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Abstract— For fast timescales or long prediction horizons, the
AC optimal power flow (OPF) problem becomes a computational
challenge for large-scale, realistic AC networks. To overcome this
challenge, this paper presents a novel network reduction methodology
that leverages an efficient mixed-integer linear programming (MILP)
formulation of a Kron-based reduction that is optimal in the sense
that it balances the degree of the reduction with resulting modeling
errors in the reduced network. The method takes as inputs the full AC
network and a pre-computed library of AC load flow data and uses
the graph Laplacian to constraint nodal reductions to only be feasible
for neighbors of non-reduced nodes. This results in a highly effective
MILP formulation which is embedded within an iterative scheme to
successively improve the Kron-based network reduction until conver-
gence. The resulting optimal network reduction is, thus, grounded
in the physics of the full network. The accuracy of the network
reduction methodology is then explored for a 100+ node medium-
voltage radial distribution feeder example across a wide range of
operating conditions. It is finally shown that a network reduction of
25-85% can be achieved within seconds and with worst-case voltage
magnitude deviation errors within any super node cluster of less than
0.01pu. These results illustrate that the proposed optimization-based
approach to Kron reduction of networks is viable for larger networks
and suitable for use within various power system applications.

I. INTRODUCTION
Understanding how to best utilize resources distributed over

a network has been and is an important question across many
industries. For the power/energy industry, solving the centralized
AC optimal power flow (OPF) problem is NP-hard and has been
the focus of much research since the 1960s [1]–[3] and more
recently, as optimization solvers matured [4]. In some cases,
the OPF problem is cast within the setting of (transmission)
expansion planning and considers a large number of scenarios,
decade-long prediction horizons, and many possible investment
decisions [5]. In other cases, the focus of the OPF problem is
near-term grid operations to determine active and/or reactive
power set-points for PV inverters, batteries, and other controllable
assets in the grid to minimize operating costs, line losses, voltage
deviations from nominal, or to achieve a desired net-load profile
that reflects whole-sale energy market conditions [6].Thus, many
applications of the AC OPF requires a mix of long prediction
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horizons and frequent re-computations, which for large networks
are computationally challenging.

To overcome the computational challenges associated with
solving practical (large-scale) AC OPF problems to (global)
optimality, the power/energy community has often studied
approximations of the AC physics, such as the so-called (linear)
DC power flow [7], convex relaxations [8], convex restrictions [9],
and various distributed implementations [10]. However, if the
AC network could be reduced, while representing the physics of
the network sufficiently well, the computational challenge would
decrease significantly [11]. Thus, in this paper, we focus on a
novel method for (optimally) reducing the AC network, which
could then be employed within an appropriate OPF setting.

Network reductions, not to be confused with model-order
reduction from systems theory [12], [13], have been studied
extensively and employ a variety of methods, such as similarity
or (electrical) distance measures for clustering, bus aggregations
(e.g., REI), and equivalence techniques (e.g., Ward and Kron). In
the case of reducing nodes belonging to an “external” area, which
are nodes that are geographically or electrically distanced from
the “internal” area, network reduction via Ward- or Kron-based
methods can be readily applied and has been standard practice
for decades [14]. However, recently techniques have focused
inwards on the internal area or so-called “backbone-type” network
reductions, where any nodes can be reduced in the network rather
than just “external” nodes. These backbone-type equivalents rely
on either an initial clustering approach (e.g., k-means clustering) to
group nodes together into contiguous zones or a pre-defined set of
zones. Once the nodes are assigned to specified zones (or subgrids),
a network reduction can be readily applied to said zones (e.g., via
Ward and Kron or heuristics) and possibly tuned based on some
criteria. For example, network-preserving bus aggregation methods
by [15] and [16] employ nonlinear and quadratic optimization,
respectively, to tune (susceptance values in) the reduced admittance
matrix so as to minimize tie line flow errors with respect to the full
network. In [15], the method depends on pre-determined zones
and a specific operating point to calculate the full network’s power
transfer distribution factors (PTDFs). The algorithm [16] replaces
the zonal input requirement with a list of pre-determined salient
tie lines and also uses PTDFs, which inform a bus clustering
algorithm that defines internal zones, which are then subject to bus
aggregation. These methods can reduce 60,000-bus networks by up
to 100X in the order of minutes (on a super computer) with small
inter-zonal worst-case flow deviation errors - even under different
operating conditions. Other approaches sidestep the dependence on
operating points by employing DC load flow analysis in deriving
independent PTDF values [17]. In this case, a 15,000-bus network



