personal travel schedules.
To the best of the authors’ knowledge, there is limited work that
develops and compares non-centralized EV charging algorithms
subject to dynamic capacity constraints. For example, [22] computes
the optimal scheduling of EVs under static capacity constraints
and compares the trade-off between the convergence speed and
the amount of communication required. However, the study only
considers different combinations of two similar algorithms and
neglects the transformer temperature dynamics.

Furthermore, while much of literature focuses on residential EV
charging, fewer papers consider charging needs of fleets or hubs of
commercial EVs, such as school buses or delivery trucks, which en-
gender different charging models. One paper aggregates EVs and op-
timizes the lowest electricity charging cost solution under linearized
power flow constraints [35]. Another studies time-of-use pricing for
a parking garage of EVs [36]. Other works coordinate aggregated
EVs for use as a virtual battery [37], [38] or for frequency con-
trol [39] without considering individual EVs or local grid constraints.
Herein, we develop a new energy-based fleet charging model that
incorporates charging requirements of the individual EVs.

With this work, we build on the initial Model Predictive Control
(MPC) approach from [40], but employ and analyze a convex
relaxation of a practical nonlinear model for the transformer
temperature dynamics and augment analysis with two novel,
distributed EV charging schemes. While most previous works on
predictive Electric Vehicle Charging (EVC) control focuses on one
method for a specific setting, this manuscript also compares multiple
distributed methods and studies the trade-offs between information
sharing, performance, and computational processing requirements.
Specifically, this paper leverages a new distributed optimization
method with quadratic convergence, i.e. ALADIN [30], and it
also proposes the new iteration-free, packet-based coordination
scheme [31]–[34]. These different methods have hitherto not
been developed or analyzed for the EVC problem under dynamic
coupling constraints. Note that prior work on PEM for EVs only
considered static charging constraints and defined device priorities
based on the charging constraint rather than the device’s local energy
state [31]. Thus, to incorporate the dynamic constraints within PEM,
we first extend the device-driven, locally defined, energy-based load
prioritization scheme to incorporate EVs’ desired states of charge
and departure times [32]–[34]. Specifically, we extend the approach
in [32]–[34] with a novel look-ahead, Mixed-Integer Quadratically
Constrained Quadratic Program (MIQCQP) to account for the
temperature dynamics and packet requests. Furthermore, we
present a novel modeling framework for an EV charging hub that
specifically enables the synchronous distributed EVC algorithms
to apply to fleets of EVs with known, but time-varying arrivals
and departures. Finally, we compare the role of information across
different EVC methods via two highly relevant case studies. While

TABLE I
ELECTRIC VEHICLE AND TRANSFORMER NOMENCLATURE

Variable Description Domain Units

System-wide parameters

N Number of EVs Z+ -
Ta(k) Ambient temperature at time k R+

◦C
id(k) Secondary background current at time k R+ kA
R Primary-secondary voltage ratio (0,1] -
Tmax Transformer temperature limit R+

◦C
γ Ohmic losses-to-temp R+

◦C/A2

τ Temp time constant R+ -
ρ Ambient-to-temp losses R+ -
K Optimization horizon length Z++ # of time steps
∆t Time step length R++ Seconds

EV-specific parameters for EV n

imax
n Current limit R+ A
αn Charging efficiency [0,1] -
βn Battery capacity R+ J
ηn Normalized battery size R+

1/A
s̄n Minimum required SoC [0,1] -
k̄n Latest time step to reach s̄n [0,K] -
qn,rn Penalties on partial SoC, current draw R+ -

Fig. 1. Cartoon of the residential system setup, where the substation transformer’s
low-voltage (LV) side is in the primary network (Vpri =8320V) while the chargers
reside in the secondary network (Vsec =240V).

the EVC problem is technically challenging, it is also of immediate
practical relevance for EV fleet operators [41] and distribution grid
operators [3], as it represents the equivalent of a cheap, universal
software-based upgrade to any transformer.

In Section II, we formulate the nonlinear, thermal transformer
model and local EV user energy/power constraints and in Section III
present a convex reformulation, which is rigorously analyzed. Then,
in Section IV, we develop two new, non-centralized EVC algorithms,
namely ALADIN and PEM, and briefly discuss the practical
considerations facing a utility or a third-party coordinator/aggregator.
We present two case studies in Sections V and VI to validate
our methods against conventional methods from literature, model
time-varying arrivals and departures, and to serve as a comparison
in Section VII. We conclude the paper with a summary of the paper
and recommendations for future research directions in Section VIII.

II. PROBLEM FORMULATION

Consider a finite collection of N EVs with charging stations
that are served by the same balanced distribution-level substation
transformer. Between a charger in the secondary network and
the substation transformer in the primary network is a pole-top
transformer, as shown in Fig. 1. A dynamic transformer temperature
model is used in the EVC formulation to keep the substation
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transformer hot-spot temperature below its limits while satisfying
the local EV user constraints. The goal is to regulate the charging
of all EVs within the transformer temperature limit. This gives rise
to an MPC problem that is described at each time instance by the
following finite-horizon Optimal Control Problem (OCP):

min
u(0),...,u(K−1)

N∑
n=1

K−1∑
k=0

qn(xn(k)−xref
n (k))2+rn(un(k))2

s.t. fk(x(k+1),x(k),u(k))=0

hk(x(k),u(k))≤0
xn(k)∈Xn,k, un(k)∈Un,k, xn(0)=xmeas,n,

for k = 0, ... , K − 1 and n = 1, ... , N + 1, where
x(k)

.
= [x1(k), ... , xN(k), xN+1(k)]> ∈ RN+1 represents the

N States of Charge (SoCs) for the EVs plus the one transformer
temperature state each over theK timesteps in the prediction hori-
zon2. The control inputs u(k)

.
=[u1(k),...,uN(k)]>∈RN include

the EV charging rates. Functions fk and hk account for inequality
and equality constraints at time k, respectively, and are described
in the next sections along with the objective function. The objective
function’s parameters qn ≥ 0,rn > 0 represent the EV owner’s
preference for achieving the state reference value with minimal
control effort. The compact, convex sets Xn,k, Un,k capture box
constraints for states and inputs at time k. Table I lists parameters.

A. Transformer Dynamics and Constraints

We consider a nonlinear hot-spot temperature model similar to
that developed and validated in [6], [9],

Ṫ(t)=aL(t)2−b[T(t)−T̃a(t)]+c̃, (1)

where T(t) represents the hot-spot temperature,L(t) is the apparent
power demand (volt-ampere or VA), and T̃a(t) is the ambient
temperature at time t ∈ R+. The constant coefficients a, b, and
c̃ represent the combined effects of conduction, convection,
and radiation associated with transformer loading and ambient
temperature. These parameters may be estimated from experimental
data (as done in [6], [9]) or from manufacturer spec sheets
for a single, fixed air/oil operating mode (e.g., oil natural air
natural/forced or ONAN/ONAF). In the present paper, the
parameters are scaled versions of those in [9] such that the resulting
model matches the timescale of the temperature responses given
in spec sheets for the MVA-scale transformers used herein.

Using a zero-order hold with time-step ∆t for the inputs and
exact discretization, the discrete-time dynamics are

T(k+1)=τT(k)+γ̃(L(k))2+ρ(T̃a(k)+c), (2)

for measured initial temperature of T(0)=Tmeas, where τ=e−b∆t,
ρ=1−τ , c= c̃

b and γ̃= ρ
ba.

Since the control variables of interest are the EV charging
currents, we will use a current-based model instead of a power-based
model3. Thus, we decompose L(k)

.
= ipri

total(k)Vpri, where ipri
total(k)

is the total RMS current magnitude from the primary network
side of the transformer at time k and supplied at fixed, rated RMS

2In this work, the control and prediction horizons are assumed identical as the
focus herein is on developing and comparing different novel algorithms.

3Since the focus herein is on EV scheduling algorithms, the power system
details associated with multi-phase distribution feeders and transformers, voltage
fluctuations, and power factors are not discussed.

voltage Vpri. Since the EV charger is supplied from the secondary
network, its RMS voltage rating is Vsec

.
=RVpri, where R∈ (0,1]

is the pole-top transformer’s fixed voltage ratio. The current ipri
total(k)

is based on the total primary-side equivalent transformer load from
the secondary network, i.e., ipri

total(k) =Ritotal(k), where itotal(k) is
composed of the background demand, id(k), and all EV charging
currents, in(k), in the secondary network and

itotal(k)=id(k)+

N∑
n=1

in(k).

Thus, we can rewrite (2) in terms of itotal as

T(k+1)=τT(k)+γ(itotal(k))2+ρ(Ta(k)), (3)

where γ= γ̃V 2
priR

2 and Ta(k)
.
=T̃a(k)+ c̃

b . In addition, the temper-
ature T(k) is constrained by the hot spot temperature limit Tmax.

