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Abstract— In this paper, we present a fuel-optimal trajectory
optimization (TO) problem for satellite formation flying (SFF)
in near-circular low-earth orbits (LEO) under perturbations
and modeling uncertainties. Non-spherical gravity (J2) of the
earth and air drag are two dominant perturbing forces in
LEO which cause significant orbital measurement errors and
eventually sub-optimal actuation and trajectory prediction by
the TO algorithm. By quantifying uncertainties and modeling
errors associated with various relative dynamical models of
satellites, we identify a model that is suitable for the TO
problem. However, one of the key challenges to design of a
computationally efficient TO algorithm for satellite swarms
pertains to the assignment of each satellite to a location in a
given final formation. To address this, we first decouple the final
configuration assignment problem from the TO, derive mini-
mum distance assignment between initial and final formation
pairs, and then by using this minimum distance assignment
in the TO algorithm, we efficiently compute near-optimal
trajectories and actuation under given mission specifications.
Our proposed formulation is scalable to large swarm sizes and
it allows the computation load to be distributed over the satellite
swarm at the expense of small loss in fuel-optimality.

I. INTRODUCTION

Formation flying of LEO spacecrafts has received signifi-
cant research attention in recent years because of several po-
tential applications in performing complex missions, such as
distributed imaging of earth’s surface, atmospheric sampling,
and interferometry at reduced costs, increased flexibility,
reconfigurability and performance compared to a monolithic
spacecraft [1]. The primary goal of satellite formation flying
(SFF) [2] is to place a cluster of cooperative satellites into
nearby orbits to achieve a group objective.

SFF missions typically require complex reconfiguration
maneuvers such as moving, reorienting, and rotating a fleet
of spacecrafts from an initial configuration to a desired target
configuration. It is important to carry out these maneuvers in
a fuel-optimal manner while satisfying physical and mission-
specific constraints. Fuel/time-optimal control of spacecraft
formation based on linear programming was presented in
the works of [3]–[5] and with nonlinear programming in
[2]. In general, SFF with small formation size has been
well-studied in the literature. Interested readers, please refer
to [6], [7] and references therein. However, in [2], [3],
[5], relative dynamical model of satellites used in the TO
does not take into account the J2 perturbation, which is
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the most dominant perturbing force [8], [9]. Additionally,
the nonconvex optimization constraints in [2] make the TO
algorithm computationally hard and inapplicable for large
swarms. In contrast to these works, our objective in this
paper is to propose a computationally efficient, scalable TO
framework which devotes due consideration on modeling
accuracy of satellites in LEO, capturing the effects of both
the J2 perturbation and air drag with sufficient accuracy.

A high-fidelity nonlinear model considering the effects
of J2 drift was developed in [10] for a formation keeping
problem, which was later extended to include the effects
of air drag in [1]. As the model’s complexity hampers its
application in control designs [11], we present here a compar-
ative analysis of various dynamical models. By quantifying
modeling errors, we identify an appropriate model specific
to LEO SFF mission design. Specifically, in this work, we
revisit four relative dynamical models - namely: (i) high
fidelity nonlinear model in [1] that considers both the effects
of J2 and air drag, (ii) linearized J2 model in [10], (iii) Hill’s
equations (Hill-Clohessy-Wiltshire model or HCW model)
in [12], (iv) Modified Hill’s equations with J2 in [13]. To
select an appropriate model for TO, we first compare relative
dynamical models (ii)-(iv), stated above, with respect to
the high fidelity nonlinear model (i) and compute modeling
errors for various initial conditions. This analysis has not
been conducted in a cohesive manner before, and modeling
errors have not been formally quantified. We fill this gap and
quantify the errors, which allows us to identify the linearized
J2 as an excellent candidate to be used as computationally
simple state-space constraints in the TO problem.

One of the main challenges in designing a computationally
efficient TO algorithm is the assignment of satellites in a
fuel-optimal configuration on the final formation. Given a
set of final positions and velocities, the objective of this
assignment problem is to assign each satellite to a specific
final destination in a way that is fuel optimal for the entire
fleet. We present here an alternative approach to decouple
the final configuration assignment problem from the trajec-
tory planning problem to make this more computationally
tractable at the expense of a small loss (at most 10%) in
fuel-optimality. To this end, instead of simultaneously finding
fuel-optimal final assignment and trajectories, we rather
solve separately a “minimum cost transportation problem”
to derive the shortest distance assignment between initial
and final formation pairs [14]. Then, by using the computed
final assignments, we efficiently find alternative near-optimal
trajectories and actuation profiles. The assignment problem
can be solved efficiently in a centralized manner (e.g., by



one of the satellites), while the TO problem can be solved
by each satellite in a decentralized fashion.