is reduced by 85X after eight hours with relative line flow errors
of less than 30%. Lastly, some methods are built around multiple
clustering objectives and heuristics that preserve physical features
and network structure, but are overly conservative (i.e., only reduce
by 2-3X while line flow deviation errors are around 5-10%) [18].

Kron-based network reductions have been shown to be valuable
across numerous applications in power system analysis [14], [19].
For example, comprehensive transmission planning schemes
have been built around Kron-based equivalents that employ
various optimization formulations whose solutions serve as
seeds to identify a set of salient buses and lines to partition the
network [14]. To speed up 3-phase distribution grid OPF, [6]
presents a Kron-based network reduction, where a desired level
of reduction informs a nodal clustering scheme that determines
which nodes are reduced. This method was able to achieve 10-50X
reductions in realistic distribution feeders with maximum voltage
deviation errors (between reduced nodes and their corresponding
non-reduced “super” node in the same cluster) of less than
0.015pu across a wide range of operating conditions.

Across these different approaches to network reductions in
power systems, they all depend on pre-specified salient buses,
tie-lines, and/or level of desired reduction as inputs. Clearly, these
inputs affect the resulting network reduction and this is what mo-
tivates a simple, but interesting question: is there an optimal Kron-
reduction? More precisely: are there a set of nodes and a level of
reduction that is optimal (in some sense) when reducing a network?
Thus, as a first step towards answering this question, the paper’s
key contribution is a novel network reduction methodology that
leverages a mixed-integer linear programming (MILP) formulation
to determine a Kron-based reduction that is optimal in the sense
that it automatically balances the level of reduction (i.e., complex-
ity) with resulting worst-case voltage deviation errors between the
reduced and full networks. The method is based on a pre-computed
library of AC load flow data (i.e., operating points) and guarantees
that any feasible solution is a valid Kron reduction that preserves
the network’s structure. As far as the authors are aware, there
is no other literature that casts a Kron-based network reduction
entirely within an efficient MILP optimization formulation. To
ensure tractability in the MILP formulation, we constrain nodes to
only reduce to a “super node,” if they are neighbors (as defined by
the graph Laplacian). Then, we successively reduce the network
via an iterative scheme to overcome the nodal neighbor limitation.
The entire methodology, denoted Opti-KRON, is validated via
simulation-based analysis on a 115-node, radial and balanced IEEE
test network, which represents a minor contribution as it provides
insight on different optimal Kron-based network reductions. The
algorithm is also tested in the context of a 200-node mesh network.

The remaining paper is structured as follows. Section II presents
the network model and summarizes Kron reductions. In Section II-
A, the MILP formulation for Kron-based network reduction is
presented. Simulation-based analysis is presented in Section III.
Finally, the paper concludes in Section IV with a summary and
a brief discussion on future directions and applications.

II. NETWORK MODEL AND KRON-REDUCTION

For the sake of notational simplicity, consider a single-phase
power system network whose graph G (V ,E ) has edge set E ,

|E |=m, vertex1 set V , |V |=n, and signed nodal incidence matrix
E ∈ Rm×n. The complex nodal admittance matrix (i.e., Y-bus
matrix) Yb∈Cn×n associated with this system is constructed via

Yb=ETYlE+Ys, (1)

where Yl ∈ Cm×m is the diagonal matrix of complex line
admittances and Ys ∈ Cn×n is the diagonal matrix of complex
nodal shunt admittances. In this paper, we generally assume Ys≠0,
implying Yb is a nonsingular matrix. Leveraging this property,
the so-called nodal impedance matrix Zb∈Cn×n can be directly
computed as the inverse of (1): Zb=Y−1

b . The nodal admittance
(and impedance) matrices directly relate complex nodal voltages
and current injections via I=YbV (and ZbI=V ).

