
A Group-based Approach for Heterogeneity in Packetized Energy
Management∗

Adil Khurram1, Luis Duffaut Espinosa2 and Mads Almassalkhi2.

Abstract— In practice, fleets of DERs are inherently hetero-
geneous due to manufacturers’ specifications and the effects
of wear and tear. Accounting for heterogeneity is critical in
the design of control policies for DER aggregations, otherwise,
the system response may be inaccurate and performance can
be degraded. This paper presents a group-based approach to
characterize parametric heterogeneity in a fleet of aggregated
DERs by grouping into homogeneous fleets. The proposed
group-based approach borrows concepts from quantization
in the area of signal processing and the paper particularly
highlights the effect of rated power heterogeneity due to its
relevance to the control policy design in packetized energy
management (PEM). The reason for this is that the effective
control mechanism in PEM is a function of the aggregate DER
demand and the rated power of devices that are switched
on. As a result, the PEM system is susceptible to tracking
errors that may degrade performance in a heterogeneous fleet.
Therefore, the proposed quantization-based approach provides
a systematic approach to group DERs in the fleet so that the
desired performance is achieved.

I. INTRODUCTION
The increasing penetration of intermittent, renewable gen-

eration has highlighted the importance of an expanded role
for real-time demand-side management [1]. Demand-side
management via direct load control provides fast time-scale
and predictable control opportunities as opposed to price-
responsive approaches [2]. Distributed energy resources
(DERs), such as thermostatically controlled loads (TCLs),
energy storage systems (ESSs), and plug-in electric vehicles
are suitable for demand dispatch [3] since their energy
states can be manipulated [4]–[6]. However, randomization is
helpful to limit synchronization in aggregate and intelligence
at the local, load control layer ensures that the end-user
remains unaffected by demand dispatch [6].

Fundamentally, a fleet of DERs represents a collection of
heterogeneous agents. This means that the fleet’s distribution
of dynamic states does not change uniformly as is the case
for a homogeneous population. This heterogeneity arises
because DERs belong to different classes, such as TCLs
and ESSs, have different manufacturer specifications, rates of
wear-and-tear, and diverse end-user behaviors. Nonetheless,
heterogeneity can be beneficial in the sense that it limits
synchronization of the population by ensuring population
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mixing. In schemes where the effective control mechanism
is a function of the DERs’ rated powers, heterogeneity can
be considered differently. As such, this work focuses on
heterogeneity (e.g., model uncertainty) in the form of the
rated power of a DER, which extends earlier works to
heterogeneous fleets that were derived under homogeneous
assumptions, from the viewpoint of the coordinator. Specifi-
cally, the results presented in this paper enhance the device-
driven, demand dispatch scheme called packetized energy
management (PEM). PEM essentially metes out a DER’s
contiguous period of constant demand into multiple, shorter
epochs of demand, analogous to data transfer in packet-
switched networks [7]. State bin transition models of PEM
have been developed to capture the aggregated dynamics of
DERs under PEM [8], [9] for homogeneous DERs and their
nominal behavior of PEM is defined in [10].

Heterogeneity has been studied in the literature [11], [12].
The transition probabilities in state-bin transition models of
TCLs with heterogeneous time constants are analytically
derived in [11] and are shown to be identical to those
identified from simulations of TCL populations. The my-
opic DER demand dispatch scheme of [6] is extended for
heterogeneous load in [13] and the corresponding state esti-
mation techniques are presented in [12]. The authors of [13]
further show that the heterogeneity that helps with limiting
synchronization comes at the cost of reduced capacity in
the aggregate response. A control strategy for the aggregate
population of air conditioning loads that assumes predefined
heterogeneity in the load was presented in [14], [15]. The
authors in [16] identified the sources of error in an aggre-
gated model and studied the effect of noise and parametric
heterogeneity. An empirical scheme to cluster heterogeneous
groups of similar dynamics into homogeneous groups is
presented in [17]. These approaches consider heterogeneity
by grouping together the TCLs with similar parameters,
however, a specific procedure to bound the modeling errors
due to grouping has not been provided.