B. EV Dynamics and Constraints

The continuous-time, normalized charging dynamics of vehicle
n with current in(t) are modeled as

ṡn(t)= η̃nin(t), sn(t)∈ [0,1], (4)

where η̃n
.
= αn

βn
Vsec is the normalizing ratio of the vehicle’s charging

efficiency (αn) to battery capacity (βn) and supplied secondary
RMS voltage, Vsec. The discrete time equation is

sn(k+1)=sn(k)+ηnin(k), sn(0)=smeas,n, (5)

for measured initial state of charge smeas,n. Each charger has a
current, in(k)∈ [0,imax

n ].

C. EV Owner Preferences

All residential vehicles are assumed to be available for charging
at the beginning of the time period considered and owners have
varying requirements for when they need their vehicle. The owners
of the devices determine a minimum state of charge (s̄n) that must
be met by a specific time step (k̄n). The associated constraint for
the nth vehicle is

sn(k+1)≥ ŝn(k+1)
.
=

{
s̄n k+1≥ k̄n
0 else

.

(6)

In addition, the user can set their preference for the trade-off
between charging their EV quickly and minimizing local battery
wear and control effort. This is achieved by selecting parameters
in the objective function and is described next.

D. EVC Control Objective

The nth EV owner’s charging preference is used in the objective
function to prioritize charging rate against the state of charge as

Jn(in,sn)
.
=

K−1∑
k=0

qn(sn(k+1)−1)2+rn(in(k))2. (7)

Specifically, for each vehicle n, we defineMn
.
= qn
rn
η2
n based on a

user-defined ratio qn
rn

, and fixed EV parameter ηn>0. This ratioMn

will be used in the next section to provide sufficient conditions under
which we can guarantee that a suitable convex relaxation is tight.
These conditions are necessary due to the fundamental tradeoff in the
objective function between reaching full charge quickly (largeMn to
maximize SoC) and keeping the battery charge-rate low (smallMn



4

to minimize control effort), which serves as a proxy for wear and tear.
This objective function is similar to a Linear Quadratic Regulator
(LQR) that penalizes deviations in SoC from unity and large control
efforts. Summing over all N vehicles yields the total cost metric,
which we seek minimize in the optimization problem. Finally, note
that vehicle-to-grid (V2G) technology is unavailable in this setup.
However, from the transformer constraints defined in Section II-A
and the objectives in (7), there is no value added with V2G.

Remark (Valley-filling). Note that one could augment the objective
function with a linear term that depends on the difference between
predicted transformer temperature and the transformer temperature
limit

∑K
k=1ψk(T(k)−Tmax) with ψk ≥ 0. The EV fleet operator

would then be able to tune parameter ψk based on how valuable
under-loading is (i.e., spreading charging evenly over time). As
ψk increases the formulation then shifts from a consumer-centric
focus that allows early charging to a valley-filling, utility-centric
approach, which optimizes charging based on the grid’s availability.
Valley-filling a rich area of research that includes peer-to-peer,
decentralized, and consensus-based methods of coordination, which
is beyond the scope of this manuscript [25], [26], [42].

E. Centralized Optimal Control Problem

The open-loop OCP arises from the combination of the above
constraints and objective function for all EVs and time steps. It reads

min
in(k)

N∑
n=1

K−1∑
k=0

qn(sn(k+1)−1)2+rn(in(k))2 (8a)

s.t. T(k+1)=τT(k)+γ(itotal(k))2+ρTa(k) (8b)
sn(k+1)=sn(k)+ηnin(k) (8c)

itotal(k)=id(k)+

N∑
n=1

in(k) (8d)

T(k+1)≤Tmax, (8e)

sn(k+1)∈ [ŝn(k+1), 1] (8f)
in(k)∈ [0, imax

n ] (8g)
T(0)=Tmeas, sn(0)=smeas,n (8h)

for all k = 0, ... ,K − 1 and n = 1, ... ,N . This is a non-convex
Nonlinear Program (NLP) due to the nonlinear (8b). Note that the
only coupling constraint between the transformer and EV decisions
is (8d). Previous work in [40] used a linearized temperature model
to simplify the coupling. Finally, note that the formulation herein
assumes ideal parameter values with no uncertainty.

III. CONVEXIFICATION OF CENTRALIZED EVC PROBLEM

To overcome the non-convexity of (8b), we consider two different
relaxations: an epigraph relaxation, which yields a Second-Order
Cone Program (SOCP), and a piece-wise linear (PWL) relaxation.
The former replaces the quadratic equality (8b) with the linear
equality and quadratic inequality

T(k+1)=τT(k)+γe(k)+ρTa(k) (9)

e(k)≥(itotal(k))2. (10)

Under this relaxation, problem (8) becomes a SOCP. The benefit of
the this approach is that if (8e) is strictly active at time k then (10)

is satisfied with equality for all prior time steps and we recover
the nonlinear model exactly. This is guaranteed by the following
theorem and corollary.

Theorem 1 (Main Result). Given fixed EV parameters rn ≥ 0,
ηn,qn>0. If, at optimality, there exists n,k for which in(k)<imax

n

(i.e., an EV charger is throttled) and SoC satisfies

sn(k+1)<

{
1 if rn=0

Mn+sn(0)
Mn+1 if rn>0

,

then e(l)=(itotal(l))
2∀l≤k in (10).

The proof is based on KKT analysis and is provided in the
appendix. Note that when rn> 0, Theorem 1 provides a method
to choose qn and rn based on constant ηn and a desirable upper
threshold on state of charge. Ideally, one would chose a threshold
of 1, but that requires rn=0, which may not be reasonable. Instead,
one could solve for Mn by setting Mn/(Mn+1)>sn (ignoring
the initial state, sn(0)), which then neatly embeds the user-defined
QoS constraint into the objective function parameters. For example,
if sn=0.8, one can chooseMn>4, which implies qn/rn> 4

η2
n

.

Remark (Tightness of the SOCP relaxation). At optimality, it may
not be the case that any EV n satisfies Theorem 1’s conditions:
in(k)<imax

n and sn(k+1)< Mn+sn(0)
Mn+1 for some timestep k. That

is, the optimal solution may not be tight, if for all EVs n and for
entire prediction horizon k either

I. in(k)=imax
n or

II. sn(k+1)≥Mn+sn(0)
Mn+1 .

In case I, EVs are all charging at their maximum charge rates and
never throttled, which indicates under-utilized capacity from the
transformer. For case II, the trade-offs from the objective function
imply that any EVs that may be throttled must have a sufficiently high
state of charge and are not negatively impacted by the transformer’s
capacity. Together, I and II imply that (8e) may not be strictly active,
so the temperature state in (9) and the convex relaxation (10) can
be removed without affecting the optimal solution. Thus, outside of
Theorem 1’s conditions, the convex relaxation has no impact on the
optimal solution, which ensures that no feasible solution for the re-
laxed SOCP formulation will lead to overheating of the transformer.

Finally, to relate the transformer’s temperature state and safety
limit (8e) to the tight convex relaxation above, we present the
following corollary. Together with Theorem 1, this corollary
guarantees that if the temperature limit (8e) is strictly active at time
k+1 then the convex relaxation is tight for all prior timesteps.

Corollary 1 (Temperature limit). For the SOCP, at optimality, k+1
is the last instance for which (8e) is strictly active, if and only if,
k is the largest integer for which (10) is tight.

Despite the guarantee of tightness for the relaxed model at
optimality, the quadratic constraints increase the complexity of
complementary conditions and begets numerical difficulties. To
overcome this challenge, a piece-wise linear approach is used
to formulate the nonlinear problem as a Quadratic Program
(QP), which improves numerics of the problem significantly. An
additional benefit of the PWL approximation is that the linear
segments dominate the quadratic model and, thus, is designed
to over-estimate the transformer current as shown in Fig. 2. This
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i2(k)

itotal(k)

e(k)

α1

α2

α3

PWL

SOC

0 ∆i 2∆i 3∆i

Fig. 2. Relaxing the non-convexity e(k)=(itotal)
2 with a PWL approximation that

does not enforce adjacency conditions (blue) and a conic relaxation (gray). Note
that the PWL approximation assumes that Imax =3∆i.

over-estimate is a function of the number of segments and creates
a conservative prediction of the transformer temperature when the
underlying nonlinear model is exact. Therefore, for the remainder
of this manuscript we focus on the PWL implementation.