A. The Kron-Reduction Procedure

Without loss of generality, we partition the network via

I=YbV (2)[
Ik
Ir

]
=

[
Yb1 Yb2
Yb3 Yb4

][
Vk
Vr

]
, (3)

where subscripts “r” and “k” denote nodes which are ultimately
reduced and kept, respectively. As in [19], Gaussian elimination
of the nodal voltages Vr is achieved by

Ik=
(
Yb1−Yb2Y−1

b4 Yb3
)
Vk+

(
Yb2Y−1

b4

)
Ir. (4)

The Kron reduction of (2), which is used to “eliminate” nodes
with zero current injection (i.e., Ir = 0), is canonically given by
the following Schur complement:

YK =Yb1−Yb2Y−1
b4 Yb3. (5)

Alternatively, YK can be constructed using the network impedance
matrix, whose associated partition is given by[

Zb1 Zb2
Zb3 Zb4

][
Ik
0

]
=

[
Vk
Vr

]
. (6)

Remark 1. The Kron-reduced admittance YK is equal to the
inverse of sub-impedance Zb1.

Proof. By construction, the Kron admittance relates Ik = YKVk.
From (6), Zb1Ik=Vk. Therefore, Zb1=Y−1

K . ■

In the following, we define the Kron impedance matrix as ZK ≜
Zb1 from (6). Note that any removal of rows and columns from ZK
will result in a valid Kron impedance matrix, in the sense that it will
relate nodal voltages and currents. Thus, if we can optimally select
which nodes to reduce and where to assign them, we can effectively
choose an optimal set of rows and columns to remove from ZK.
This would then allow us to define an optimal Kron impedance
matrix through a set of binary decisions, which is illustrated in
Fig. 1. This inspires the following mixed-integer formulation.

B. Mixed-Integer Approach for Constructing Kron Matrices

In the following, we define binary variable si ∈{0,1}, which
selects the optimal Kron impedance matrix Zk, where si=0 or 1

1In power systems, a vertex in a power network is commonly denoted a node
in distribution systems and a busbar (or bus) in transmission systems. Given the
general discussion of power networks, we will use node and bus interchangeably.



Fig. 1. Illustration of how a network can be partitioned in two different ways
to yield two different Kron-reduced networks. The partition is based on reduced
and kept (super) nodes. The green, numbered circles represent kept nodes or super
nodes, while red circles are reduced nodes and eliminated in the reduced network.
The dashed (- - -) ellipses illustrate which reduced nodes are assigned to which
super nodes and define how injected currents are assigned to each super node.

indicates if the ith node is reduced or kept, respectively. We accord-
ingly define binary vector s∈{0,1}n and the associated diagonal
selection matrix S ≜ diag{s}. For any given binary values, the
matrix product SZbS thus yields a matrix which we refer to as a gen-
eralized Kron impedance, defined as ZK̂ ≜SZbS. This generalized
Kron impedance has the dimensions of the full nodal impedance
matrix (n×n), but a subset of its rows and columns are zeroed-out.
As an example, the generalized Kron impedance of (6) is

ZK̂ =

[
I 0
0 0

][
Zb1 Zb2
Zb3 Zb4

][
I 0
0 0

]
=

[
Zb1 0
0 0

]
, (7)

where the diagonal binary values of S “kept” the top nodes and
“reduced” the bottom ones.