Consider a PEM coordinator managing 5, 000 TCLs
with heterogeneity in rated powers only. The population is
grouped based on their rated powers similar to parametric
binning in [16]. The comparison between the fully hetero-
geneous population and the grouped population is shown in
Figure 1. As the number of groups increases, the error be-
tween the actual output and approximated output decreases.
Groups can therefore be used to capture the dynamics of
heterogeneous fleets. However, the number of groups also
affects the nature of the TCL population models and leads
to aggregation errors at the PEM coordinator, which amounts
to the approach becoming (1) computationally expensive as
the number of groups increases, and (2) inaccurate due to



0 50 100 150 200 250

1900

2000

2100

2200

2300

2400

0 50 100 150 200 250

-2

0

2

4

6

8

Fig. 1. TCL fleet consisting of 5, 000 devices with rated power in the
range [4, 5] kW divided into g = {1, 2, 4, 8} groups at the coordinator.
As the number of groups increases, the tracking error decreases. (Top) The
total power demand (Pdem) kW (Botton) %Tracking Error = Pref−Pdem

Pref
.

modeling error as the number of devices in each group
decreases. Modeling the error in the state-bin transition
model has been explored in [9].

Heterogeneous populations are generally characterized by
the time constant of the linear system as in [11]. However,
in PEM only the rated power associated with each request
is visible to the coordinator by design and lends itself to
analytical simplification at the coordinator’s control layer.
Therefore, this work develops a procedure to incorporate
heterogeneity in the rated power from the viewpoint of the
coordinator. The unique contributions of this paper are:

1) Heterogeneity is characterized in terms of the modeling
error introduced due to grouping together DERs that
are different in parameters including rated power for a
nominal PEM system.

2) Conditions are provided under which the error is nor-
mally distributed and its mean and standard deviation
is quantified.

3) A formula for the appropriate number of groups is
given as a function of an upper bound on modeling
error and the concept of nominal PEM response for a
homogeneous fleet is extended to heterogeneous fleets.

This paper is organized as follows. Section II provides a
summary of packetized energy management (PEM), macro-
models and steady-state behavior. In section III, quantization-
based heterogeneous model is presented. Section IV develops
conditions for selecting the appropriate number of groups to
accurately capture heterogeneity. Each section is illustrated
with corresponding examples and simulations. Conclusions
are given in the last section.

II. PRELIMINARIES

In this section, background regarding PEM and the mod-
eling of its aggregated behavior are briefly described. The
focus of this research work is on TCLs and more precisely
electric water heaters. Detailed descriptions are in [7]–[9].

A. DER coordination under PEM
The dynamic model for the i-th DER of a fleet of TCLs

with energy state zi at time k is

zi[k + 1] =(
1− ∆t

τ

)
zi[k] +

∆tza
τ

+
∆tP rate

i ui[k]

cdLη
− ∆twi[k]

cdL
, (1)

where ∆t is the discretization time step, c = 4.186 kJ
kg◦C

is the specific heat constant, za is the ambient temperature,

τ = 150 × 3600 seconds is the standing loss time constant
to ambient temperature and d = 0.990 kg

L is the density of
water when close to 50 ◦C. Furthermore, P rate

i is the rated
power, L is the tank size, η is the heat transfer efficiency,
ui ∈ {0, 1} is the state of the thermodynamic switch, and
wi is the uncontrolled end-user power consumption. In the
case of electric water heaters (EWHs) end-use is the hot-
water extraction process and has been modeled using Poisson
random pulse processes as described in [8].

TCLs are designed to operate within a deadband [z, z]
around a setpoint zset, where z and z are the lower and
upper limits of the deadband. Under PEM, TCLs can be in
one of three modes; i) charge, ii) off or iii) opt-out. In off
mode, TCLs request the coordinator to consume energy for
a time equal to the packet length that constitutes a packet.
The requests are made according to the probability of request
curve

ρ(zi[k]) := 1− e−h(zi[k])∆t, (2)

where the rate parameter h(zi[k]) > 0 is dependent on the
local dynamic state [7]. The coordinator then either accepts
or rejects the request depending upon grid conditions such as
power reference tracking error. If the request is accepted, the
TCL consumes power until the packet expires. Whereas, if
the request is denied, the TCL requests again with probability
given by (2). PEM also allows TCLs to opt-out of PEM if
the temperature is too low in which case, the TCL consumes
power until the temperature is sufficiently recovered.

