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Abstract—This paper presents a market-based optimization

framework wherein Aggregators can compete for nodal capacity

across a distribution feeder and guarantee that allocated flexible

capacity cannot cause overloads or congestion. This mechanism,

thus, allows Aggregators with allocated capacity to pursue a

number of services at the whole-sale market level to maximize

revenue of flexible resources. Based on Aggregator bids of

capacity (MW) and network access price ($/MW), the distribution

system operator (DSO) formulates an optimization problem

that prioritizes capacity to the different Aggregators across the

network while implicitly considering AC network constraints.

This grid-aware allocation is obtained by incorporating a con-

vex inner approximation into the optimization framework that

prioritizes hosting capacity to different Aggregators. We adapt

concepts from transmission-level capacity market clearing, utility

demand charges, and Internet-like bandwidth allocation rules to

distribution system operations by incorporating nodal voltage

and transformer constraints into the optimization framework.

Simulation based results on IEEE distribution networks showcase

the effectiveness of the approach.

Index Terms—Aggregator, DER, DSO, flexibility, markets

I. INTRODUCTION

The addition of large-scale renewable energy in power
systems has led to increased volatility in supply that can neg-
atively affect the reliability of the distribution grid. To counter
this volatility in renewable generation, flexibility offered by
demand-side resources (such as electric vehicles and control-
lable loads) has shown promise [1], [2]. Unlike traditional
MW-scale thermal generators, flexibility in medium- and low-
voltage networks will be composed of thousands of kW-scale
customer-owned devices that are distributed throughout the
medium- and low-voltage networks and will require careful
coordination and communication. Many of these customer-
owned devices can be controlled as an aggregate resource by
an Aggregator. Uncoordinated operation of these Aggregators
can lead to reliability issues and congestion within the dis-
tribution network [3]. This motivates the need to coordinate
Aggregators across the network in a manner that guarantees
satisfaction of AC network constraints (i.e., a grid-aware
allocation of Aggregator flexibility). Based on this, we cast
the grid-aware allocation of Aggregators as a market-based,
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Fig. 1. (a) Day-ahead net-demand at a single primary distribution node, (b)
Day-ahead aggregator flexibility capcity to meet the net-demand.

convex optimization problem, which metes out the effective
hosting capacity of a radial feeder based on Aggregators’
capacity bids (MW, $/MW).

The concept of hosting capacity (HC) is not new and
has been used by utilities to site and size solar PV and
EV charging station installations in a grid-aware manner.
However, HC methods tend to be piecemeal and static and
consider worst-case annual demand profiles, which can lead
to overly conservative HC values and an under-utilization of
distribution network capacity. Demand-side flexibility (e.g.,
from controlled behind-the-meter loads, EVs chargers, and
batteries) can also be thought of as capacity, however, such
flexible assets represent dynamic resources and require a re-
thinking of the conventional (static) HC concept [4]. Thus, our
aim in this work is to determine a distribution feeder’s dynamic
hosting capacity and how to prioritize nodal access in a grid-
aware manner when multiple Aggregators offer flexibility at
different locations in the network. The authors’ recent work on
determining nodal hosting capacity developed a novel convex
inner approximation (CIA) of the set of admissible active
power injections [5] that embeds network voltage and line
flow constraints within the nodal (net) injection bounds. Con-
ventional OPF methods can also dispatch flexibility in a grid-
aware manner but require full network and device data, which
is only reasonable when the Distribution network operator
(DNO) is also the aggregator (i.e., vertically integrated) [6]. In
this paper, we aim to utilize the CIA formulation to determine
the dynamic hosting capacity of Aggregators by formulating
it as a market-clearing mechanism.
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Such an approach can provide a grid-aware interface be-
tween Aggregators (that manage behind-the-meter devices)
and a distribution network operator (DNO) or Utility (that is
responsible for maintaining system reliability and security).
Another key benefit of the presented approach is that it
establishes a clear separation between Aggregators’ customer-
owned devices and their associated private device data and
the Utility’s sensitive network data. That is, the grid-aware
allocation is achieved without Aggregators needing any grid
data nor Utility needing any device or personal usage data.
Finally, since the DSO’s role focuses on grid-aware allocation
of Aggregator flexibility, it allows the Aggregators to quantify
their dispatchable flexibility a priori to maximize revenues
from participating in multiple market opportunities on different
timescales (e.g., ancillary services, capacity, frequency regu-
lation, arbitrage).