Contributions: In summary, this work presents a com-
putationally efficient trajectory planning algorithm of SFF,
which is appropriate for coordination and control in practical
missions involving large swarms. The main contributions are:
(1) quantification of uncertainties around different satellite
relative dynamic models, and selection of the linearized J2
model as suitable for the TO problem (discussed in Sections
III, IV), (2) decoupling of the assignment algorithm from
the TO problem to efficiently compute near-optimal satellite
trajectories (presented in Section VI). Such decoupled for-
mulation allows the satellites to compute their own trajectory
in a decentralized manner and the computation load is thus
distributed over the satellite swarm.

II. PROBLEM STATEMENT

Given initial and final formation of N identical satellites
in close proximity in near-circular LEO subject to J2 gravity
and air drag, the objective of this paper is to derive a
computationally efficient, scalable TO framework satisfying
all physical and mission specific constraints, discussed below,
such that all these satellites under predicted actuation from
the trajectory planning algorithm, reach the final formation
after a specified time duration with minimal fuel consump-
tion. The results presented here are relevant, for example,
to interferometric space missions where a satellite cluster
reconfigures its formation to create effective beam angles
for capturing images while traversing along a “target orbit”.
We formally define the term “target orbit” in the upcoming
section.

Mission requirements: We now summarize the mission
specifications for illustrative numerical simulations presented
in this paper. Inspired by a formation flying space mission
TechSat-21 [15] by U.S. Air Force Research Laboratory
(AFRL) in 2006 and their mission specifications, the position
tolerance of the desired relative states in this work are
chosen to be 5 m in radial, along-track and across-track
directions with respect to the “target orbit”. Additionally, in
the current SFF mission, we assume that the initial “target
orbit” is circular or near-circular and all the satellites are
initially located within 15 km from this “target orbit”. Each
satellite is equipped with three thrusters of 3 mN actuation
limits with each pointing respectively in radial, along-track
and across-track direction. We assume in this work that
the thrusters are aligned perfectly with body axes and that
they do not induce any torque on the body. Of course,
this may not be a realistic assumption and, in practice,
reaction wheels and low-level controllers may be employed
to counteract any induced rotation (this is outside the scope
of this paper). The robust optimal actuation force, as pre-
dicted by the trajectory planner here is applicable to other
thruster configurations as well, namely coupling thrusters
and reaction wheels/magnetometers through an appropriate
control allocation scheme.

III. REVIEW OF VARIOUS RELATIVE DYNAMICAL
MODELS OF SATELLITES

In this section, we review various relative dynamical
models of LEO satellites, capturing primarily the effects of
J2 perturbation and air drag. For brevity, through the rest
of the paper, we use shorthand notation for trigonometric
identities such as sθ = sin θ, cθ = cos θ.

In the traditional texts on dynamical motion of satellites,
a virtual unactuated satellite or a fictitious moving point is
usually taken as a reference and all N participating satellites
in formation as followers. Given the initial orbital elements,
the position and velocity vectors of this reference satellite
at every time instant define a “target orbit”. This target
orbit is generally expressed in Earth-centered inertial (ECI)
coordinate frame which has its origin located at the center
of the earth, X axis aligned with earth’s mean equator and
passes through vernal equinox, Z axis along the celestial
north pole while the Y axis completing the right hand
orthogonal frame with the other two [13]. Considering the
two main disturbances, namely J2 and atmospheric drag, the
differential equations governing the motion [1] of the target
orbit are:
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where r and vx are respectively the orbital position and
velocity in ECI coordinates, h,Ω, i, θ denote angular mo-
mentum, right ascension of the ascending node (RAAN),
inclination angle and true anomaly, C = 0.5Cd

A
mρ, Cd is

air drag coefficient, A is the cross-section area and m is the
mass of the spacecraft, ρ is atmospheric density,

Va =

[
vx (

h

r
− ωerci) ωercθsi

]T

is the orbital velocity vector with respect to the atmosphere,
ωe = 7.2921 × 10−5 rad s−1, µ = 398600 km s−2 is
gravitational constant, KJ2 = 1.5µJ2R

2
e with second zonal

harmonic constant J2 = 1.082 × 10−3, and earth’s mean
equatorial radius Re = 6378 km.