B. Macro-model of PEM

A macro-model in this section refers to a state-bin tran-
sition model for the aggregate behavior of a fleet of TCLs.
A PEM macro-model for TCLs is described next and more
details can be found in [8]. Consider a population of ho-
mogeneous TCLs described by (1). To obtain such model,
the deadband [z, z] is divided into a set of discrete states
or bins. Three identical copies of these binned states are
created. That is, one for each mode of PEM (charge, off and
opt-out). TCLs then evolve according to a controlled Markov
chain with discrete-time dynamics given by

q[k + 1]=f
(
β[k], β−[k]

)
q[k], y[k] = Cq[k], (3)

where q[k] is the corresponding probability mass function, f
represents a bilinear map of representing the PEM dynamics,
β[k] ∈ [0, 1] is the control signal that represents the propor-
tion of DERs allowed to consume power (charge) from the
grid and β−[k] ∈ [0, 1] is the proportion of TCLs that have
consumed a packet and are transitioned from charging to off
mode [8]. Finally, the output y[k] with output matrix C is
the total power demanded by the DER fleet based on P rate.

The nominal demand of a homogeneous fleet of TCLs
under PEM is defined in [8] as the minimum constant power
demand (Pnom) for which quality of service (QoS) is satisfied
where βnom is the control input that achieves Pnom. QoS is
considered to be satisfied if the average temperature of the
fleet is greater than or equal to the desired setpoint (zset).
Furthermore, it is shown in [8] that in steady-state β− is a
constant related to the number of time steps that a packet lasts
(np). That is, β−

nom = 1/np. For further details on the macro-
model, the reader is referred to [8], [9]. The next section



deals with quantifying the statistics of the modeling error, ϵ,
due to the proposed grouping approach.

III. INCORPORATING HETEROGENEITY IN PEM
As pointed out in the introduction, the majority of ag-

gregation models assume homogeneity of the component
DERs. The macro-model presented in Section II-B is not
the exception [8]. Since decision-making under PEM relies
heavily on P rate, therefore, the focus is on heterogeneity in
this power parameter. This assumption is supported by the
fact that within a class of DERs the speed of energy delivery
(heat, cooling, charge, etc) is expected to be normalized due
to industry standards, which implies that the combination
of DER model parameters amounts to the referred constant
delivery speed within the population. For instance, two TCLs
with different parameters should be able to increase the
temperature of the same amount of water at the same rate
but their rated power could vary due to the size of the water
tank. Therefore, this section leverages the idea of PEM on
diverse DER populations in [8] and proposes a path for
describing a heterogeneous population of DERs on rated
power through groups of macro-models of the same DER
type. Figure 2 illustrates how the grouping procedure enters
the PEM closed-loop setup. This model will be called g-
grouped macro-model. The error of the g-grouped macro-
model with respect to the TCL fleet is quantified via a simple
quantization method when the macro-models are performing
around their nominal response.

∑

Stochastic access requests 

Yes/No∑Pref +

−

+ Pdem
e(t) DER 

coordinator

.

.

+

DER group 1

DER group 2

DER group g

+

Fig. 2. Conceptual diagram of a heterogeneous fleet of TCLs under PEM

A. Modeling heterogeneity with the macro-model
When additively putting together a group of macro-models

that represent a heterogeneous fleet, the coordinator assigns
to each request the rated power corresponding to a group,
which leads to modeling error. The question then is how to
reduce this error by picking an appropriate number of groups
according to a design criterion. Here the heterogeneity on
P rate is distributed according to some arbitrary distribution
as shown in Figure 3. Let P rate for all TCLs in the fleet be
distributed arbitrarily within the interval I := [P , P ] where
P and P are the lower and upper limits of P rate. By picking
g points IQ := {P̄1, P̄2, . . . , P̄g} evenly separated in I, the
i-th TCL with rated power Pi in I can be considered to have
instead the rated power

P ∗
i = argmin

P̄j

{
∣∣P̄j − Pi

∣∣ s.t. P̄j ∈ IQ}.