A. Piece-wise Linear Approximation

Define e(k) as a PWL approximation of itotal(k)2 with M
segments of equal width ∆i

.
= Imax

M as seen in Fig. 2, where Imax

is an upper bound on transformer current. Then, we obtain

itotal(k)2≤PWL{itotal(k)2}=:e(k)=

M∑
m=1

αmi
PW
m (k), (11)

where iPW
m (k)∈ [0,∆i] represent auxiliary PWL variables for each

segment m a time k such that
∑M
m=1i

PW
m (k)

.
= itotal(k) and slope

parameters αm
.
=(2m−1)∆i.

Note that this PWL approximation relaxes the adjacency
conditions4 that are usually enforced for the PWL segments, which
avoids a mixed-integer formulation and creates the blue convex
relaxation shown in Fig. 2. Using this directly in the transformer
constraint relaxes the NLP to a QP:

T(k+1)=τT(k)+γ

(
∆i

M∑
m=1

(2m−1)iPW
m (k)

)
+ρTa(k). (12)

Remark (Upper bound on PWL error). Since we are using
equal width segments, the maximum error between the PWL
approximation and the actual i2 is just the maximum distance
between the linear segment (PWL(i)) and the quadratic curve (q(i))
at the midpoint (i.e. ∆i

2

.
= Imax

2M ),

εmax
i =PWL

(
∆i

2

)
−q
(

∆i

2

)
=

(Imax)2

2M2
−
(
Imax

2M

)2

(13)

⇒εmaxi =(Imax)2(4M2)−1. (14)

Multiplying by γ provides the upper bound on the corresponding
temperature error:

εmax
T =γ(Imax)2(4M2)−1. (15)

Even for a large current Imax = 0.72kA with γ = 15.74
◦C/(kA)2 ,

and M = 6 segments, the maximum error between a PWL’s
linear prediction of the transformer temperature (TPWL) and

4Adjacency conditions enforce iPW
m (k)>0⇒iPW

p (k)=∆i,∀p<m.

Open Loop Optimization
QP Optimization Solver

PWL Transformer Model

EV Charging Model

Nonlinear Transformer
EV Batteries

Ta

id
{in(0)}Nn=1

Tmeas, {smeas,n}Nn=1

Fig. 3. The OCP with feedback. The OCP is used with the ALADIN, ADMM,
and dual decomposition methods and employs the PWL approximation of the
transformer’s nonlinear current-temperature relations in the OCP formulation while
the plant model represents the non-linear transformer.

the quadratic temperature (Tq) for a single time step is
εmaxT

.
=TPWL(k+1)−Tq(k+1)=0.057◦C when the convex relax-

ation is tight. While this temperature error accumulates over time
steps in the open loop prediction, it is also discounted over time since
τ < 1. Therefore, the piecewise linear approximation provides a
feasible and robust estimate of the nonlinear temperature dynamics.

B. Centralized PWL Problem

The PWL relaxation provides an approximation of the
transformer dynamics in (12) and replaces (8b). In addition, the
coupling constraint between the transformer’s (PWL) current
segments and the EV charging currents is now:

id(k)+

N∑
n=1

in(k)=

M∑
m=1

iPW
m (k)

.
=itotal(k). (16)

Also, we enforce limits on the variable associated with each
linear segments:

iPW
m (k)∈ [0,∆i]. (17)

The PWL formulation adds one more set of box constraint than
the NLP formulation and replaces the optimization variables itotal∈
RK with iPW ∈RMK . This open-loop optimal control problem is
then implemented in receding-horizon fashion as illustrated in Fig. 3.

Remark (Extending Theorem 1 to the PWL formulation). Since the
PWL relaxation overestimates the non-convex equality constraint, it
is contained within the SOCP relaxation (as in Fig. 2). This ensures,
under the same conditions of Theorem 1 and Corollary 1, that the
optimal solution from the PWL formulation is tight relative to the
PWL segments. Thus, the PWL formulation can successfully predict
and regulate the transformer’s dynamic temperature trajectory
relative to its temperature limit. For a detailed treatment of the PWL
relaxation, please see [43].

IV. NON-CENTRALIZED IMPLEMENTATION

The centralized problem can be decomposed into N sub-
problems if it were not for the coupling constraints (16). Thus, in this
section, we present different distributed and decentralized charging
algorithms. Specifically, ALADIN and PEM represent two novel
contributions for EV charging control while the other two methods
(Dual Ascent and ADMM) serve as base cases for comparison.

The iterative ALADIN, Dual Ascent, and ADMM schemes
employ the partial Lagrangian with respect to (16) as follows:
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Coordinator Problem

EVC 1 Local Problem

EVC 2 Local Problem
...

EVCN Local Problem

Transformer Problem

Fig. 4. Distributed EVC coordination scheme. Synchronous schemes require the
communications from allN+1 local problems before solving with the coordinator
problem.

L(in,sn,i
PW
m ,λ)=

N∑
n=1

Jn(in,sn)+λ>

(
id+

N∑
n=1

in−
M∑
m=1

iPW
m

)

=

N∑
n=1

(
Jn(in,sn)+λ>in

)
+λ>(id−

M∑
m=1

iPW
m ), (18)

where λ∈RK are the Lagrange multipliers associated with (16).
From (18), the Lagrangian can be separated into local EV variables
{in,sn}∈R2NK and transformer variables {iPW}∈RMK , which
turns (18) into a separable objective function subject to decoupled
constraints. This means that the optimization problem can be solved
in distributed fashion by iteratively updating λ for which we develop
and present Dual Ascent, ADMM and ALADIN algorithms. We also
provide a non-iterative packet-based coordination scheme adapted
from PEM. Each algorithm has different requirements for the
transformer, EVs, and coordinator problems as illustrated in Fig. 4.
Next, we will discuss each scheme and since the dual decomposition
and ADMM are two common methods, details have been omitted
in this manuscript.

A. ALADIN

ALADIN is a relatively new distributed optimization
algorithm [30]. It has been considered, among other things, for
optimal power flow problems [44]. The method decomposes the
centralized optimization problem by having each agent solve its
local problem based on the primal iterate guess of primal variables
and the Lagrange multipliers of the coupling constraints. The local
solutions together with first- and second-order information are
provided to the coordinator to update the primal variables and
multipliers by solving a centralized (but simple) quadratic program
(QP) to foster consensus. This setup allows predictive ALADIN
to achieve quadratic convergence locally, which greatly reduces the
number of iterations needed and is highly desirable.

The first two steps of ALADIN are shown in Algorithm 1
and solve local optimization problems for: 1) the EVs and 2) the
transformer. Here, the primal variables for the EVs are collected in
x>n =

(
(in)>,(sn)>

)
and the primal variables for the tranformer in

∆x>N+1 =
(
(iN+1)>,(T)>

)
with (iN+1)>=(iPW>1 ,...,iPW>M )>,

where the latter is due to the PWL formulation (11). As mentioned,
the primal solution from each local EV and transformer problem
is shared with the coordinator. In addition, the gradient and Hessian
of the Lagrangian relative to xn is denoted gxn and Hxn . Note
that the gradients of the box constraints C(p)

x̄n are constant and
given by zero vectors with −1 or 1 in the column corresponding
to a primal variable for which a box constraint is active. So here
it suffices to communicate an index set of the active constraints

Algorithm 1 ALADIN for EV charging.

Initialization: Initial (p≡0) guess of dual multiplier λ(0), of
all four auxiliary variables {i(0)

n ,s
(0)
n ,i

PW(0)
N+1 ,T(0)} and tuning

parameters {ρALAD,µ,σz,σt,{σi,n,σs,n}n∈1,...,N} .
Repeat for p:

1) Solve local EV problems: for each n∈1,...,N

ī(p)n =argmin
in,sn

Jn(in,sn)+(λ(p))>in+

ρALADσi,n
2 (in−i(p)n )2+

ρALADσs,n
2 (sn−s(p)

n )2

s.t. (8c),(8f),(8g)

2) Solve local transformer problem:

(̄iN+1)(p) =arg min
iN+1,T

−(λ(p))>
M∑
m=1

iPWm +

ρALADσZ
2 (iN+1−i(p)N+1)2+ ρALADσT

2 (T−T(p))2

s.t. (12),(17),(8e)

3) Solve coordinator problem:

min
∆xn,y

N+1∑
n=1

(
1

2
∆xnH

(p)
xn

∆xn+g
(p)
xn

∆xn

)
+(λ

(p)
)
>
y+

µ

2
||y||22

s.t.
N∑

n=1

(̄i
(p)
n (k)+∆īn(k))−

M∑
m=1

(
(̄i

PW
m )

(p)
(k)+∆i

PW
m (k)

)
=

y(k)−id(k) |λQP (k)

∆T(k+1)=τ∆T(k)+γ

(
∆i

M∑
m=1

(2m−1)∆i
PW
m (k)

)
∆sn(k+1)=∆sn(k)+ηn∆in(k) for all k=0,...,K−1

C
(p)
x̄n

∆xn≤0 for all n=1,...,N+1

4) Termination Criterion: If∣∣∣∣∣
∣∣∣∣∣īd(k)+

N∑
n=1

īn(k)(p)−
M∑
m=1

(̄iPW
m )(p)(k)

∣∣∣∣∣
∣∣∣∣∣
1

≤ε1

and
∣∣∣∣∣∣σxn(x̄n

(p)−x(p)
n )
∣∣∣∣∣∣

1
≤ε2

then exit with x∗=x(p) and i∗n(0) is implemented in EVs.
5) Update dual variable and auxiliary variables

x(p+1)
n =x̄(p)

n +∆xn, n=1,...,N+1

λ(p+1) =λQP , p→p+1.

instead of a full matrix. In Step 3), the coordinator combines the
local information into a coordination QP to update the auxiliary
variables and the dual variables. The specific ALADIN variant
used for the EV charging OCP is shown in Algorithm 1. A slight
alteration to the ALADIN formulation is used which changes the
linearized expressions, C(p)

x̄n ∆xn, in Step 3) to be inequalities from
their original equality constraints. This relaxation allows the local
variables to move asymmetrically away from its bound instead of
fixing all variables that are at their upper or lower limit.