The relative dynamical motion of all follower satellites
are described in local-vertical-local-horizontal (LVLH) frame
[16], with its origin located on the target orbit. In this local
coordinate frame, the relative position vector of jth spacecraft
is usually expressed as r̄j =

[
xj yj zj

]T
where the unit

vectors associated with xj , yj and zj respectively point in the
radial, along-track and across-track directions. Thrust vectors
of the follower satellites ujx, ujy and ujz respectively point



in the radial, along-track and across-track directions in LVLH
frame. Furthermore, the net perturbation force comprising of
J2 effects and air drag is pointed towards the origin of ECI
reference frame.

A. High fidelity nonlinear relative dynamical model

As described in [1], the equations of motion for jth space-
craft under J2 perturbation and atmospheric drag, relative to
the target orbit are given as follows.

ẍj = 2ẏjωz − xj(n
2
j − ω2

z) + yjαz − zjωxωz + ajx

− ζ̄sisθ−r(n2
j − n2)−l1j(ẋj − yjωz)−l2jvx, (7)
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2
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h
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spacecraft with respect to the atmosphere, ajx, ajy and ajz
are control accelerations respectively in x, y, z directions of
the LVLH frame,
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with ḣ, i̇ and θ̇ being given respectively in (3), (5), (6).

B. Linearized J2 model

In the high fidelity nonlinear model (7) – (10), there
are nonlinear terms n2

j , ζj which include polynomials of
the reciprocal of rj and consequently xj , yj , zj . By using
Gegenbauer polynomials, the terms n2

j and ζj were shown to
bear a linear relationship in [10] with the decision variables
xj , yj and zj as follows
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With the above substitution, the first order linear J2 model
yields the following time-varying dynamics
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where r, vx, h, θ, i are time-varying forcing terms obtained
by solving Eqs. (1)–(6).

C. Hill-Clohessy-Wiltshire (HCW) Model with J2

A modified HCW model considering earth’s J2 non-
spherical effect [13] is given as follows

ẍj = ajx + 2ncẏj + (5k21 − 2)n2xj , (14)
ÿj = ajy − 2ncẋj , (15)

z̈j = ajz − k22zj , (16)

where k2 = nk1 + 1.5J2

(
Reci
r

)2

, k1 =
√
1 + k3, k3 =

0.375J2

(
Re

r

)2

(1 + 3c2i). In the absence of J2 perturba-

tions, equations (14) – (16) reduce to original HCW model
or popularly known as Hill’s equation [17].

IV. UNCERTAINTY QUANTIFICATION AND MODELING
ERRORS

In this section, we compare various dynamical models pre-
sented above and evaluate the modeling errors for numerous
initial conditions. We are also interested to determine the
time instant when the modeling errors go beyond a realistic
position tolerance of 5 m [3]. For a given initial condition, we
consider a model to be accurate till the time it is within this
threshold value. This analysis helps us to determine which
model should be used in the TO optimization for a given
time window and initial relative position of satellites.

For a given initial position and simulation time window,
the modeling error of the linearized J2 model is evaluated
as the maximum relative distance between the trajectories
generated by (11) – (13) and the nonlinear model (7) – (9)
over the time window under consideration. Modeling error
for HCW with or without J2 are analogously computed with
respect to the nonlinear model. For convenience, we denote
an orbital period of time with T , where T = 2π

√
a3

µ .
In Fig. 1, we present the maximum modeling errors of

the three linear models relative to the high fidelity nonlinear



Fig. 1: Maximum modeling error of the three models - Linearized
J2, HCW with and without J2 relative to high fidelity nonlinear
model (7) – (9) for initial relative distance (LVLH frame) [0.01, 15]
km and simulation time length 5T .

Fig. 2: Accuracy of the three models in terms of the length of
time elapsed - linearized J2, HCW with and without J2 for initial
relative distance (LVLH frame) [0.01, 6] km. Corresponding to a
specific initial distance, the figure shows the duration until which
the trajectory error is smaller than 5 m and a model is deemed
accurate.

model (7) – (9) under a sinusoidal actuation with frequencies
within [0, 1] rad s−1, amplitudes between [−3, 3] mN in a
simulation for 5T and initial positions drawn randomly from
a uniform distribution such that the relative distance for
these initial points from the origin lie between [0.01, 15] km.
Corresponding to a specific initial distance from the origin
in LVLH frame, we randomly pick 150 initial positions,
evaluate the maximum of modeling errors for these initial
positions and replicate this approach for other initial relative
distances and models. From Fig. 1, we observe that the
linearized J2 model is more accurate as compared to the other
models under considered sinusoidal actuation. We verified
this to be true even when there is no actuation.