This constitutes the quantizer QP : I → IQ illustrated
in Figure 3. Therefore, QP is easily parametrized by the
extremes in I and the width parameter ∆P which is designed
to be the same for all groups. That is ∆P = P−P

2g . The
objective is to model a fleet of N TCLs having rated power
distributed in I with the grouping of g macro-models. The j-
th macro-model contains the Nj TCLs in the j-th group and

has rated power P̄j ∈ IQ. Furthermore, TCLs in j-th group
have indices in the set Υj , such that ∪g

j=1Υj = {1, . . . , N}
and Υj ∩ Υi = ∅, if i ̸= j. Finally, it is assumed that in
each group of TCLs, with indices in Υj , their rated power
is approximately uniformly distributed, which constitutes a
piece-wise approximation of the distribution in Figure 3.

Treating heterogeneity as a result of applying a quantizer
provides a systematic approach for analyzing how well
groups approach heterogeneity and finding the minimum
number of groups necessary to achieve that goal. Clearly,
characterizing heterogeneity by groups makes (i) the ap-
proach computationally expensive as g increases and (ii)
inaccurate as Nj , ∀ j ∈ 1, . . . , g becomes smaller since
the number of TCLs in each group (Nj) is reduced [9].
Therefore, the number of groups needs to be related to the
quantization error produced by the grouping approach. The
quantization error is first illustrated next.

Fig. 3. Quantization of rated power interval I = [P , P ] into g groups
having midpoints P̄j = P̄j−1+2∆P for j = 2, . . . , g with P̄1 = P+∆P .

B. Quantization error illustration

Quantization in signal processing is the process of map-
ping a set of continuous values from a large set to a set of
discrete and countable values. An approach of this kind gives
a venue to probabilistically characterize the quantization
error coming from applying Qp to the power interval I.
Consider a heterogeneous population of 1, 000 TCLs with
P rate uniformly distributed in the range I = [P , P ] = [4, 5].
Let g = 2 with range for the rated power quantizer IQ =

{P̄1, P̄2} = {4.25, 4.75} so that ∆P = P−P
2g = 0.25.

For a fixed β = 1, the steady-state response of the TCL
fleet with 2-grouped macro-models, the histogram of relative
error (in time) due to the quantizer is given in Figure 4.
As expected, the quantization scheme assumes that TCLs
within a group have the same rated power, which leads to
error in the estimation of the total power consumed by the
population. In the case where the right number of groups is
chosen that minimizes quantization error, the statistics of the
quantization error should be normally distributed with zero
mean due to the central limit theorem. However, improperly
designed quantizer translates the distribution mean towards
the left (µ = −51.7 kW and σ = 40.7 kW in Figure 4) since
there is a difference between the request probability rates for
different rated powers.

The scenario above motivates the approach to be followed
in the next section in which the goal is to find the smallest
value of g that makes the error distribution mean sufficiently
close to zero. For this purpose two methods are proposed
that are based on equalizing the probability of request within
each group and reducing the standard deviation to a level that
satisfies a predefined error tolerance.



Fig. 4. Simulation of 1000 TCLs in steady-state showing the effect of
grouping in a heterogeneous population (Top) Total power Pdem (Center)
Mean temperature (oC) (Bottom) Modeling error distribution.

IV. QUANTIZATION ERROR MODELING AND ANALYSIS

In the previous section, the quantized approach to model-
ing heterogeneity was presented. This section describes the
error introduced due to grouping heterogeneous TCLs and
the minimum number of groups needed so that model error is
within a pre-defined error tolerance (ϵρ or ϵσ ). The following
assumptions are made in this section:
Assumption A1: The fleet is in steady-state, as defined in
Section II-B, i.e., β and β− are constant.
Assumption A2: The quantizer partitions the fleet into g
uniformly distributed groups.
Assumption A3: ui ∀ i = 1, . . . , N are independent,
identically distributed (i.i.d).

Assumption A1 is reasonable since stationarity in the
macro-model represents a meaningful starting point for an-
alyzing aggregations of controllable load around a nominal
operating point [13], [18], [19]. This baseline is defined by
the quality of service considerations of DERs as described
for PEM in II-B and the available flexibility is, therefore,
based on the nominal operating point. Thus, around the
nominal operating point, steady-state population behaviors
are expected, which makes steady-state a salient operating
regime for analysis. A2 is reasonable and allows the proposed
procedure to be applicable to a heterogeneous fleet is which
P rate is distributed arbitrarily. This can happen due to the
lack of information of individual power rates and the fact
that these change over time due to wear and tear. A3 is a
consequence of A1 since the fleet is in stationary steady-state
and ui are i.i.d.