ALADIN provides a systematic approach to decomposing our
large centralized primal formulation into many small, local QPs
and a single coordination QP. However, despite the few iterations
required for convergence (e.g., please see [30]), the information
required from the sub-problems is significant and the coordinator
problem is computationally intensive. For a variant of ALADIN
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with reduced size of the coordination QP we refer to [45]. Note that
the ALADIN tuning parameters ρALAD,µ,σz,σt and σi,n,σs,n ∀n
have to be chosen initially.

B. Dual Decomposition

Dual decomposition separates (18) and creates local QP EVC
problems, a local LP transformer problem, and updates λ by dual
ascent. Standard dual decomposition with dual ascent update for
separable problems is used from [46] and the setup is similar to
that of [40], except herein we employ the relaxed PWL model and
not a linearized model.

C. ADMM

ADMM builds on top of dual decomposition by augmenting
the local objective functions using auxiliary variables. A separable
ADMM approach is used herein based on [47].

Note that both dual decomposition and ADMM can be expressed
as a special case of ALADIN with considerably simplified
coordination QP, and, in case of dual decomposition, by choosing
all σ(.)’s to zero additionally (cf. [30]). Also, these classical
optimization methods are only used as bases for comparison in
the case studies. For these reasons and due to the fact that detailed
treatments of these algorithms for EV charging problems are widely
available in the literature, we do not state them explicitly here.

D. PEM with Dynamic Constraints

PEM represents a computationally and informationally light
demand-side coordinating scheme for coordinating DERs (in
real-time), such as EV chargers. The scheme uses a stochastic,
packet-based approach similar to modern communication networks
to dynamically prioritize demand-side resources based on local
energy needs [32]–[34]. The full PEM algorithm adapted for the
EV charging problem approximates the OCP and is described
in Algorithm 2. Each local “packetized” charger can infer or
measure its local energy need, which is mapped to a prescribed
probability of requesting a fixed-duration (δ>0) packet of energy
(e.g., a δ= 5-step, constant-ampere charging epoch). The request
is submitted to the coordinator, which takes into account real-time
and/or predicted transformer conditions to either accept or reject
the packet to maintain the transformer temperature within its limits.
To ensure quality-of-service (QoS) for the device owner, opt-out
logic enables EVs with immediate energy needs to temporarily exit
the scheme and recover their SoC. Algorithm 2 is described next.

1) Local EV Problem: The PEM scheme does not require that
the EVC agent solves a local optimization problem to manage EV
charger demand. Instead, a “packetized” EV charger is assumed
capable of accurately measuring the EV’s SoC, smeas,n, and
inferring time until departure, k̄n. Based on these two updates, the
EV charger calculates its energy need with the ratio

ration(k)
.
=(s̄n−smeas,n(k))(ηni

max
n (k̄n−k))−1∈R.

If the ration >1, then the time remaining is not sufficient to provide
the desired energy, even if charging for the entire remaining duration.
Thus, if ration reaches or initially exceeds unity, then the device
will automatically opt out (opt out status denoted by Reqn<0) and
continuously charge until the time of departure. Thus, opting out

represents a background disturbance to the fleet of packetized EV
chargers, which reduces the number of packets that can be accepted
by the coordinator. When ration ∈ [0, 1], the value is mapped
to a probability of requesting a packet over the duration of time
step k (request status denoted by Reqn ∈{0,1}), where a request
from EV n is sent to the coordinator with exponential waiting
times, e.g, please see Algorithm 2. The probability of requesting
a packet depends on the ratio and a pre-specified mean time-to-
request (or mttr) for a specific ratio value set-point (r̂set,n∈(0,1)).
As ration(k) → 0/1, the probability of requesting a packet
during timestep k approaches 0/1. Of course, while the charger is
“consuming” an energy packet, it does not request another packet, so
Reqn(k) status is set to the negative of the packet completion timer.

If an EV requests a packet (Reqn ≡ 1) and is notified that its
packet is accepted, the EV charges at a pre-specified current for
δ time steps. If the ration<0, we denote status by Reqn≡2, which
implies that the EV’s SoC exceeds its desired (minimum) energy
target, which means that the EV’s local “energy need” has been
satisfied and any future requests from this EV is designated a
low-priority request.

2) Coordinator Problem: The coordinator receives packet
requests and must now accept a proportion of them in such a
way as to keep the transformer temperature within limits. Since
temperature is a dynamic state and prior work with PEM and EVs
focused on static power or current limits one major contribution
of this paper is the extension of PEM for scheduling under dynamic
state constraints. Thus, this section extends prior work on PEM
with a novel, predictive, synchronous coordinator formulation that
utilizes an efficient MIQCQP formulation to select which requests
are accepted and denied. Note that the predictive model in the
coordinator only concerns the transformer temperature relative to
changes in demand and does not extend to the fleet’s requests or
SoC. That is, the coordinator uses a persistent forecast of requests
and opt-outs over its prediction horizon, which is just δ timesteps
(e.g., δ=2 timesteps, which is 6 minutes in Case-study 1).

To do so, first define the set of all devices that do not request
a packet (Reqn(k) ≡ 0) during timestep k as E0. The EVs that
request a packet at time k belong to set E1. Then, define δ sets
for the devices that are “locked in” for future time steps as
Yl,l∈k+1,...,k+δ to capture the groups of EVs still consuming
an energy packet or those that opted out earlier. Lastly, define E2
as the set of EVs that have already reached their desired (minimum)
SoC target, but are not fully charged.

The coordinator’s MIQCQP problem is solved in Algorithm 2
to determine which EVs have their packet requests accepted
(Respn(k) = 1) and rejected (Respn(k) = 0). Since the problem
looks ahead just a packet length, the prediction horizon is short and
the formulation is efficient. The requests from E2 are de-prioritized
by use of a scaling factor (ωE

.
=min{1/(NK),1/(4N)}<<1) in

the objective function. To ensure a solution always exists, a slack
variable is added to the temperature limit and penalized in the
objective function (ωS>>1).

Finally, the MIQCQP depends on the EV chargers’ ampacities,
imax
n . The current rating is known exactly when the information

is included in the request or may be approximated via data-driven
methods. In this work, we assume the former. After solving the
MIQCQP, the optimal solution, u∗ch(0) ∈ RN , represents the EV
chargers whose requests were accepted by the coordinator. To
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Algorithm 2 Look-ahead PEM algorithm
Local EV Problem: compute for each n∈N

if Consuming Packet then
Reqn(k)=− duration remaining for packet

else if smeas,n(k)=1 then . EV at 100%
Reqn(k)=0

else if smeas,n(k)≥ s̄n then . EV is low priority
Reqn(k)=2

else
ration(k)=(s̄n−smeas,n(k))(ηni

max
n (k̄n−t))−1

if ration(k)≥1 then
Reqn(k)=−δ . EV opts out

else
µ(k)= 1

mttr
ration(k)

1−ration(k)
1−rset,n
rset,n

Pn(k)=min{max{1−e−µ(k)∆t,0},1}

Reqn(k)=

{
1, rand()<Pn(k)

0, else

End
Coordinator Problem:
Update sets E0,E1,E2,Yk and measure Tmeas
Solve MIQCQP to determine u∗ch(k)∀k∈Kδ

.
={0,...,δ−1}

max
Tslack,un

δ−1∑
k=0

(∑
n∈E1

un(k)+ωE
∑
n∈E2

un(k)

)
−ωSTslack

s.t T(k+1)=τT(k)+γe(k)+ρTa(k)∀k∈Kδ
e(k)≥(itotal(k))2 ∀k∈Kδ

itotal(k)=id(k)+

N∑
n=1

un(k)imax
n ∀k∈Kδ

T(k+1)≤Tmax+Tslack ∀k∈Kδ
un(k)=1 ∀n∈Yk∀k∈Kδ
un(k)≤un(k+1) ∀n∈E1∪E2 ∀k∈Kδ
T(0)=Tmeas∑
n∈E0

δ−1∑
m=0

un(m)=0

un(k)∈{0,1} ∀n=1,...,N∀k∈Kδ

Determine responses to packet requests from EV chargers:
Respn(k)=u∗ch,n(0)∀n . From optimal solution.