Next, we evaluate the duration in which all three models
yield less than 5 m modeling error under aforementioned
sinusoidal actuation. In addition to the modeling errors, we
also evaluate the corresponding time instant when this model

error exceeds beyond 5 m. The simulation results showing
the accuracy of all three models are presented in Fig. 2
from which we observe again that the linearized J2 model
is more accurate than the others. Precisely, when the initial
distance from the target orbit is within 1.5 km (marked by
the rectangular box), linearized J2 model error is within 5
m for more than T duration. Therefore by considering both
the modeling error and accuracy time horizon, linearized J2
model is the most appropriate candidate to formulate the
relative dynamics of satellite swarms in TO problem with
initial distance within 1 km and final time tf = T . For
practical mission purposes, where tf > T , we re-optimize
the TO periodically after an interval of length T .

V. FORMULATION OF THE BASIC TO PROBLEM

This section presents a basic TO formulation of satellite
swarm, modeled as the mixed-integer linear program (MILP)
as in [3], [5]. The core of this optimization problem is
to select state variables pi(k) =

[
p̄i(k) ˙̄pi(k)

]T
, p̄i =[

xi yi zi
]T

, corresponding control ui(k) for each space-
craft i = {1, 2, · · · , N} satisfying Euler-discretized version
of linearized J2 dynamics (11) – (13) in the form

pi(k+1)=A(k)pi(k)+Bui(k), k = 0, 1,· · ·,Nk−1
pi(0) = piS , pi(Nk) = piT ,

(17)

where piS and piT are respectively the initial and terminal
state vectors for ith spacecraft, and Nk is the terminal time
step. Similar to [3], [5], we consider that inputs thrust vectors
along with their respective slew rates lie within a specified
bound

−um,max ≤ uim(k) ≤ um,max, m = 1, 2, 3, (18)
ur
m,min ≤uim(k+1)−uim(k)≤ur

m,max, (19)

where uim(k) denotes the mth component of ui(k) with its
rate limit being bounded within

[
ur
m,min, u

r
m,max

]
.

In contrast to traditional TO problems with well known
final configuration [2], we consider that the assignment of
the final configuration to each satellite is not known a
priori. Assignment of final configuration, also known as path
assignment (PA) problem, is formulated with mixed-integer
linear constraints, given as follows

piT =

N∑
j=1

bijpjD,

N∑
i=1

bij = 1,

N∑
j=1

bij = 1, (20)

where pjD, j = 1, 2, · · · , N denotes all destination locations
available for a satellite to occupy, the unity row sum and
column sum of the assignment matrix B = [bij ]N×N ensures
that each of these terminal points piD, i = 1, 2, · · · , N
is assigned to only one of the satellites. The objective of
this TO problem with final configuration constraints, referred
to as coupled PATO problem is to minimize the total fuel
consumption by all N satellites over the entire time horizon

min
u,p,B

J =

N∑
i=1

Nk−1∑
k=0

3∑
m=1

|uim(k)|



subject to (17) – (20). However, solving this TO for a
formation reconfiguration problem with just three satellites
in a standard Windows computer (3.8 GHz CPU, 16 GB
memory) takes nearly 8 minutes to compute optimal tra-
jectories and control using a mixed-integer solver such as
Gurobi [18]. Due to the inclusion of N2 binary variables
associated with the final assignment constraint (20) within
the TO problem, the resulting computational complexity is
prohibitive. To improve the computationally efficiency with
the current processing capabilities, we thus present in Section
VI alternative approaches to reformulate TO.

VI. MAIN RESULTS

To make the trajectory planning framework, formulated
as coupled PATO problem in Section V computationally
efficient and scalable, our proposed approach decouples the
assignment problem from TO and the resulting formulation
is referred to as decoupled PATO problem throughout the
text. The high-level idea is that, by solving a “transportation
problem” [14], we derive a final configuration of satellites
which are at the minimum overall distance from the initial
formation assignment.