A. Literature survey

Grid-aware coordination of distributed resources has previ-
ously been studied in several works in literature, such as [7]
that provides a certificate test whether grid-aware control
is required, [3] that provides various strategies for network
safe coordination of Aggregators, [8] that describes local
control laws that respond to real-time changes in voltage
levels and [4] that develops network constraint dependent
import/export envelopes for Aggregators to operate under.
Related to the optimal power flow based methods, several
works in literature such as [9], [6] have developed centralized
optimization based frameworks to dispatch flexible resources
in three-phase networks. In this manuscript, we develop a
method for a DSO to optimally allocate network capacity
between competing Aggregators, such that no Aggregator
dispatch will negatively impact grid reliability. Thus, the
DSO’s allocation of Aggregators’ flexibility is grid-aware
and enables Aggregators to participate with their allocated
flexibility in any whole-sale TSO markets without the potential
to cause network congestion in the radial distribution feeder.
We achieve this by formulating the optimization problem as a
day-ahead market-clearing mechanism.

Day ahead market-clearing mechanisms have been studied
in the literature with [10] proposing a distribution locational
marginal pricing (DLMP) for active and reactive powers.
These distribution-level market mechanism generally employ
DLMPs within transactive energy schemes that broadcast vari-
able DMLPs to devices to incentivize participation [11]. Com-
bining grid-aware DER control with market-clearing methods
has also been studied with [12] proposing a network con-
strained transactive energy framework to coordinate the flex-
ibility. These works, however, either neglect the distribution
network constraints, or utilize a simplified linear model, that
does not provide guarantees on system reliability. In this pa-
per, we present a grid-aware market-clearing mechanism that
allocates and prioritizes flexibility to competing Aggregators
while avoiding network congestion. Based on the above, this
manuscript contributes to the literature as follows:

1) We adapt the CIA formulation within a market mecha-
nism to allocate and prioritize flexibility amongst com-
peting Aggregators located across a distribution network.

2) We introduce a two-step market mechanism where step 1
checks the feasibility of hosting the available Aggregator
flexibility and in case of expected congestion, step 2
allocates flexibility to Aggregators based on their bids.

3) We extend this mechanism to account for uncertainty in
background demand with a robust formulation.

II. PROBLEM DEFINITION AND SYSTEM MODEL

The proposed market architecture is illustrated in Fig. 2,
showing the different actors within the distribution system
(DSO, DNO, and Aggregators) and highlighting their infor-
mation exchanges. The DSO is assumed to be an independent
authority that manages Aggregators’ bids (MW, $/MW) and
DNO’s network data and clears the flexibility market when
congestion is expected. The DNO owns and maintains the
infrastructure and is compensated by the Aggregators to use
the network during periods of congestion. The Aggregators
pay a fee (set by the DSO’s market clearing mechanism) to
the DNO in order to access the distribution network capacity
at their cleared allocation, called the market-clearing price.

Definition 2.1 (Market-clearing price): A uniform price auc-
tion equilibrium solution at the intersection of the distribution
network capacity and the Aggregators’ bids.

The Aggregators then use their allocation to actively partic-
ipate in different valuable wholesale markets. As part of the
bid structure, the Aggregators provide the maximum capacity
charges ($/MW) that they are willing to pay for access to
the distribution network, which could either be a single price
per feeder or nodal-level prices. These prices are realized in
the same manner as demand charges but within the context
of a network’s hosting capacity. In addition, the network
capacity allocation concept is analogous to the ones utilized
in wireless network bandwidth allocation, where ISPs provide
Mbps capacity allocations to its users [13].