The power drawn by TCL i within a fleet is P rate
i ui,

ui ∈ {0, 1} is the logic state in (1) that is 1 when consuming
power and 0 otherwise. Let rj denote the proportion of
TCLs that are charging for the j-th group having Nj TCLs
after quantization (where N =

∑g
j=1 Nj). If the total

power demand given by TCL fleet is
∑N

i=1 P
rate
i ui and

the total power demand from the g-group macro-model is∑g
j=1 P̄jNjrj , then the quantization error ϵ is defined as,

ϵ :=

N∑

i=1

P rate
i ui −

g∑

j=1

P̄jrjNj , (4)

where one can re-arrange (4) as ϵ=
∑g

j=1 ϵj , in which ϵj =

∑
i∈Υj

P rate
i ui − P̄jrjNj and, for each j and i ∈ Υj , P̄j −

∆P ≤ P rate
i < P̄j +∆P . Moreover, each group can behave

as a homogeneous population for a well chosen g obtained
depending upon quantization error as discussed in the next
section. Therefore, the macro-model accurately estimates the
average behavior of the TCL population restricted to that
group and

∑
i∈Υj

ui = rjNj that results in

ϵj=
∑

i∈Υj

P rate
i ui − P̄jui =

∑

i∈Υj

(P rate
i − P̄j)ui. (5)

Equation (5) constitutes the basis for the subsequent analysis
of quantization error and is key for developing conditions
under which the number of groups g is selected. Notice that
by design (Pi−P̄j) is the outcome of a uniformly distributed
random variable. Therefore, under Assumption A3, the sum
of products in (5) represents a sum of i.i.d. random variables.

A. Effect of probability of request on modeling error

As mentioned previously, arbitrary partitioning of an het-
erogeneous fleet without regarding the effect of quantization
errors can result in an inaccurate estimation of the distri-
bution of the fleet. An important observation of PEM, in
steady-state, is that a TCL from the heterogeneous population
described herein will request energy packets with a probabil-
ity that is inversely proportional to its rated power. Thus, in
this section, the relationship between request probability and
rated power for devices in the population is characterized
and a simple linear dependence of the form ρ(P rate) =
−αjP

rate + γj is obtained, where αj > 0. This function
then allows one to characterize the asymptotic behavior of
the modeling error with respect to the number of groups. The
following Theorem then relates the variation in probability
of requests within a group to the width of the quantization
interval ∆P .

Theorem 1: Consider a heterogeneous TCL population
over the rated power interval I = [P , P ] satisfying as-
sumptions A1 and A2 under PEM, a quantizer QP : I →
{P̄1, . . . , P̄gµ} with gµ partitions and parameter ∆P , the
number of groups required to achieve a given probability
of request tolerance ϵρ > 0 is given by

gµ ≥ α1(P − P )

ϵρ
, (6)

where αj := tan
(

∆ρj(∆P )
2∆P

)
, ∆ρj(∆P ) := ρ(P̄j −∆P )−

ρ(P̄j +∆P ) and ϵj as in (5) for all j.
Proof: From assumptions A1 and A2, the TCL popula-
tion is actuated by β and β− constants and the quantizer
described in Section III-A applies to the TCL population
at hand. When QP is applied to the TCL population, then
the quantization error for all TCLs whose P rate ∈ Ij :=
[P̄j − ∆P, P̄j + ∆P ] is characterized by (5). Taking the
expectation of ϵj in (5) results in

µj = E[ϵj ] =
∑

i∈Υj

E[(P rate
i − P̄j)]E[ui],

where E[.] is the expectation operator. Note that since ui is
a Bernoulli random variable with mean E[ui] = Pr(ui = 1)
and P rate

i for all i ∈ Υj are uniformly distributed random



variables with mean equal to P j , therefore,

µj =
∑

i∈Υj

E[(P rate
i − P̄j)]Pr(uj = 1).

Furthermore, if Pr(ui = 1) is constant for all i ∈ Υj

then
∑

i∈Υj
E[(P rate

i − P̄j)] approaches 0 when Nj (number
of elements in Υj) goes to infinity, which implies that µj

approaches zero for Nj large enough. This indicates that
one needs to find a ∆P so that Pr(ui = 1) is constant for
all i ∈ Υj TCLs with rated power in Ij . In this paper, this is
called equalizing the probability of request within a group.
It happens that Pr(ui = 1) is not the same for TCLs with
different rated power. That is, TCLs with low power rates
tend to request more often and TCLs with high-rated power
request less often. The idea is then to compute a number of
groups such that the probability of request within the group
does not exceed a small pre-defined value. It then follows
that Pr(ui = 1) will be the same for all i in the group.

