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Abstract— The non-convex complementarity constraints present
a fundamental computational challenge in energy constrained
optimization problems. In this work, we present a new, linear,
and robust battery optimization formulation that sidesteps the
need for battery complementarity constraints and integers and
prove analytically that the formulation guarantees that all energy
constraints are satisfied which ensures that the optimized battery
dispatch is physically realizable. In addition, we bound the worst-case
model mismatch and discuss conservativeness. Simulation results
further illustrate the effectiveness of this approach.

Index Terms—Energy storage, battery, simultaneous charging and
discharging, complementarity constraint, model predictive control.

I. INTRODUCTION

Due to the increasing penetration of variable renewable
generation, widespread concerns over reliability of power systems
are being raised. Deploying battery storage systems is widely
considered a solution to improve grid operations and reliability [1].
However, optimizing battery storage requires being cognizant of
the dynamics of the state of charge (SoC), limits on SoC, limits
on the rate of change of the SoC (i.e., power input/output), and the
physical operating modes of the battery: it can either charge (i.e.,
consume energy) or discharge (i.e., produce energy), but not both
at the same time. Previous works in literature have employed binary
variables (i.e., 1 =charging and 0 =discharging) in the optimization
to overcome this issue [2]. However, solving general mixed-integer
programs (MIPs) is computationally challenging.

To sidestep the MIP challenge, several works in literature have
proposed different battery models as a way to overcome the non-
convex complementarity constraints [1], [3]-[6]. In [4], the battery
physics are modeled in the nonlinear current-voltage variable space,
which gives a non-convex, but continuous formulation. The authors
in [3] relaxed the complementarity constraints in a bulk transmission
economic dispatch problem. Then, through KKT analysis, they pro-
vide sufficient conditions under which the relaxation holds. However,
these conditions do apply under negative locational marginal prices
(LMPs). Similar to the work in [3], the authors in [5], [6] extend the
formulation to distribution networks and provide methods to avoid
simultaneous charging and discharging by modifying the objective
function. However, these methods do not hold under high renewable
penetration, specifically under reverse power flow. The work in [1]
quantifies the effects of simultaneous charging and discharging

*N. Nazir is affiliated with Pacific Northwest National Lab, Richland, WA 99354.
TM. Almassalkhi is affiliated with the Department of Electrical and Biomedical
Engineering, The University of Vermont, Burlington, VT 05405, USA.

Support from the U.S. Department of Energy’s Advanced Research Projects
Agency—Energy (ARPA-E) Award DE-AR0000694 is gratefully acknowledged.
M. Almassalkhi was supported in part by the National Science Foundation (NSF)
Award ECCS-2047306.

and also provides a heuristic approach to avoid this phenomenon.
Recently [7] reiterated that many of these approaches fail in practical
settings and engender simultaneous charging and discharging.

From the above literature, battery models based on relaxing
complementarity constraints fail under practical conditions which
then leads to violation of battery SoC constraints when the said
models are employed in optimization problems. This is particularly
true with reverse power flow from increasing number of vehicle
to grid (V2G) systems. Hence, there is a need for models that
respect the SoC constraints without having to resort to non-linear
complementarity constraints. Another factor is a shift towards
real-time control of power systems [8], which motivates a need to
avoid mixed-integer formulations. To tackle this critical problem,
in this work, we propose a method that respects the battery SoC
constraints under practical conditions and, at the same time, avoids
the need for non-linear complementarity constraints or binary
variables. We augment the battery model with a linear term that
utilizes a simplified battery model using only the net battery power
exchanges. This simplified linear term results in tightening of the
SoC upper limit in the battery model. The contribution is a new
linear energy storage dispatch formulation whose optimal solution
predicts a physically realizable dispatch, i.e., a sequence of power
set-points whose resulting SoC trajectory respects the actual SoC
limits. That is, the authors’ definition of physically realizable refers
to the state (or system’s output) being achievable rather than an
implementation (i.e., systems input sequence) being achievable. We
provide analysis that proves the feasibility of this technique and
also provide bounds on its conservativeness with regards to the
tightening of the SoC limits. Bounds on the worst-case tightening
of SoC limits can be calculated a priori based on parameters such
as the optimization horizon and time-step and the battery specs.