We define an additional binary decision matrix, A∈{0,1}n×n,
which codifies where currents from reduced nodes are placed.
Accordingly, Ai, j =1 if the nodal current injection from bus j is
placed at bus i, and Ai, j=0 otherwise. Since current can only be
assigned to a single bus, ∑iAi, j = 1 is always enforced. Further-
more, ∑ jAi, j≤MbSi,i ensures that currents cannot be assigned to
a reduced bus and Si,i=Ai,i guarantees that each non-reduced bus
does not move its own current. Based on these rules, the matrix
vector product IK =AI naturally and properly aggregates currents
at non-reduced nodes (i.e., Kron currents), and the following
product allows for the direct computation of Kron voltages:

VK =SZbSAI. (8)

We define the non-reduced nodes as “super nodes”, and the Kron
reduced voltages at these super nodes are given by (8).

In order to compute an optimal Kron reduction, we need to
define an objective function, which balances the trade off between
complexity (i.e., level of detail) and corresponding nodal voltage
deviation error (i.e., performance of reduced network). As the
number of reduced nodes is a measure of reduction in network
complexity, we can capture this by minimizing the number non-
zero binary values in the reduction vector s. In order to quantify
voltage deviation error (which generally increases as network
reduction increases), we take the infinity norm of the difference
between the Kron voltage at the ith super node (VK,i) and the
voltages at all nodes within its cluster CK,i, across all potential

super nodes. The resulting objective function is then given by

L =
∥∥VK,i−Vj∈CK,i

∥∥
∞︸ ︷︷ ︸

error

−α
1
n

n

∑
j=1

(1−s j)︸ ︷︷ ︸
complexity

, (9)

where α balances these two terms. We note that the network
currents I in (8) and the cluster voltages Vj in (9) are assumed
to be given as input data libraries for the optimization problem.
Ideally, these data vectors (or matrices) come from representative
AC power flow solutions collected on the full network. Thus, an
optimal (with respect to (9)), yet, naive binary integer-based Kron
reduction can be stated as

min
s,A

∥∥VK,i−Vj∈CK,i

∥∥
∞
−α

n

n

∑
j=1

(1−s j) (10a)

s.t.VK =SZbSAI (10b)
si,Ai, j∈{0,1} (10c)
S=diag(s) (10d)

∑
i

Ai, j=1 (10e)

∑
j

Ai, j≤MbSi,i (10f)

Si,i=Ai,i. (10g)

While (10) will generally compute a valid Kron impedance matrix
in (10b), the given formulation presents a variety of challenges.
First, it does not formally constrain current injections associated
with reduced nodes from being placed on super nodes which are
electrically or geographically “far” from their physical location.
Second, the product SZbSAI in (10b) contains cubic binary terms.
And third, this problem is generally intractable for large-scale
systems, since matrix A is a binary matrix which engenders a
large branch-and-bound search space for MILP solvers. In the
following subsection, we address all three of these challenges to
engender a tractable MILP-based Kron reduction.

C. Formulation Improvements

The issue of cubic binary terms in (10b) is sidestepped by first
simplifying the product term SA.

Lemma 1. SA=A.

Proof. Constraint (10f) forces the j-th row of A to 0 if S j, j =0;
thus, reduced nodes (i) must place their currents somewhere else
(A j, j = 0) and (ii) cannot receive currents from other reduced
nodes (A j,i = 0). If when a binary, whose value is 0, only
multiplies other binaries whose value is also 0, then the original
binary has no effect. Thus, SA=A. ■

Using SA = A, we now have that VK = SZbAI. However, we
cannot apply the same trick again to simplify SZbA since Zb is
generally a dense matrix. This means that each element of A is
multiplied by each diagonal element of S. Since the product of any
two binaries can be reformulated in linear form (thus, “linearizing”
the expression) by introducing a third auxiliary binary variable,
directly linearizing SZbA will generally require n3 binary auxiliary
variables; e.g., binary matrices B1 = S1,1×A, B2 = S2,2×A, etc.
Rather than directly linearizing this expression, however, we



can leverage the physically motivated observation that any error
accumulated by removing S from the Kron voltage equation
(denoted with a tilde: ṼK =ZbAI) can be subsumed into auxiliary
big-M slack factors. To do so, we reformulate the infinity norm in
the objective function of (10) with a continuous slack variable δ :

min
s,A,δ

δ−α

n

n

∑
j=1

(1−s j) (11a)

s.t. ṼK,i−Vj∈CK,i≤δ+Mb(1−Ai, j),∀i (11b)