From (1) and (2), one can find the different rates at which
TCLs with different rated-power make requests given that,
initially, the TCLs had the same temperature. Specifically, the
dependence of ρ on P rate for fixed time variation ∆t, constant
w, initial condition z[0] and u = 1 is ρ(z) = ρ

(
āP rate + b̄

)
,

where ā = ∆t/(cdLη) and b̄ =
(
1− ∆t

τ

)
z[0]− ∆tza

τ − ∆tw
cdL

are constant parameters obtained from (1) and ρ is given
by (2). Since this expression is a function of z[0], then it
is pragmatic to assume that z[0] = zset. Abusing notation,
denote the probability of request as a function of P rate

by ρ (P rate) after time ∆t. Although ρ is mathematically
nonlinear, it is “close” to linear (see Example 1). A linear
approximation of ρ(P rate) for P rate ∈ Ij gives

ρ(P rate) = −αjP
rate + γj , (7)

where αj = tan
(

∆ρj(∆P )
2∆P

)
> 0, ∆ρj(∆P ) = ρ(P̄j −

∆P )− ρ(P̄j +∆P ) and γj > 0. For a predefined tolerance
ϵρ in the probability of request curve within the rated power
sub-interval Ij , the value of ∆P that satisfies

∆ρj(∆P ) ≤ ϵρ (8)

has the property that its probability of request cannot vary
more than ϵρ. Thus, using (7) in (8) gives ∆ρj(∆P ) =
2αj∆P ≤ ϵρ. Recall that ρ is monotonically decreasing
as a function of the dynamic state and also as a function
of rated power. This fact implies that the largest ∆ρj(∆P )
is produced by the leftmost partition of I. In other words,
α1 ≤ α2 ≤ · · · ≤ αgµ and one can focus only in the
statistics of ϵ1. Finally, to achieve this behavior, one needs
the number of groups gµ to satisfy (6) since ∆P = (P−P )

2gµ
.

This completes the proof.

Corollary 1: For a TCL population with heterogeneity
according to assumption A2, as the probability of request
tolerance within a group decreases, the g-grouped macro-
model approaches the PEM fleet.
Proof: The proof is straightforward and follows from taking
the limit of gµ in Theorem 1 as ϵρ goes to zero, which gives
limϵρ→0 gµ = ∞.

Observe, in reality, that as gµ approaches the total number
of TCLs (N ) in the population, then the maximum number

of groups can only be the total number of individual TCLs in
the population, which becomes computationally expensive.

Example 1: Consider a fleet of 2, 000 power rate hetero-
geneous TCLs that are uniformly distributed in I = [3, 12]
and a quantizer QP with its usual parametrization in terms
of ∆P . Selecting ϵρ ≤ 0.00032 as the probability of request
tolerance produces at most a difference of 5 requests per
sample time as shown in Figure 5. In this case, the linearity
assumption holds for the entire interval with α1 = 0.00072
and γ1 = 0.049 as shown in Figure 6. From Theorem 1,
∆P ≤ 0.25, which leads to gµ ≥ 18. Figure 7 illustrates gµ
groups further resulting in E[ϵ] sufficiently close to 0.

Remark: Quantifying the modeling error due to grouping
on the basis of the probability of request reveals a unique
feature of PEM i.e. heterogeneity is associated with the
request rates. Theorem 1 showed that using the rated power
associated with each request allows obtaining accurate
bounds on modeling error. Although the results presented
herein focus only on P rate, however, it should be noted here
that heterogeneity with respect to the τ in EWHs can also
be incorporated within this framework. In (8), within ∆t
(e.g. 2 seconds), the parameter τ >> 1 so that 1