A. MILP formulation of the decoupled PATO problem

The final configuration of satellites based on minimum
distance assignment is formulated as

Decoupled PA problem:min
B

JD =

N∑
i=1

N∑
j=1

dijbij

subject to
∑N

i=1 bij = 1,
∑N

j=1 bij = 1, where dij =

∥p̄jD − p̄iS∥2 denotes the distance between the ith position
(corresponds to ith satellite) of the initial formation and jth

of the final formation based on Euclidean 2 norm, and bij
is the (i, j)

th element of the binary assignment matrix B.
This assignment algorithm, formulated as MILP, is equivalent
to well-known “transportation problem” where the objective
is to find the path between a pair of initial and final
points with minimum cost of transportation. The solution
to this optimization problem is the assignment matrix B that
determines the final positions of N satellites. The assignment
problem is thus solved in a centralized manner and it scales
quadratically with increasing swarm size, as shown in Fig. 3.
Moreover, this PA problem has a small solve time, less than
2.5 s for a swarm size of order 500 on a standard laptop
computer, and thus minimum distance PA problem is both
scalable and computationally efficient.

Given the final configuration of satellites p̄iD, i =
1, 2, · · · , N , the structure of the decoupled fuel optimal TO
problem is the same as the coupled counterpart in Section V,
except for the objective function and final configuration
constraint which no-longer have bij as one of the decision
variables. Since, all the satellites now know their respective
terminal states piT , each of them can solve the TO problem
in a decentralized manner, using their local computer. There-
fore, the objective function of the decoupled TO problem

Fig. 3: Computational complexity of the minimum distance PA
problem with increasing swarm size

becomes

min
u,p

J =

Nk−1∑
k=0

3∑
m=1

|uim(k)|

with the terminal state constraint piT =
∑N

j=1 bijpjD, where
bij is the solution to the PA problem. We also note here
that the final position constraint can also be relaxed and put
into the objective function with a large penalty to ensure
feasibility of the decoupled TO problem, but we will not
pursue that in this paper.

B. Computational Efficiency of Decoupled PATO Formula-
tion

As we have decoupled the assignment problem, the re-
sulting TO algorithm can now be solved by each satellite in
a decentralized manner. The computation time is evaluated
as the maximum TO solve time of a satellite in the swarm.
With discretization time-step of 20 s, solving this decoupled
TO problem in a standard Windows computer with a Gurobi
solver for a single spacecraft typically takes 0.18 s. Such de-
coupled PATO formulation is at least 500 times more compu-
tationally efficient compared to its coupled counterpart, even
for a small formation containing only tens of spacecraft. The
proposed decoupled PATO formulation is therefore scalable
to large swarm sizes and is computationally efficient.

C. Illustrative Example

Let us now consider a numerical example to illustrate the
effectiveness of the decoupled PATO problem as opposed to
its coupled counterpart in Section V. Four satellites start from
a projected circular orbit (PCO) of 1 km radius around the
origin in an LVLH frame and end up being on another PCO
of 5 km radius after one orbital period using minimal fuel
with available thrust limit being 3 mN. We solve the fuel
optimal trajectory planning problem using coupled PATO
algorithm based on minimum fuel assignment in Section
V, and also with decoupled PATO in VI-A which is based
on minimum distance assignment, and consequently evaluate
the predicted trajectory errors. Optimal satellite trajectories



(a) Optimal satellite trajectories under decoupled PATO formulation

(b) Coupled and decoupled PATO trajectories projected onto x-y plane
in LVLH frame

Fig. 4: Optimal satellite trajectories under coupled and decoupled
PATO formulation

under decoupled PATO formulation is shown in Figure 4a
with initial locations marked in circles and the terminal
locations in squares. In Figure 4b, the coupled and decoupled
PATO trajectories are projected onto x-y plane and we
observe that both formulations yield an identical solution.

D. Relative Loss of Fuel-Optimality of Decoupled PATO
Formulation

We now investigate whether the resulting satellite assign-
ments from both approaches are always identical and, if not,
compute the loss of optimality as we move from the coupled
PATO algorithm based on minimum fuel assignment to
decoupled PATO based on the minimum distance assignment.
Since the satellite dynamics have six coupled degrees of free-
dom and are governed by time-varying differential equations,
it is not an easy task to analytically find a feasible space
of initial and final points for which both the assignments
are same. Therefore, with the help of extensive Monte-
Carlo simulations, we numerically estimate a probability
distribution for identical assignment events and determine the
relative fuel cost error between the coupled and decoupled

Fig. 5: Probability distribution of relative fuel cost error between
coupled and decoupled TO problem for different tf ∈ [0.8T, 1.1T ]
with mean µ = 3.5249, 1.6992, 1.3399, 2.45 and standard
deviation σ = 4.08, 4.05, 4.14, 4.83.