Thus, based on internal costs of deploying demand-side
flexibility, including the costs to acquire, deploy, and oper-
ate connected devices and expected revenue from delivering
whole-sale market services, the Aggregators need to compute
their own prices. The problem considered in this paper is to
allocate flexible hosting capacity across a distribution network
to multiple Aggregators while accounting for the nonlinear
AC physics and operational constraints. Specifically, we break
down the problem into two steps: i) feasibility check ii)
prioritization of flexibility. In Step 1, the DSO receives each
Aggregators’ capacity bid (MW) and the DNO’s network
model to check if any Aggregator actions can cause network
congestion. If Step 1 is feasible, then all flexibility is ac-
cepted and Aggregators can dispatch freely while the DNO is
guaranteed that Aggregator actions will not impact reliability.
If Step 1 is infeasible, the DNO’s network cannot host all
Aggregators’ flexible capacity and the DSO uses the prices
($/MW) from the Aggregator’s bid to prioritize and allocate
Aggregators at each node in the network. In the next section,
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Fig. 2. Illustration of market architecture showing information exchange
between different entities.

Fig. 3. Nomenclature for a radial distribution network [14].

we provide the mathematical model of the distribution grid that
will be utilized in solving this market optimization problem.

A. Nonlinear AC model

Consider a balanced, radial distribution network, shown in
Fig. 3, as an undirected graph G = {N [ {0},L} consisting
of a set of N + 1 nodes with N := {1, . . . , N} and a set of
N branches L := {1, . . . , N} ✓ N ⇥ N , such that (i, j) 2
L, if nodes i, j are connected. Node 0 is assumed to be the
substation node with a fixed voltage V0. If Vi and Vj are the
voltage phasors at nodes i and j and Iij is the current phasor
in branch (i, j) 2 L, then define vi := |Vi|2, vj := |Vj |2
and lij := |Iij |2. Let Pij (Qij) be the active (reactive) power
flow from node j to i, let pj (qj) be the active (reactive)
power injections into node j, and let rij (xij) be the resistance
(reactance) of branch (i, j) 2 L, which means that the branch
impedance is given by zij := rij + ixij . Then, for a radial
network, the relation between node voltages and power flows
is given by the DistFlow equations 8(i, j) 2 L:

vj =vi + 2rijPij + 2xijQij � |zij |2lij (1a)

Pij =pj +
X

h:h!j

(Pjh � rjhljh) (1b)

Qij =qj +
X

h:h!j

(Qjh � xjhljh) (1c)

lij(Pij , Qij , vj) =
P

2
ij +Q

2
ij

vj
, (1d)

where nodal power injections are pj := pg,j � PL,j and
qj := qg,j � QL,j with pg,j (qg,j) as the controllable active
(reactive) flexibility and PL,j (QL,j) is the uncontrollable
active (reactive) demand.

We seek to determine if the network’s available flexible
capacity, e.g., p

+
g 2 R

N , can be hosted by the distribution

network. That is, for all pg 2 [0, p+g ], do the corresponding
voltages and currents remain within limits, i.e., vj(pg) 2
[vj , vj ] 8j 2 N and lij(pg) 2 [lij , lij ] 8(i, j) 2 L. We
can formulate the problem as:

(NLP) s
⇤
i = argmin

s+i

NX

i=1

s
+
i (2)

s.t. (1a) � (1d) (3)
pi = p

+
g,i � PL,i � s

+
i 8i 2 N (4)

vi  vi  vi 8i 2 N (5)
lij  lij  lij 8(i, j) 2 L (6)

s
+
i � 0 8i 2 N (7)

where p
+
g,i is the available upper flexibility at node i and

s
+
i is the slack variable when considering upper flexibility

at node i. A similar optimization problem can be formulated
to determine the slack variable s

�
i when considering the

lower flexibility p
�
g,i. In either case, if the flexibility pg,i

can be accommodated by the network without violating any
constraints, then s

⇤
i = 0 8i 2 N , and there is no possibility

of network congestion and a market mechanism is not required
to prioritize flexibility in the network and hence the DSO
does not have to worry about network reliability. If however,
9i 2 N , s.t., s⇤i > 0, then uncoordinated dispatch of flexible
resources can lead to network congestion and violation of
network constraints. In order to avoid such a situation, we
need to prioritize the available flexibility.