In the rest of the manuscript we develop a novel, linear
formulation of the optimal battery dispatch problem that respects the
SoC limits without using complementarity constraints. We analyze
the approach and provide simulation results that demonstrate its
effectiveness.

II. STANDARD BATTERY MODEL

Consider a battery with SoC at (discrete) time-step k,
Ek] € [0,Emax|, where each time-step represents a duration At > 0.
The battery also has charging and discharging inputs that can
be applied over time-step k defined as P.[k], Pylk] € [0, Praxl,
respectively, and charging and discharging efficiencies nc,nq € (0,1],
respectively. In addition, the battery can either charge or discharge
but not both at time %, which yields non-convex complementarity
condition P.[k]Py[k]=0. Then, starting with a given initial SoC E
and a sequence of inputs over period 7 ={0,1,...,7'—1}, the battery



SoC dynamics evolve along a admissible trajectory described by
the following set of equalities and inequalities:

Elk+1] :E[k]JrAtncPc[k}f%Pd[k], VEET (la)
d

E[0]=Eq (1b)
0<PIk<Puw, VEET (10)
0 < Py[k] <Prax, VkeT (1d)
0< Elk+1] <Epax, VkeT (le)
P.[k]Pa[k] =0 VkeT. (1)

The resulting SoC trajectory can be expressed as

1

E(P.,Py)=17Ey+n.AP.— %Apd, ()

where E = col{E[k + 1}ker, Pc = col{P.[k]}ker, and
Py=col{ Py[k]}re7 and A is a lower triangular matrix that relates
the input at time & to AtE[l] at time [ >k, and 17:=[1,...,1]T € R7.,
Prior work has relaxed the battery model in (1) by removing com-
plementarity condition (1f) [1], [3], [5], [6]. Thus, relaxed models
allow simultaneous charging and discharging, i.e., P.[k] Py[k] > 0.
In the next section, we present the relaxed model and a simplified
1-input model that considers only the net-charging input, i.e.,
Py, :=P.—Py. Then, we analytically show how these two models
together present necessary and sufficient bounds on the SoC in
the standard model. This informs a novel battery optimization
formulation that is both convex and whose optimal open-loop
dispatch schedule is guaranteed to be physically realizable.

III. RELAXED AND SIMPLIFIED BATTERY MODELS

A. Relaxed model

The relaxed model is obtained by removing (1f) from the
standard battery model (1) and is, thus, convex. It defines a relaxed
SoC trajectory E":=col{ E*[k]}]_, that Vk € T satisfies

(3a)
Md
E"0]=Eo (3b)
0 < P/ [k] < Pnax, (3o
0 < PJ[k] <Prax, (3d)
0<E"[k+1] <Eiax, (3e)

Note that with complementarity conditions relaxed in (3) we have
new inputs P} [k] and P [k] that are different from those in (1). The
variables are related

P.=max{0,P.—P;}, Py :maX{O,—(PZ -P)}, @

which implies that P, — Py =P —P7. The relaxed model’s SoC
trajectory is then defined by

1
E" (P! P})=17Ey+n AP, — %APQ. )

B. Simplified 1-input model

For the simplified battery model, we approximate the battery
efficiencies, 7c and ;- by a single net-charge efficiency 7€ [, -]
and replace the two inputs in (1) F[k] and FPy[k] with a single
net-charging input B,[k] = P.[k] — Pu[k] € [— Prax, Pmax), Which
yields the simplified 1-input model:

E°[k+1]:=E°[k]+nAtB k], VkeT (62)
E°[0]=Ey (6b)
—Poax < B[k <Pnax  VKET (6¢)
0< E°[k+1] <Epnax- VkeT (6d)
The simplified model’s SoC trajectory is then
E¥(Py)=17E)+7AP. @)

C. Analyzing model mismatch

Clearly, by relaxing complementarity conditions and simplifying
efficiencies, the corresponding open-loop SoC trajectories may not
match the actual trajectory in (1). However, we will next show that
the models are ordered in that E" <E <E* for 1,14 € (0,1].