τ << 1
compared to P rate and L, therefore, its effect on ρ(z[k])
is negligible over ∆t. The case of tank size (L) is more
complex and requires analyzing the relationship between
ρ(z) and L as done in Theorem 1. However, simulation
studies show that a relationship between L and ρ(z[k])
exists which is similar to the one in Figure 6. Also, Figure 8
shows that this is indeed the case for a fleet of 2, 000 TCL
heterogeneous uniformly distributed in I = [3, 12] for power
and in-tank capacity L over [150, 250] liters. This is out of
the scope of the current work and it is deferred to future
research.
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Fig. 5. Request rates (top) and dynamic state (bottom) showing the
difference in steady-state conditions when ∆P = 0.5 kW
B. Reducing error via standard deviation minimization

Previous section relates the modeling error due to grouping
to the variation in probability of request within a group.
Here the analysis for bounding the standard deviation of
the quantization error distribution is provided. Consider once
again a fleet of N TCLs that are heterogeneous in parameters
as in assumptions A1-A3 over I. The objective now is
to provide grouping conditions under which the standard
deviation, σ, satisfies a predefined error tolerance, ϵσ , i.e.,
how many groups gσ should one pick so that σ2 ≤ ϵ2σ .

Since the analysis is performed at steady-state (assumption
A1) or nominal conditions, the following lemma is relevant



φ = tan (α)

ρ(P rate) = −αP rate + γ

α = 0.00072

γ = 0.049

R2 = 0.99

Fig. 6. ∆P vs ρ showing that P rate and ρ can be approximated with a
linear function, where R2 = 0.99 is the correlation coefficient.

Fig. 7. Quantization error distribution with P rate uniformly distributed in
the interval [3, 12] kW only: (Left) gµ = 2 and (right) gµ = 18.

in that it gives the probability of being in charging state
(u = 1) for a homogeneous fleet of TCLs in terms of the
invariant distribution of an underlying Markov chain.

Lemma 1: The random variable describing the logic state
u taking values in {0, 1} of an arbitrary TCL in a homoge-
neous fleet is Bernoulli with probability,

κ =
ρnomβnom

ρnomβnom + β−
nom

. (9)

Proof: Let u be the logic state of an arbitrary TCL in
a homogeneous population and ρ be the probability that a
TCL makes a request. u has only two possible outcomes
{0, 1} and can be modeled as a two-state Markov chain.
Recall that β− is the probability that a TCL has finished
its packet and transitions from charging to standby mode. In
nominal steady-state, β− = β−

nom [10], ρnom = ρ(zset) and
β = βnom [8]. Therefore, the transition probabilities for the
two-state Markov chain are P(u[k+1] = 0|u[k] = 1) = β−

nom
and P(u[k + 1] = 1|u[k] = 0) = ρnomβnom. The probability
of a TCL being in the charging state, κ = P (u = 1), follows
from calculating the stationary distribution of the two-state
Markov chain, which gives (9).

Example 2: Consider the aggregate model of a fleet of
homogeneous TCLs such that βnom = 0.1 and β−

nom = 0.05,
the existence of an invariant distribution is guaranteed since
the Markov chain is trivially aperiodic and irreducible. The
chosen βnom drives the population to steady-state at zset =
51.8◦C Then it follows from (2) that ρ(zset) = 0.0593.
From (9), the probability that an arbitrary TCL in the fleet
is consuming power is κ = 0.1060. On the other hand,
a realization of the TCL fleet under the same conditions
produces κ = 0.1017, which is close enough to the value
produced by (9).

The main result of the section is provided next.

Fig. 8. Quantization error distribution with P rate uniformly distributed in
the interval [3, 12] kW and tank size also uniformly distributed but in the
interval [150, 250] liters: (Left) gµ = 2 and (right) gµ = 18.

Theorem 2: Under the assumptions A1-A3, the quantiza-
tion error ϵ in (4) for a heterogeneous TCL population and
a quantizer QP : I → {P̄1, . . . , P̄gσ} with gσ partitions and
parameter ∆P is distributed normally with zero mean and

σ2 = N
κ(P − P )2

12g2σ
.

In addition, for a standard deviation tolerance ϵσ > 0, if

gσ ≥
√
κN(P − P )

2
√
3ϵσ

(10)

then σ2 ≤ ϵ2σ .