Vj∈CK,i−ṼK,i≤δ+Mb(1−Ai, j),∀i (11c)

ṼK =ZbAI (11d)
(10e)−(10g)

Lemma 2. Despite the Kron voltage error in (11d) caused by
the elimination of S, (11) and (10) have identical minimizers.

Proof. Multiplying SṼK yields VK, so S effectively zeros-out
non-super node voltages. However, it does not change the value
of the super node voltage itself. Ai, j = 1 indicates that node j
is inside the cluster associated with super node i. In this case,
Mb(1 − Ai, j) = 0, and δ will be a supremum for the exact
intra-cluster voltage deviations (since super node voltages are
preserved in ṼK). However, when Ai, j =0, node j is not internal
to the cluster associated with node i, which may or may not be a
super node. Therefore, Mb(1−Ai, j)=Mb will safely upper bound
any voltage deviation between ṼK and Vj∈CK,i , thus leaving δ

unaffected. Since δ accurately captures the infinity norm value
from (10a), the programs must have identical minimizers. ■

In order to avoid allowing the optimizer to add current from
reduced nodes far from the super node itself, we employ the graph
Laplacian to constrain current aggregation only at neighboring
nodes. To accomplish this, we enforce the binary values in matrix
A (which chooses where currents are aggregated) to satisfy

Ai, j≤|ET E|i, j, (12)

where |ET E|i, j is the i, j-th entry of the absolute value of the graph
Laplacian. Therefore, if two nodes are not direct neighbors, then
their currents cannot be aggregated together. Not only does this
prevent currents from being placed in non-physically meaningful
places, it also greatly limits the size of the search space, thus
greatly increasing the tractability of (10).

D. Successive Enhancement of Reduced Networks

While (11) & (12) jointly represent a highly tractable
mathematical program, the degree of reduction it can achieve is
limited by the graph Laplacian constraint in (12). Since nodes can
only aggregate with their neighbors, the algorithm cannot typically
achieve more than a 60% network reduction in a given solve. To
overcome this hurdle, we propose an iterative implementation.
That is, find an optimal network reduction, construct the reduced
network, and then find another optimal network reduction of
the pre-reduced network. This procedure is repeated until either
(i) the desired level of reduction is achieved, or (ii), zero nodes
are reduced. In order to control the maximal size β of network
reduction (i.e., force optimizer to make small network reductions

Fig. 2. The algorithm for successively enhancing the Kron-reduced network uses
Opti-KRON, which is given by (13). The inputs are network and AC load flow data
and the parameters that define the MILP formulation’s objective function. The out-
put is an optimal Kron-reduced network where kept nodes are denoted super nodes.

at each step), or control the maximal acceptable voltage deviations
γ, we can embed associated constraints directly in the program.

min
A,δ

δ−α

n

n

∑
j=1

(1−A j, j) (13a)

s.t.
n

∑
j=1

(1−A j, j)≤nβ (13b)

δ≤γ (13c)
(10e)−(10g),(11b)−(11d),(12).

This iterative approach is illustrated in Fig. 2 and described
algorithmically in Algorithm 1. We refer to the tractable
mathematical program given by (13) as Opti-KRON. Next, we
apply Opti-KRON and Algorithm 1 to optimally Kron reduce an
IEEE test network, which represents a balanced, medium-voltage,
radial distribution feeder.

Algorithm 1: Opti-KRON Successive Enhancement
Data: Yb,V,I,α,β ,γ
Result: ZK (Optimal Kron-reduced network)
p=0,s(p)=1n,∆s(p)=n ;
Zb=Y−1

b ;
while ∆s(p)>0 do

s(p+1)← Solve Opti-KRON in (13);
∆s(p+1)=1⊤n (s(p)−s(p+1)) ;
p← p+1 ;

end
S←diag{s(p)} & ZK←SZbSA ;

III. EXPERIMENTAL RESULTS

In this section, we provide test results collected from two sys-
tems: a 115-node radial network, and a 200-node radial network.