LemmalIlLl. Ifinputs P, =P .—P,;=P, P} satisfy P.-P;=0
and P.-P,,>0, then E" (PP <E(P.P,) <E'(P}).

Proof. First we shall prove that E” < E. Subtracting (5) from (2)
and substituting the values of P, and P4 from (4) and applying
basic algebraic operations, we get:

1
AET:EETA(nC)min{Pg, 11>0 ®)
Ta

This proves the first part of the lemma. To prove E < E°, we
subtract (2) from (7) and substitute P, =P.—P4, which gives

AES::ES—E:A[PC(n—nC)—FPd(nl—77>}>0 ©)
d

duetoncgngi.ThuS,ErgEgEs. O

Lemma III.1 shows that the simplified model overestimates the ac-
tual SoC, while the relaxed model underestimates the SoC. Further-
more, from the proof of Lemma III.1, we can analyze the worst-case
SoC model mismatches AE"™,AE®. The bounds on the mismatches
represent the conservativeness of the two battery models. For the re-
laxed model, the worst-case mismatch over the trajectory is given by:

AR = A(—n)min{PLPY < () Alr P (10
d Md
This worst-case error can further be reduced by including the
cutting-plane from [1]: P{ +P] <17 Py, in (3), which gives:

1 P,
AE < (——n)Alp—=. 11)
Md 2

Similarly, the simplified model’s mismatch can be written:

AEq:A (77—770>maX{O’Pb}+ (n—i)mln{O,Pb}} . (]2)
d



Note that AE® depends on choice of 7. Consider the choice of 7
such that n —n. = i —n= %(i —1¢) =: a.. Based on this 7, the
worst-case simplified model mismatch is

AE*=aA[max{0,P,} —min{0,Py}|=cA|P,| (13)
1 Py
:AEsgaAlTPmm:(——nc)AlT%. (14)
"ld

From (11) and (14), it can be seen that these worst-case model
mismatch bound are equivalent for the given choice of 7. Clearly,
for n. = 1 = 14, both battery models are exact (as is known).
However, in practice, (n—ld —1,) <0.2 for most lithium-based and
lead-acid battery technologies (with round-trip efficiencies > 80%),
which yields model mismatches (well) below PlLé'*AlT.

Since errors are reasonable, we can employ the relaxed and
simplified models as lower and upper bounds, respectively, in a
linear battery optimization formulation that ensures the actual SoC
is persistently within SoC limits.

IV. OPTIMAL BATTERY DISPATCH FORMULATION

Based on the analysis in Lemma III.1, the two battery models
bound the actual SoC. The linear robust battery dispatch (RBD)
problem can then be formulated as follows:

(RBD) min  f(P.—Py) (15a)
P.—Py

1
st 0<l7Ey+n.AP.— ;APd (15b)

d
Emax leEO +77A(P0_Pd) (15C)
OSchlTPmax (ISd)
OSPdS]-TPmax (156)
Pc+Pd§1TPmax (15f)

Remark. We can easily adapt (15) to power systems with N
batteries and modify the objective to f (Zi]il(Pm' —Py;)). The
Sformulation can also be augmented by coupling the batteries inputs
via power flow equations, e.g., [6].

The robust optimization problem in (15) leads to a conservative
battery dispatch. However, the conservativeness is with respect
to the objective function. Thatiisybyrguaranteeing thatitheractual
SoC trajectory is within its energy limits, the optimization problem
always ensures that an optimized power dispatch is realizable. In
fact, the conservativeness in the objective depends on the time step
width At and the horizon 7" (i.e., A) and battery specs (7,74, Prmax)-

Remark. Note that since the results hold for any objective function
imn(15a), the linear RBD formulation is well-suited in model
predictive control (MPC) settings and in unit commitment, security-
constrained, and multi-period economic dispatch applications.

Next, we illustrate the effectiveness of the proposed approach
in (15) with simulation results.