End

reduce the necessary communications in an online implementation
of PEM, only EVs whose charger’s logic state undergoes a transition
(e.g., Respn(k) 6=Respn(k−1)) are updated by the coordinator.

The next two sections explore the convex transformer temperature
models and EV charging algorithms within two different, but
relevant scenarios: residential and commercial fleets of EVs. The
latter will require novel modeling of a hub of commercial EVs that
arrive and depart asynchronously. We then adapt the algorithms to
manage the charging of multiple hubs rather than individual EVs.
Finally, Section VII provides discussion and comparison between
distributed methods employed in case studies 1 and 2.

V. CASE STUDY 1: RESIDENTIAL PEV CHARGING

Now that we have developed several distributed control methods
for the EV charging problem, we consider a scenario and evaluate

TABLE II
SIMULATION PARAMETERS FOR CASE STUDY 1

Variable Value Units Source

System parameters

N 100 EVs [48], [49]
K 160 Timesteps -
M 6 Segments -
∆t 180 Seconds [50], [51]
T̃a(k) [16,18] ◦C -
c 29.87 [9], [50], [51]
id(k) [12.1,17.5] kA
Tmax 100 ◦C [5], [52]
T0 70 ◦C -
γ 0.0131

◦C/(kA)2 [9], [50], [51]
τ 0.9145 [9], [50], [51]
ρ 0.0855 [9], [50], [51]
R 240/8320 -

Residential EV parameters

sn,0 [0,70] % [53]
imax
n [12,80] A [48], [54]
αn [80,90] % [55]
βn [40,100] kWh [48], [56]
s̄n [75,100] % -
k̄n [06:00,10:00] Time -
qn, rn [0,50], 10 -

Fig. 5. Case Study 1 receding-horizon response. Top: Temperature response; Middle:
Total primary network current demanded from substation transformer and equal
to reflected total secondary current (Ritotal(k)); Bottom: Dual variable of (16).

each method on privacy, performance, and processing metrics.
Specifically, we consider a residential scenario with 100 EVs, for
the overnight hours of 8PM to 10AM. However, a similar setup
could be relevant for large public or social events, such as overnight
music festivals and sporting events (e.g., a 3-hour sports event in
a stadium), where many EVs park for an extended, co-incident
period of time. The rest of the parameters used are shown in Table
II where the bracket notation [a,b], denotes the parameter’s range.
For the look-ahead PEM, we use δ=2 timesteps,mttr=∆tδ=2
timesteps (i.e., 2×180=360s), and r̂set,n=0.10.

A. Simulation Results

The OCP is solved in closed-loop to engender an receding-
horizon simulation for each non-centralized algorithm, as well as, the
centralized formulation is shown in Fig. 5. The top two plots show
the transformer temperature, (a), and total primary network load at
the transformer, (b). The bottom plot, (c), displays the dual multiplier
λ, which is associated with the coupling constraint (16). In addition
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Fig. 6. Case Study 1 processing. (Left) Convergence for first (cold-start) time
instance. Objective function values converging to centralized (optimal) value. (Right)
Solve times for first (cold-start) and second (warm-start) time instances as N
increases from 100 to 400 EVs.

to the centralized OCP solution and the solutions from the four non-
centralized algorithms, the result of the uncoordinated EV charging
is also provided. Clearly, without EV charging control implemented,
the transformer temperature exceeds its limit for hours.

The optimal solutions of ADMM and ALADIN are nearly
identical to the centralized solution. The convergence of the three
iterative schemes in solving the OCP for the first (cold-start)
timestep of the receding-horizon simulation is shown in Fig. 6 (Left).
ALADIN significantly outperforms ADMM, which outperforms
the Dual Decomposition. In Fig. 6(Right), the average solve time
per timestep over ten trials is shown for ALADIN and PEM as
the number of EV agents increases and is well within the 180s
sample time. Note that the transformer parameters in Case Study 1
cause the OCP to become infeasible for 200 or more EVs. Thus,
to test ALADIN and PEM for N > 100, the transformer’s γ
was scaled as a function of N to engender a consistent relative
loading on the transformer asN increased. The ALADIN cold-start
case takes 10-11 iterations to converge while the warm-start case
takes just 2-3 iterations. The drop in solve time for ALADIN
(Warm) between N = 100 and N = 200 is due to the N = 100
case taking three iterations while the N=200 case takes just two
iterations and is due to convergence tolerances. Beyond N=400,
ALADIN requires additional parameter tuning to ensure consistent
convergence, however, PEM was tested separately atN=500 (1.9s)
and N = 1000 (14.5s) vehicles.As expected, solving ALADIN’s
coordinator QP (at each iteration) and PEM’s coordinator MIQCQP
(once per timestep) represents most of the solve time.

For the scenario in Case Study 1, privacy is important as
individual EV owners may not be inclined to share information about
their driving habits, such as time of arrival, departure, and/or state-
of-charge. Thus, since the ALADIN algorithm requires significant
information transfer between EVs and coordinator, ALADIN is not
well-suited in residential charging settings. However, due to its rapid
convergence, ALADIN may be an ideal approach for solving EV
charging problems where privacy is less important and full informa-
tion is available. For example, a fleet of commercial EVs located at
central charging hubs within a large city fits those conditions (e.g.,
package or mail delivery vehicles with pre-determined routes and
arrival and departure times). Nonetheless, to account for known,
but variable arrival/departure times of a commercial fleet would
require that we significantly modify the algorithms presented in Case
Study 1. To side-step this algorithm design challenge, we instead ag-
gregateN EV agents with fixed energy and power limits into a single
charging hub agent with variable energy and power limits, which is

developed and presented in the next section (Case Study 2). As will
be shown, this slight modeling effort enables straightforward appli-
cation of the previously developed distributed charging algorithms.

Transformer

Hub 1

Hub 2

Hub 3

Hub 4

... HubH
i1

i2

i3

i4 iH

Fig. 7. Case Study 2 network of commercial EV charging hubs, where the
transformer’s low-voltage (LV) side is rated at Vpri =13.2kV while the commercial
chargers are supplied at Vsec =480V in the secondary network.

VI. CASE STUDY 2: COMMERCIAL FLEET CHARGING

As commercial transportation becomes electrified, vehicle fleets
will also benefit from charging control. In addition, the privacy
of an individual vehicle in a commercial fleet is not a concern as
one company owns and centrally plans the routes and times all EVs
in their fleet. Furthermore, a large proportion of these fleets have
predictable routes to and from a central depot, such a package or
mail delivery trucks. These central depots or hubs represents local
EV charging centers or lots.

That is, due to mainly the known, but variable arrival and
departure times of a fleet, the commercial/industrial EV hub setting
is inherently different from the residential EV setting. Specifically,
this difference requires modifying the presented ALADIN, ADMM,
and Dual Decomposition algorithms to account for a plug-and-play
implementation, which is technically less straightforward. However,
instead of modifying the algorithms to match the problem, we
will reformulate the problem by aggregating a hub’s individual
EV charging agents, which have fixed energy and power limits,
into a single hub charging agent with variable energy and power
limits that is a function of arrival and departures. Not only does this
aggregate hub model approach enable scale in a commercial setting,
it importantly allows us to directly consider the same algorithms
developed previously for Case Study 1.

Thus, we represent each hub h as a single agent in a system
withH hubs and assume that internal to each hub is an algorithm
that distributes allocated hub charging capacity to itsNh individual
vehicles. Thus, the hub agent needs to model the aggregate available
EV SoC and energy and current limits to ensure that the hub can
meet the underlying, asynchronous EV charging needs. Next, we
leverage the EV model used in Case Study 1 to develop a dynamic
model of a single hub charging agent and present the distributed
optimal charging control problem for a collection ofH hubs under
a large MVA-scale substation transformer.