Proof: From assumptions A2-A3, the quantization error ϵj
in (5) is generated by the random variable Zi = (Pi− P̄j)ui,
where (Pi − P̄j) is a uniformly distributed over the interval
[−∆P,∆P ] and ui is Bernoulli distributed with parameter
κi. The probability distribution of Zi can easily be computed
as

fZi
(z) =

{
κi

2∆P , if z ̸= 0
1− κi, otherwise. (11)

It is also straightforward from (11) that the expected value
of Zi is zero and the variance of Zi is σ2

Zi
= κi∆P 2

3 . From
assumption A3 ϵj is the sum of Nj i.i.d. random variables
distributed as in (11) all having σ2

Z = κ∆P 2

3 , therefore, the
central limit theorem gives

ϵj −E[ϵj ]√
NjσZ

−−−−−→
Nj→∞

N(0, 1).

Therefore, σ2
ϵj = Nj

κ∆P 2

3 . Given that ∆P = (P−P )
2gσ

, it
follows that the variance of the total quantization error in
(4) is

σ2 =

gσ∑

j=1

Nj
κ(P − P )2

12g2σ
= N

κ(P − P )2

12g2σ
. (12)

Finally, the proof is completed by using (12) in σ2 ≤ ϵ2σ ,
which gives (10).

Example 3: Consider a population of 10, 000 heteroge-
neous TCLs whose rated power is uniformly distributed in
the interval [4, 8]. Suppose the population is in nominal
steady-state. The population parameters were chosen so that
a nominal steady-state response is obtained for βnom = 0.2
and β−

nom = 0.05. Furthermore, the set point is set at
zset = 52◦C and β drives the population to this temperature.
The request rate of the distribution in steady-state is ρnom ≈
0.0281, which gives κ = 0.101. Theorem 2 is illustrated for



ϵσ,1 = 10 kW and ϵσ,2 = 3 kW in Figure 9. The minimum
number of groups to attain a standard deviation less than ϵσ,1
and ϵσ,2 are 4 and 12 respectively. Figure 9 shows that the
standard deviation is within the chosen tolerance.

Fig. 9. Quantization error distribution with P rate uniformly distributed in
the interval [4, 8] kW only: (Left) gσ = 4 and (right) gµ = 12.

Fig. 10. Quantization error distribution with P rate uniformly distributed
in the interval [4, 8] kW and tank size also uniformly distributed but in the
interval [150, 250] liters: (Left) gσ = 4 and (right) gµ = 12.

The above example shows that with heterogeneity in
P rate only, Theorem 2 relates the standard deviation of
quantization error to the number of groups. In this case, κ
is only dependent on P rate, which accounts for the design
of g. However, κ is expected to depend on L and τ if
these parameters are also heterogeneous. Simulation under
the same scenario in Example 3 is conducted but with L
now uniformly distributed in the interval [150, 250] liters.
Figure 10 shows the quantization error for g = 4 and g = 12
and the standard deviation corresponds to the one obtained
in Example 3. This indicates that there exists a relationship
between σ in (10) and gσ . Furthermore, it is possible that
for an arbitrary distribution when the number of groups
increases, quantization results in a group that is empty and
does not contain any TCLs. This can be accommodated in a
post-processing step where such groups are not considered.
Finally, the analysis presented in this paper has been carried
out under the macro-model’s steady-state assumption. As
a result, the quantization errors can be different during
transients than those predicted by Theorems 1 and 8. In
order to achieve a desired quantization error behavior during
transients, a different grouping scheme can be developed. By
switching between grouping schemes specifically the desired
aggregate quantization error response can be achieved. How-
ever, the quantization error analysis during transients requires
further analysis of the macro-model. Work is ongoing to
add heterogeneity in multiple parameters, quantization error
during transient behavior, and practical implementation of
the grouping scheme developed herein.

V. CONCLUSIONS

This paper presented a quantization-based approach to
quantify the modeling error in a population of DERs with

heterogeneity in rated powers. It was also shown that het-
erogeneity in this sense is relevant in the context of PEM
since rated power associated with each request is readily
available to the coordinator. A systematic approach was then
provided by Theorem 2 to obtain the minimum number of
groups required to achieve a specified error tolerance. The
analysis provided in the paper revealed that heterogeneity in
the form of request rates is a feature unique to packet-based
coordination schemes, such as PEM. Furthermore, empirical
results show that Theorems 1 and 2 can be extended to
account for the heterogeneity in tank size (L) and standing
loss time constant (τ ) and will be considered in future
publications.
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