V. SIMULATION RESULTS

Consider a battery with P,,x = 15kW and E,,,x = 60kWh. Let
1e=0.95=74 and choose 1= (1, +74)/2=1.0013, which results
in a = 0.0513. The time-step At is 1 hour and the control and
prediction horizon length 7" is 24 hours. The objective in (15a) is
chosen as Y, (Perlk] — (Pc[k] — P4[k]))?. In Fig. 1a, the results
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Fig. 1. (a) Tracking a battery reference power signal Pys with the net battery output
B, € [— Pnax, Pmax]. (b) Comparison between predicted SoC (E*,E") and actual
SoC E resulting from optimized dispatch with the energy limits [0,60]. Clearly, the
actual SoC trajectory E satisfies energy limits.

shows one battery tracking a reference power signal while Fig. 1b
compares the predicted (upper and lower bounds) SoC resulting
from (15) to the actual battery SoC obtained from (2). Fig. 1b
illustrates that trajectory E is within its energy limits, which means
the optimized power dispatch Py, is guaranteed to be realizable.

Furthermore, to highlight computational efficiency, Table I
compares the RBD in (15) to exact mixed-integer (MIP) and
non-linear (NLP) formulations as the number of batteries N
increases and we track IV Fy¢. The RBD and MIP are solved using
Gurobi 9.1, while the NLP uses IPOPT on a standard laptop. The
table shows that the RBD method is 10-200 times faster than MIP
for N <200 batteries. For N > 500, MIP does not find a solution
with MIP-gap < 10% within 3600s. The RBD approach is also 5-50
times faster than the NLP, which only achieves local optimum. Note
also that the RBD outperforms the NLP with respect to open-loop
tracking performance (RMSE) and is still within 10% of the
globally optimal, exact MIP. The RBD’s fast solve time enables a
receding-horizon implementation that should greatly reduce RMSE.
Thus, with (15), we sidestep the challenges with non-convex or
integer-based complementarity constraints and provide a linear
formulation that guarantees a realizable dispatch.

TABLE I
SOLVE TIME (SEC) AND POWER TRACKING RMSE (KW) COMPARISON WITH
INCREASING BATTERIES FOR RBD vs MIP vs NLP

RBD MIP NLP
Batteries Time RMSE Time RMSE Time RMSE
10 1.7 47.8 16.3 43.7 5.1 54
100 3.1 478.7 271.8 437.8 50.5 478.7
200 6.3 957.4 1114 866 133.2 1190.2
500 11.5 2327.4 — — 351.6 2415.2
1000 22.6 4787.1 — — 1115 4787.1

A. Impact of efficiency

The model mismatch in the RBD formulation (i.e., AES and
AE") depends largely on the charge and discharge efficiencies. If
the round-trip efficiency is low, then the model mismatch increases,
which makes the RBD formulation more conservative. To illustrate
the effect of round-trip efficiency on the model mismatch and
conservativeness, we repeat the simulations from Fig. 1, but over
a range of efficiencies. The resulting model mismatch with AE® is
shown in Fig. 2a and represents an over-estimate of SoC. The figure
illustrates the increased model mismatch as the round-trip efficiency
reduces. The corresponding cumulative objective function values
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Fig. 2. (a) Modeling mismatch, AE® obtained from (13) for different
ne = mnq efficiencies. (b) Corresponding cumulative objective function values
((Pret[k] — By [K])?) showing reduced tracking performance with increased modeling
mismatch (i.e., lower efficiencies).
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are shown in Fig. 2b, highlighting the reduced tracking performance
with lower efficiencies. For applications, such as pumped hydro or
hydrogen storage (i.e., electrolyzer+fuel cells), where the round-trip
efficiency is around 60%, the proposed RBD formulation will be
conservative and may not be suitable, but is, nonetheless, guaranteed
to be physically realizable.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a new linear formulation to optimally
dispatch batteries while guaranteeing satisfaction of SoC constraints,
without having to resort to a non-convex and/or mixed-integer bat-
tery formulations. Through mathematical analysis, we prove that two
linear formulations provide upper and lower bounds on the actual
SoC, which enables their use as proxy variables in the optimization
formulation. Furthermore, we provide worst-case bounds on the
conservativeness of this approach. These results have the potential
to greatly reduce the complexity of energy-constrained battery
optimization problems, while guaranteeing satisfaction of actual
SoC constraints. Future work will investigate the RBD formulation
from (15) in various MPC and optimal power flow formulations
and study the impact of conservativeness in practical applications.
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