A. 115-node radial network

The 115-node radial network represents a single phase from
the IEEE 123-node distribution test feeder [20]. This network
provides Yb and is used herein to illustrate Algorithm 1. To
balance complexity and error, α = 0.002, while the maximum
reduction in complexity for a single iteration of (11) is limited
initially to 25% (i.e., β =0.25). The worst-case voltage deviation
error is effectively unconstrained by setting γ=1.0pu. Finally, two



Fig. 3. The voltage profile resulting from two distinct net-load injections in the
radial 115-node network. The red line represents a heavily loaded scenario, while
the blue line represents a lightly loaded scenario with more solar PV injections.

distinct nodal net-injection profiles are applied to the network to
beget the network’s necessary data scenarios on complex branch
currents, I, and nodal voltages, V . The corresponding voltage
profiles, |Vi| ∀i=1,...,n, are shown in Fig. 3.

With all input data now available, Algorithm 1 can be executed
and converges in eight iterations and under five seconds total,
which highlights tractability of Opti-KRON. The resulting optimal
Kron-based network reduction has eliminated 85% of nodes,
yet embodies a worst-case intra-cluster voltage deviation error
across both load scenarios of less than 0.007pu. To investigate the
accuracy of Opti-KRON, we subject the optimal Kron reduction
at each iteration to operating conditions that sweep from low-load
to high-load conditions (via a convex combination of the initial
injection data). Then, we record the maximum intra-cluster
voltage deviation errors, which are illustrated in Fig. 4. These
results clearly show that despite subjecting the optimal Kron
reduction to a wide range of operating conditions, the worst-case
intra-cluster voltage deviation errors are still very small across
all super nodes and loading conditions (i.e., all super node clusters
deviate from their corresponding reduced nodes by less than
0.0065pu). The fact that errors do not increase away from known
input data scenarios (V, I) (which are at either end in Fig. 4)
may seem surprising. However, AC load flows are nonlinear, the
optimal Kron-reduction minimizes the worst-case voltage errors,
and the two load scenarios were low- and high-load conditions.
This means that away from high-load conditions (which was in our
initial set of data), the voltages at each node will become closer
to 1.00pu and, thus, closer to each other, which reduces voltage
deviation errors. Thus, including high net-load demand profiles
to generate initial input data that has large voltage deviations
may help find an optimal network reduction that captures the full
system behavior accurately. In addition, the structure-preserving
nature of the optimal Kron reduction appears quite valuable to
represent a wide range of operating conditions.

Lastly, to understand the effects of constraining the complexity
at each iteration, we explored different upper bounds, β =
{0.10,0.25,0.50,0.75}. Then, we looked at the number of itera-
tions required to achieve a converged optimal Kron-based network
reduction, the level of the reduction, and the corresponding worst-
case voltage errors. Results are summarized in Table I and show
that smaller bounds can reduce overall errors, but at the cost of

Fig. 4. Worst-case intra-cluster voltage errors for all iterate Kron-reduced
versions of the radial 115-node network (optimally reduced via eight iterations
in Algorithm 1).

the reduction itself. The best trade-off is β =0.25, with high level
of reduction and voltage errors <0.01pu (<10mili-pu or mpu).