A. Hub System Model

Define hub h∈{1,...,H} by a set of Nh assigned vehiclesNh.
Since we are aggregating different vehicles into a single hub, we
will use physical rather than normalized battery capacity and will
index each vehicle by its hub and vehicle indices (h,n). Thus, each
vehicle n∈Nh has battery capacityEmax

h,n (in kWh). For arrival and
departure times, in Case Study 1, all EVs arrived at the same time
(k= 0) and had a maximum time (k̄n) by which they wanted to
achieve a desired SoC (s̄n). In Case Study 2, this concept is extended
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in that an EV is expected to arrive at time step kh,n with arrival
energy sh,nE

max
h,n (in kWh), and is expected to leave at time step k̄h,n

with desired minimum departure energy s̄h,nEmax
h,n (in kWh). That is,

k̄h,n represent a physical departure time in Case Study 2 instead of
the owner preference from Section II-C. Finally, the value sh,n (s̄h,n)
represents the vehicle’s relative SoC at arrival (departure).

For each hub and each time step, we then define sets for arriving,
parked, and departing vehicles:

Arriveh(k)={n∈Nh|k=kh,n}
Parkedh(k)={n∈Nh|kh,n<k<k̄h,n}
Departh(k)={n∈Nh|k= k̄h,n}

and calculate the arrival and departure energy trajectories

Eh,arrive(k)=
∑

n∈Arriveh(k)

sh,nE
max
h,n

Eh,depart(k)=
∑

n∈Departh(k)

s̄h,nE
max
h,n .

These trajectories define the amount of energy added and subtracted
to hub h from the predicted vehicle arrivals and departures, respec-
tively. From the parked vehicles in hub h at time k, we can also
define the time-varying upper limits on energy and effective current:

Emax
h (k)=

∑
n∈Parkedh(k)

Emax
h,n and imax

h (k)=
∑

n∈Parkedh(k)

imax
h,n.

Note that although the maximum current capacity of the charging
facility would not change physically, the effective maximum current
at time k is a function of the variable number of parked vehicles.

Finally, since vehicle n can depart from a hub h with more
than its desired departure SoC s̄h,nE

max
h,n , we need to account for

the difference between the expected departing SoC and actually
departing with up to 100% of SoC. Thus, the maximum additional
energy that can depart hub h at time k is given by:

Emax
h,∆(k)=

∑
n∈Departh(k)

(1−s̄h,n)Emax
h,n . (20)

From these sets and trajectories, we can now form the hub energy
dynamics and optimization.

B. Hub Energy Dynamics and Bounds

The SoC for each hub at time k+1 is a function of the current de-
livered over timestep k, the expected energy lost from departing vehi-
cles, and the expected energy gained from arriving vehicles. The de-
parted energy from each time step is the expected target SoC for de-
parting vehicles plus any extra energy provided to bring (some) vehi-
cles above required s̄h,n,Eh,depart+Eh,∆. Overall, the model reads:

Eh(k+1)=Eh(k)+ηhih(k)+Eh,arrive(k)−
(Eh,depart(k)+Eh,∆(k)) (21a)

0≤Eh(k)≤Emax
h (k) (21b)

0≤Eh,∆(k)≤Emax
h,∆(k) (21c)

0≤ih(k)≤imax
h (k). (21d)

To illustrate the relationship between the EV model presented
in Section II and that of the hub, we consider the simple case
of a hub with a single EV (i.e., Nh = 1). Then, before arrival
(k<kh,1), the dynamics in (21a) are Eh(k+1)=0. Upon arrival
(k=kh,1), (21a) becomesEh(k+1)=sh,1E

max
h,1 , which is the usual

initial state. While parked (kh,1<k<k̄h,1), the dynamics revert to
standard EV SoC dynamics in kWh units:Eh(k+1)=sh,1E

max
h,1 +∑k

k=kh,1+1ηhih(k). Finally, upon departure (k= k̄h,1), we get

Eh(k+1)=sh,1E
max
h,1 +

k̄h,1∑
k=kh,1+1

ηhih(k)−s̄h,1Emax
h,1−Eh,∆(k),

where the left-hand side yields Eh(k+1)≡ 0 since the hub has
no vehicle at time k+1. This means that the difference between
realized and expected departing SoC is

⇒Eh,∆(k)=

sh,1Emax
h,1 +

k̄h,1∑
k=kh,1+1

ηhih(k)

−s̄h,1Emax
h,1 .

Since the positive term in the parenthesis is less thanEmax
h,1 ,

⇒Eh,∆(k)≤
(
Emax
h,1

)
−s̄h,1Emax

h,1 =(1−s̄h,1)Emax
h,1 =Emax

h,∆(k),

where the last equality is a direct application of (20). Finally, with
Eh,∆(k) ≥ 0, the hub will satisfy charging requirements, if the
problem is feasible. This description extends toNh vehicles in the
hub. Thus, across the arrival, parked, and departure phases of the
hub, energy dynamics are captured with the the hub model in (21).

Remark. Note that the hub charging efficiency parameter ηh is as-
sumed to be time-invariant (i.e., EVs charge with the same efficiency).
However, ηh could be estimated based on a weighted combination
of the efficiencies in Parkedh(k) or other simplifications [57].

C. Objective Function with Hubs

The local hub objective function is similar to the one in the
local (residential) EV scenario. However, since vehicles physically
leave the hub, the hub loses energy with departures and there is no
need to track 100% SoC for the entire hub. Thus, the hub seeks
to minimize deviations of the predicted hub energy level from its
maximum possible energy state, which is the sum of the energy
capacities for all vehicles parked at time k. In addition, if possible,
it is desirable to maximize theEh,∆(k) terms as they allow the hub
to exceed minimum required energy levels. The weighting factor
oh determines how desirable oversupplying energy is relative to the
weights of the other two terms (qh and rh) and defines objective h as

Jh(ih,Eh,Eh,∆)=

K∑
k=1

qh(Eh(k)−Emax
h (k))2+ (22)

rh(ih(k))2−ohEh,∆(k)

Thus, with this objective function and the hub model in (21), we
formulate the centralized OCP for a system of hubs next.

D. Centralized Optimal Control Problem with Hubs

With the same PWL approximation of the transformer model as
in (12), we can combine the hub dynamics and objective function
to yield a centralized hub OCP:

min

H∑
h=1

Jh(ih,Eh,Eh,∆) (23a)
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TABLE III
SIMULATION PARAMETERS FOR CASE STUDY 2

Variable Value Units

System parameters

H 4 Hubs
Nh 100 EVs
K 240 Timesteps
M 15 Segments
∆t 180 Seconds
T̃a(k) [16,18] ◦C
c 29.87 -
id(k) [52,64] kA
Tmax 100 ◦C
T0 70 ◦C
γ,τ,ρ {0.000524, 0.9145, 0.0855} {◦C/(kA)2 ,−,−}
R 480/13200

Commercial EV hub parameters

imax
h [200,1000] A
αn [80,90] %
Emax
h,n [100,600] kWh

sh,n [10,40] %
s̄h,n [80,100] %
kh,n [20:00, 03:00] -
k̄h,n [04:00, 07:00] -
qh, rh, oh [0.1,200], 10, 100 -

s.t. Eh(k+1)=Eh(k)+ηhih(k)+Eh,arrive(k)

−(Eh,depart(k)+Eh,∆(k)) (23b)
T(k+1)=τT(k)+ρTa(k)

+γ

(
∆i

M∑
m=1

(2m−1)iPW
m (k)

)
(23c)

id(k)+

H∑
h=1

ih(k)=

M∑
m=1

iPW
m (k) |λ(k) (23d)

0≤Eh,∆(k)≤Emax
h,∆(k) (23e)

0≤iPW
m (k)≤∆i ∀m=1,...,M (23f)

0≤ih(k)≤imax
h (k) (23g)

0≤Eh(k+1)≤Emax
h (k),Eh(0)=Emeas,n (23h)

T(k+1)≤Tmax,T(0)=Tmeas (23i)

for all k=0,...,K−1 and h=1,...,H.

E. Non-centralized Hub Formulation

A similar decomposition from Case Study 1 can be used to form
the partial Lagrangian,

L({ih}Hh=1,{Eh,}Hh=1,{iPW
m }Mm=1,λ)

=

H∑
h=1

Jh(ih,Eh)+λ>

(
id+

H∑
h=1

ih−
M∑
m=1

iPW
m

)

=

H∑
h=1

(
Jh(ih,Eh)+λ>ih

)
+λ>(id−

M∑
m=1

iPW
m )).

Now, the developed hub model exactly enables the primal
problem formulation to attain the same form as in Case Study 1
and, thus, we can use the same ALADIN, ADMM, and dual
decomposition algorithms from Section IV. This is despite the time-
varying arrivals and departures of the individual vehicles in the hubs.

Fig. 8. Case Study 2 results for allocating current capacity to hubs. Top: Temperature
response; Middle: Total primary network current demanded from transformer and
equal to reflected total secondary current (Ritotal(k)); Bottom: Dual variable.