PATO problems when two assignments are different.
For these numerical simulations, we select initial and

final positions from two uniform random distributions
U(−1, 1) km, U(−5, 5) km respectively. Given the actuator
saturation of 3 mN, we select the final times tf from the
set [0.8T, 1.1T ] to arrive at a feasible solution to the TO
problem satisfying all control constraints. If tf is selected
too small, for example 0.3T then to reach the destination
in such a short period requires a large thrust which may be
bigger than 3 mN.

For different final times tf , the relative fuel cost error
between the coupled and decoupled PATO problem and the
associated probability distributions are given in Figure 5. For
tf = 0.8T, 0.9T, T, 1.1T , there are respectively 36%,
54.55%, 80% and 53.33% cases where minimum distance
assignment is same as the minimum fuel assignment. Clearly,
as tf tends to T , we numerically find that the solution to
the decoupled PATO problem is identical with its coupled
counterpart for about 80% of cases. On either side of
tf = T , frequency of such occurrences decrease gradually.
Nevertheless, for different final times tf , there are about 96%
cases for which the decoupled fuel cost is at most 10%
greater than the coupled PATO cost. Therefore, decoupled
PATO algorithm offers a near fuel-optimal, computationally
efficient and scalable solution to the trajectory planning
problem. However, there are nearly 4% cases in which the
decoupled PATO cost is 20% greater than the coupled cost.
To address this, one of our future works would be to include
the curvature constraints in the decoupled PATO problem.

Remark 1: In this work, we have implicitly assumed that
the initial position and velocities of satellites are known
precisely. In the presence of uncertainties associated with
piS , the TO algorithm in the previous section, which was
based on nominal initial positions, may in this case yield
large trajectory prediction errors. Therefore, when xiS is
uncertain, a shrinking horizon optimal control is envisioned



as a solution to address this issue and minimize the trajectory
prediction errors. Specifically, to avoid accumulation of large
modeling errors, we restart the TO algorithm after a small
time interval (e.g., every 15 minutes) with new initial points
that come from the high fidelity model (7) - (9) or real
measurements, a representative of the actual fleet dynamics.
This method of successive prediction and re-optimizing the
TO with more accurate initial positions yields a more robust
control profile that eventually renders a small trajectory
prediction error in the face of uncertain initial positions.
This shrinking horizon optimal control not only robustifies
the TO against initial uncertainties and modeling errors, but
also improves fuel-optimality with repeated optimization.
Full investigation of this idea is an ongoing research topic.

VII. CONCLUSIONS

In this paper, we studied TO problem for SFF mission on
circular or near-circular LEO under perturbations and mod-
eling uncertainties. We reviewed several relative dynamical
models of the satellites and, for various initial conditions and
bounded actuation, we evaluated the modeling errors which
eventually allowed us to select the linearized J2 model as the
most appropriate candidate for the TO algorithm when the
satellite swarm is located within 1.5 km initial distance from
the target orbit and trajectory prediction horizon is bounded
within 1.3 orbital periods.

Numerical simulations illustrate that the computational
challenge of the TO algorithm is exacerbated by the presence
of underlying PA problem of the satellites. In this work, we
proposed an alternative formulation by (1) decoupling the PA
problem from the original trajectory planning algorithm, (2)
finding a minimum distance assignment between initial and
final formation pairs, (3) solving decentralized TO problem
in parallel for all satellites in the swarm. This formulation
allows the computation load to be distributed across the
swarm, which makes this approach ideal for a large-scale
SFF mission. With the help of numerical simulations, we
illustrate that such computational advantage of decoupled
PATO formulation comes at the expense of 10% loss in fuel-
optimality compared to the coupled problem.

Our proposed future work includes introducing curvature
constraints in the decoupled TO problem to further im-
prove fuel optimality, studying the shrinking horizon optimal
control approach discussed in Remark 1, and considering
collision avoidance constraints to maintain a safe inter-
satellite distance throughout the maneuver.
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