TABLE I
DIFFERENT UPPER BOUNDS ON COMPLEXITY (β )

Network Item β =0.10 0.25 0.50 0.75

115-node
radial

Iterations (#) 17 8 7 7
Reduction (%) 75 85 83 83.5
Voltage err (mpu) 3.0 6.5 3.5 5.0

200-bus
mesh

Iterations (#) 10 9 9 8
PQ Reduction (%) 71.6 75.3 79.0 81.5
Voltage err (mpu) 16 17 19 20

B. 200-node mesh network

In order to assess the performance of Opti-KRON in the context
of a mesh network configuration, we also applied Algorithm 1
to the 200 bus transmission system model from PGLib [21]. The
results associated with successive reductions (for α=0.045 and
β = 0.25) are depicted in Fig. 5; the influence of β is depicted
in the bottom portion of Table I. When applying Algorithm 1,
we added an additional constraint which prevented the reduction
of any voltage-controlled generator buses (PV buses); only load
buses (PQ buses) could be reduced. This assumption is consistent
with the prevailing uses of Kron reduction in the literature [19].

Generally, Opti-KRON could achieve a fairly high level of load
reduction in the mesh network, but when the level of reduction
exceeded 50%, the voltage error began to climb over 0.01pu.
Furthermore, in the mesh network tests, the MILP solver required
a significantly longer time to close the MIP gap (10s to 100s of
seconds). Future work will seek to understand how Opti-KRON
can be accelerated and improved when applied to mesh networks.

IV. CONCLUSION AND FUTURE WORK

This paper develops a novel and efficient mixed-integer lin-
ear optimization-based methodology for generating structure-
preserving network reductions of electric power networks. The
MILP formulation enables trading off complexity (in the number
of reduced nodes) and errors (in terms of worst-case voltage
deviations across all super node clusters) and uses the network’s
graph Laplacian to restrict nodal eliminations to only include



Fig. 5. Worst-case intra-cluster voltage errors for all iterate Kron-reduced versions
of the meshed 200-node system (optimally reduced via nine iterations in Alg. 1).
Reductions are given in terms of load bus reductions.

neighbors of chosen super nodes. By leveraging the efficient
MILP formulation, an iterative scheme is employed to successively
enhance the network reduction while ensuring that each iterate is a
valid Kron reduction of the full network. Furthermore, simulation-
based analysis is used to numerically explore the formulation and
characterize and compare the optimal Kron reductions. The com-
putational results illustrate that Opti-KRON can reduce full radial
networks of more than 100 nodes by 25-90% at optimality and
within seconds. These optimal network reductions engender worst-
case intra-cluster voltage magnitude deviations of less than 0.01pu.

Future work will pursue a number of open questions resulting
from discoveries herein. First, we will investigate the optimality
gap of and compare conventional network reduction techniques
against Opti-KRON. For example, while the iterative scheme
is guaranteed to converge to a Kron-reduced network, we have
not established global optimality guarantees at convergence.
However, for radial networks, it may be possible to prove that the
successive iterations will yield the globally optimal Kron reduced
network [22]. Furthermore, we are interested in using the optimal
Kron-reduced networks in OPF problems and want to incorporate
the corresponding worst-case intra-cluster voltage deviations to
yield robust OPF formulations (e.g., via tightened voltage bounds)
whose solutions guarantee admissibility in the underlying full
network [6]. Similarly, solving the OPF on a reduced network
will require a disaggregation policy to lift the optimal solution on
the reduced network to the full network’s (individual) resources,
whose analysis is of interest.

APPENDIX

While the Opti-KRON formulation is stated in complex
variables in (13), it was decomposed into purely real rectangular
coordinates to be solved. Decomposing the admittance and
impedance matrices into their real and imaginary parts, we have

⟨Yb⟩=
[

YG −YB
YB YG

]
,⟨Zb⟩=

[
ZG −ZB
ZB ZG

]
. (14)

To build the generalized Kron impedance, we extend the selection
matrix into a block diagonal form:

⟨ZK⟩=
[

S 0
0 S

][
ZG −ZB
ZB ZG

][
S 0
0 S

]
. (15)

Likewise, for super node voltage selection and current aggregation,
the following block diagonal expressions produce these quantities:[

Vs,r
Vs,i

]
=

[
S 0
0 S

][
Vr
Vi

]
,

[
Is,r
Vs,i

]
=

[
A 0
0 A

][
Ir
Ii

]
.
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