F. Simulation Setup for Case Study 2

A hub model simulation was conducted for H = 4 hubs with
Nh = 100 EVs in each hub. The distribution-level transformer
in this scenario is a large 100MVA transformer with a primary
network voltage rating of Vpri = 13.2kV . Within the hubs, the
secondary network supplies commercial chargers with RMS voltage
at Vsec =480V . Since this scenario focuses on commercial vehicles,
the battery capacities have been sized accordingly at 100, 200, or
600kWh with charging rates between 96-480kVA. For simplicity a
constant background load of 25-30MVA is used. Table III presents
relevant parameters for Case Study 2.

G. Discussion of Case Study 2 Results

The central and uncoordinated results can be seen compared
with the optimization algorithms solutions in Fig. 8. Once again,
ALADIN and ADMM perform well and match the central solution.
Unlike in the residential scenario, PEM is not suitable for managing
ON/OFF charging packets for hubs represents the equivalent of
up to 100 EVs charging coincidentally, which begets large (bulky)
demands on the transformer and makes temperature regulation
challenging. Thus, PEM is not part of the commercial hub scenario,
except as the possible intra-hub EV charging coordinator that
ensures that a hub’s aggregate demand is below its optimized static
current capacity allocation. The comparison of the four distributed
methods in case studies 1 and 2 is next.

VII. COMPARISON OF DISTRIBUTED METHODS

A. Privacy, Performance, and Processing

In Sections V and VI, the results of a receding-horizon
implementation of the OCP is presented for each case study. In
this section, we discuss how these methods performed and compare
each method in terms of privacy (communication), performance
(optimality), and processing (computation).

1) Privacy: Table IV shows the information communicated
between the EVs, Coordinator, and Transformer. The most valuable
information from a consumer standpoint is the current and SoC
schedules. While both Dual Ascent and ADMM transfer the current
schedule to the coordinator, the coordinator only uses the sum of
the current schedules so this sensitive information could be passed



12

through a third party and aggregated first. However, in ALADIN,
the individual current schedule is used in the coordinator problem
as well as in the gradient. To approximate information requirements
per timestep, consider an average number of iterations, a population
ofN=100 EV chargers, and a prediction horizon of 160 timesteps.
Then, breaking these numbers into the data communicated per
time step and per EV, we get 32 bits for PEM, 21 megabits for
Dual Decomposition, 3 megabits for ADMM, and 0.6 megabits
for ALADIN. That is, PEM and ALADIN require far less data to
be communicated than the other two methods.

TABLE IV
SUMMARY OF DISTRIBUTED METHODS - INFORMATION SHARING.

From-to ALADIN Dual Ascent / ADMM PEM

EV to
Coordinator

i
(p)
n , g(p)

i,n, g(p)
s,n,

C
(p)

i,n
, C(p)

i,n, C(p)
s,n, C(p)

s,n
i
(p)
n Reqn(k)

Transformer to
Coordinator

∑M
m=1(iPWm )(p), g(p)

i,PW ,

g
(p)
t , C(p)

z , C(p)
z , C(p)

t
, C(p)

t

∑M
m=1(iPWm )(p) T(k)

Coordinator to
EV λ(p), V(p)

i,n, V(p)
s,n λ(p), (V(p)

i,n) Respn(k)

Coordinator to
Transformer λ(p), V(p)

t , V(p)
i,PW λ(p), (V(p)

i,PW ) -

2) Performance: A summary of the performance of the four dis-
tributed methods is shown in Table V. Specifically, it compares the
2-norm of the difference between the centralized method’s optimal
current schedules (i∗n) and dual variables (λ∗) and the optimized
values from the distributed methods. In both case studies, ALADIN
and ADMM performed well as their solutions achieved optimality.
Dual decomposition does not converge completely in the allotted
time and performs worse as a result. The PEM coordinator focuses
on feasibility of local and transformer problems with device-driven
priorities and has no optimality guarantees; therefore, the difference
in the current schedules are more pronounced for Case Study 1.

TABLE V
SUMMARY OF DISTRIBUTED METHODS - PERFORMANCE.

Method
2-Norm Current Schedule 2-Norm Lambda

Case Study 1 Case Study 2 Case Study 1 Case Study 2

ALADIN 1e1 2e2 6e−4 4e−3
ADMM 8e1 3e2 4e−3 3e−2
Dual Decomposition 2e2 3e3 6e−2 8e−1
PEM 5e3 - - -

3) Processing: The computational efficiency of the methods can
be seen in Table VI. The average solver time metric describes the
average time it takes the algorithm to process for each time step.
This number is not necessarily proportional to the average number
of iterations shown in the second column as some algorithms require
more processing per iteration. The PEM implementation requires
least processing as it is an iteration-free approach. ALADIN is the
next quickest followed by ADMM and Dual Decompostion. In the
implementation, the algorithms have a constraint on the number
of iterations due to the duration of each time step. Increasing the
number of electric vehicles in the simulation would likely have a
similar number of iterations per time step however the performance
especially for dual decomposition and ADMM would decrease.
It is worth noting that the stopping criteria was different for Case

Performance

Privacy

Processing

Central
ALADIN
ADMM
Dual Decomp
PEM

Fig. 9. Qualitative relative ranking of the different EVC control methods.

Study 1 and Case Study 2. In addition, the centralized results are
only meant to be representative at the proposed scale as direct load
control does not scale well in practice when the number of agents
(EVs or hubs) or the prediction horizon increases.

TABLE VI
SUMMARY OF DISTRIBUTED METHODS - PROCESSING.

Method
Average Solver Time/Iter. (Sec) Average Iter. to Converge

Case Study 1 Case Study 2 Case Study 1 Case Study 2

Central 3e-1 4e-2 1 1
ALADIN 2e-1 4e-2 1.9 1.4
ADMM 8e-3 1e-2 6.9 18
Dual Decomposition 2e-3 5e-3 284 1000
PEM 6e-2 - 1 -

B. Summary of Results

A qualitative summary of the differences in the distributed
methods is shown in Fig. 9. The central formulation gives the
optimal solution quickly but gives no privacy and has a high
communication overhead at scale. Dual decomposition and ADMM
improve on data privacy, but see a significant decrease in the
performance and computational efficiency. ALADIN shows the best
performance out of the distributed methods but sacrifices privacy.
PEM contrasts interestingly with Central and offers maximum
privacy and speed but without optimality guarantees.

C. Selecting a Suitable Distributed Method

For the scenario in Case Study 1, privacy is important as
residential EV owners should not need to share their private driving
information. Using ALADIN, the coordinator knows the gradients,
which are a scaled version of the current schedule and are sensitive
data. Due to the large amount of information being shared with
the ALADIN algorithm, this may not be the best approach even
though it shows the best performance. Thus, ADMM or PEM are
well-suited for residential fleets. For commercial fleets, such as in
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case study 2, where data privacy is less of a priority, ALADIN is a
powerful option. Clearly, for a general setting, the order of priorities
must be decided before deciding on a specific method.

VIII. CONCLUSION & FUTURE WORK

Utilities and other entities in the energy industry will soon have to
consider the impacts of increased adoption of electric vehicles. Un-
coordinated charging could cause overloading of grid transformers
as the penetration of electric vehicles increases. We have developed
two novel distributed control strategies (ALADIN and PEM) and
shown that they could be implemented to avoid costly upgrades of
transformers. We have compared the tradeoff of these novel methods
to conventional algorithms (ADMM and Dual Decomposition) in
the areas of privacy (communication), performance (optimality), and
processing (computation time). Finally, a novel EV charging aggre-
gation hub model was developed that modelsN commercial EVs
with fixed current and energy limits into a single resource with vari-
able current and energy limits when a good arrival/departure forecast
is available. This hub model effectively extends the presented dis-
tributed algorithms for fixed EV population to populations with vari-
able EV populations (defined by forecasted arrival/departure rates).

Based on two different case studies (residential and commercial),
we found that the proposed and novel suboptimal, but privacy-
preserving algorithm PEM might be ideal for an application where
privacy is valued, such as a residential EV charging. On the other
hand, in a commercial fleet setting with multiple charging hubs,
where performance is a priority, ALADIN represents a good choice.

The EVC problem presented herein is deterministic, implemented
in synchronous fashion, and does not explore control objectives that
incentivize V2G operation of EVs. In addition, the transformer
is assumed to be operating with an ideal model under balanced
loading. Thus, future directions of research will explore stochastic,
robust, and asynchronous EVC implementations that could permit
peer-to-peer sharing of resources via different market signals and
more general transformer models and operations. Furthermore,
since future control methods will require more than EVs to be
coordinated and incorporate AC grid reliability constraints, access
to and the role of (private) information will be critical. Within this
context, we are interested to extend ALADIN and PEM to consider
other types of Distributed Energy Resources (DERs) for demand
management, additional (coupling, unbalanced) grid constraints
via AC Optimal Power Flow (OPF) formulation, and investigate
the effects of negative background demand due to solar PV. By
incorporating utility network information into the control algorithms,
it also becomes critical to consider the role of cybersecurity, which
is an important aspect of data privacy.

IX. APPENDIX - PROOF OF THEOREM 1

The tightness proof for the relaxed transformer dynamics in
Theorem 1 relies on KKT analysis. Thus, we first need to define
the primal constraints and dual variables of the relevant SOCP
formulation of (8) along with the KKT stationarity conditions.
These are presented before the proof.

A. Primal constraints and dual variables
Consider the primal SOCP constraints from (8) with the state

of charge limits removed as they are not needed for the conditions

in Theorem 1. For all k∈K .
={0,...,K−1} and n∈N .

={1,...,N},
the following constraints define primal feasibility and dual variables
after |:

0=T(k+1)−τT(k)−ηe(k) |λk+1
T ∈R∀k (24a)

0=sn(k+1)−sn(k)−ηnin(k) |λk+1
sn ∈R∀k,∀n (24b)

0=itotal(k)−id(k)−
N∑
n=1

in(k) |λkc ∈R∀k (24c)

0≥T(k+1)−Tmax |µk+1
T ≥0∀k (24d)

0≥(itotal(k))2−e(k) |µke≥0∀k (24e)

0≥in(k)−imax
n |µkin≥0∀k,∀n (24f)

0≥0−in(k) |µk
in
≥0∀k,∀n (24g)

0≥ s̄n−sn(k̄n+1), |µ̄k̄n+1
sn ≥0∀n (24h)

where the last constraint is the QoS guarantee that ensures that
vehicle n achieves at least a state-of-charge of s̄n by no later than
time k̄n+1. Without loss of generality, we can also set id(k)≡0
and assume sn(0)>0.

B. KKT stationarity conditions
If we assume Slater’s constraint qualification holds5, the

stationarity condition ∇x(k)L(x,λ,µ) = 0 has to hold for each
variable x at timestep k, which gives

∇T(k+1)L⇒λk+1
T =τλk+2

T −µk+1
T (25a)

∇T(K)L⇒λKT =−µKT (25b)

∇e(k)L⇒0=−ηλk+1
T −µke (25c)

∇itotal(k)L⇒0=λkc+2µkeitotal(k) (25d)

∇in(k)L⇒0=2rnin(k)−ηnλk+1
sn −λ

k
c+µkin−µ

k

in
(25e)

∇sn(k+1)L⇒λk+1
sn =λk+2

sn +2qn(1−sn(k+1)) (25f)

∇sn(k̄n+1)L⇒λk̄n+1
sn =λk̄n+2

sn +2qn(1−sn(k̄n+1))+µ̄k̄n+1
sn (25g)

∇sn(K)L⇒λKsn =2qn(1−sn(K)). (25h)

Before we can complete the proof, we need help from three
technical lemmas that employ the primal and dual relations.

Lemma 1. At optimality, the dual variable, µke , associated with
relaxed quadratic constraint (24e), satisfies µle≥µke for all l≤k.
Specifically, if (24e) is strictly active at timestep k, then it is strictly
active for all prior timesteps.

Proof. From recursion on (25a) and (25b), we have

λk+1
T =−

K∑
t=k+1

τt−k−1µtT , (26)

for all k, where µk+1
T ≥ 0 ∀k ∈ K. Substituting λk+1

T from (26)
into (25c), we have that for all l≤k

µle=η

K∑
t=l+1

τt−l−1µtT (27)

=η

(
k∑

t=l+1

τt−l−1µtT+

K∑
t=k+1

τt−k−1µtT

)
≥µke . (28)

5This is reasonable for the SOCP formulation and equivalent to the existence of
a strictly feasible solution where the transformer temperature is not at its limit at
all times, i.e., we have some flexibility in the system.
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Thus, if µke>0⇒µle>0 ∀l≤k, concluding the proof.

Lemma 2. From (25f) and (25h) and recursion on k, it is trivial
to show that for all k,

λk+1
sn =

K∑
t=k+1

2qn(1−sn(t))+Ik̄,kµ̄
k̄n+1
sn , (29)

where Ik̄,k=1 if k≤ k̄n and Ik̄,k=0 otherwise.

Lemma 3. Since in(k) ≥ 0, the sequence {sn(k)}Kk=1 defined
by (24b) is clearly non-decreasing for all n ∈ N . That is,
1≥sn(k+1)≥sn(k)≥sn(0) for all k∈K.

C. Proof of Theorem 1

Proof. (Direct) From Lemma 1, we just need to show that µke>0.
Thus, first consider (25e) for timestep k and substitute for λkc with
(25d) and λk+1

sn with Lemma 2, which yields

0=2rnin(k)−ηn

(
2qn

K∑
t=k+1

(1−sn(t))+Ik̄,kµ̄
k̄n+1
sn

)
+2µkeitotal(k)+µkin−µ

k
in
.

and µke to the left-hand side gives

2µkeitotal(k)=ηn

(
2qn

K∑
t=k+1

(1−sn(t))+Ik̄,kµ̄
k̄n+1
sn

)
+µk

in
−2rnin(k)−µkin. (30)

Since the transformer is overloaded due to excessive demand,
itotal(l) > 0. Thus, we just need to show that RHS is strictly
positive. Before doing so, we first simplify the notation by defining
αn(k, k̄n)

.
= ηnIk̄,kµ̄

k̄n+1
sn + µk

in
− µkin where αn(k, k̄n) ≥ 0

since in(k) < imax
n . Clearly, if rn = 0, the proof is complete for

sn(k + 1) < 1. However, for rn > 0, we need to consider the
ratio qn/rn. Thus, we will use (24b) and replace in(k) with
1
ηn

(sn(k+1)−sn(k)) in (30):

2µkeitotal(k)=2qnηn

K∑
t=k+1

(1−sn(t))

−2
rn
ηn

(sn(k+1)−sn(k))+αn(k,k̄n)

2µkeitotal(k)≥2qnηn

(
(1−sn(k+1))+

K∑
t=k+2

(1−sn(t))

)
−2

rn
ηn

(sn(k+1)−sn(k)),

where the inequality is due to αn(k,k̄n)≥ 0. Further reductions
show that 2µkeitotal(k)

≥2qnηn(1−sn(k+1))−2
rn
ηn

(sn(k+1)−sn(k))

≥2
rn
ηn

(
qn
rn
η2
n(1−sn(k+1))−sn(k+1)+sn(0)

)
=2

rn
ηn

(Mn+sn(0)−(Mn+1)sn(k+1))

where the last inequality is due to Lemma 3. For rn > 0 and
sn(k+1)<Mn+sn(0)

Mn+1 , the RHS is strictly positive, which ensures

that µke >0. Finally, from Lemma 1, we have µle≥µke >0∀l≤k,
which completes the proof.

X. APPENDIX - PROOF OF COROLLARY 1

Proof. This proof has two parts. 1. Proving if k is largest timestep
to satisfy µke >0 then µk+1

T >0 and µmT = 0 ∀m>k+1 : Recall
that in (27), since η,τ >0 and µtT ≥0, if µke>0, then ∃m>k such
that µm+1

T >0. Now, assumem>k+1, then

µme =η

K∑
t=m+1

τt−m−1µtT⇒µme >0.

However, since m > k that contradicts with k being the largest
integer for which µke>0 and, thus, µmT =0 ∀m>k+1 and k+1 is
the last instance of µk+1

T >0, which implies that T(k+1)=Tmax.
2. Proving if k+1 is last timestep with µk+1

T > 0 then µke > 0:
if k+1 is the last instance of µk+1

T > 0 then µle > 0 ∀l≤ k and,
thus, k is the largest integer for which µke>0 and e(k)=(itotal(k))2.
This completes the proof.

Note that in a practical setting, where optimality of EV charging
control is not critical, a practitioner could circumvent the complexity
of the convex relaxation by augmenting objective function (8a) with
a temperature deviation term −ε(Tmax−T(k+1)) for arbitrarily
small ε > 0. This incentivizes temperature trajectories far from
the temperature limit by embedding a −ε into the RHS of (25a)
and (25b), which guarantees that λk+1

T < 0∀k ∈ K. From (25c),
this yields µke > 0∀k, which ensures that the convex relaxation is
tight for all time steps, regardless of transformer or fleet conditions,
and qn/rn ratios. The practical impact of using this approach is
that for larger ε>0, the EV optimal charging schedule embodies
a utility-centric, valley-filling policy [24], [26], which competes
with that of the QoS-centric objective in (8a) and may negatively
impact EV customer satisfaction.
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