However, solving (NLP) in general represents a technical
challenge, as the DistFlow equations governing the distribution
system are non-linear due to (1d), making the optimization
problem (NLP) non-convex. In order to overcome this chal-
lenge, many works in literature have considered approxima-
tions and convex relaxation techniques [15]. Amongst the
approximation methods is the so-called linear DistFlow model
or LinDist [16], whereas the convex relaxation techniques
include a host of different methods [17]. In the next section, we
will discuss the shortcomings of these methods, particularly as
it relates to the original (NLP), and then provide an alternative
method that overcomes those shortcomings.

B. Linear and relaxation based models

This section presents the effects of using linear and convex
relaxation based models when determining maximum active
power injections. First, consider a linear model.

1) Shortcomings of LinDist: The LinDist model is obtained
by neglecting the lij term in (1a)-(1d). Consider a simple two-
node system, where the active power injection, pj , is varied
at the load node and then observe the corresponding changes
in voltage magnitude, |Vj |. As can be seen from Fig. 4a, the
voltages obtained from the DistFlow model (that represents
the actual non-linear physics) and the LinDist model (that sets
lij = 0 8ij) are identical at pj = 0. However, as we move
pj away from this point, LinDist becomes less accurate and
this is especially the case towards the edge of the allowable
power injections range (when voltages are near their upper and
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Fig. 4. (a) Comparison in change in node voltage with change in real power
set-points between DistFlow and LinDist for two node system [18]. The two
models result in different voltages and if design is based on linear model then
network voltages limit will be violated if pj is operated at its lower limit, (b)
Comparison of feasible region obtained from LinDist and DistFlow models
for two node model.

lower limits). Correspondingly, the models arrive at different
conclusions when it comes to estimating the maximum and
minimum active power injections as shown in Fig. 4b. Specif-
ically, the LinDist model overestimates the lower bound of the
active power injection, which can in practice lead to voltage
violations due to the model mismatch between LinDist and
DistFlow models. Thus, linear models can clearly overestimate
a network’s capacity for flexibility and are hence not well-
suited for grid-aware resource allocation problems.

2) Shortcomings of convex relaxations: In this section, we
expand on the above discussion to illustrate how approaches
based on convex relaxations also can overestimate flexible
capacity of a network, which can negatively impact reliability.
Specifically, we consider the conventional SOCP relaxation
of DistFlow, obtained by replacing the nonlinear equality
constraint in (1d) with a convex inequality constraint. We also
impose an upper bound on the maximum hosting capacity
to determine the hosting capacity for which the AC network
limits are satisfied. Solving the SOCP for three different
distribution networks (13-node, 37-node and 123-node) re-
sults in Fig. 5, which shows the maximum network voltage
magnitude for different values of Pmax. The examples show
that the hosting capacity obtained from an SOCP solution
will exceed the voltage limits unless Pmax is reduced signif-
icantly. For example, the SOCP formulation for the 37-node
feeder will erroneously predict that the total allowable active
power injections in the feeder exceeds 15MW. However, total
allowable injections beyond 2.5MW can exceed the voltage
limits at one or more nodes in the network. This is because
a convex relaxation represents an outer approximation of the
original DistFlow model and, hence, solutions obtained are not
guaranteed to be physically realizable, i.e., they may violate
network constraints despite being feasible in convex SOCP.
For further discussion on convex OPF techniques, please
see [19], [20], [5].

These shortcomings of the linear and the convex relaxation
based models highlight the need for an inner approximation
that provides admissibility guarantees. A convex form of an
inner approximation would result in a scalable implementation
that inherits the benefits of convex optimization with net-
work admissibility guarantees. Recent works in literature have

Fig. 5. Plot of maximum nodal voltage with Pmax shows that the predicted
hosting capacity obtained with a convex relaxation in (CR) is much higher than
actually achievable. The figure shows the solutions obtained from the convex
relaxation method (SOCP) are infeasible at the determined hosting capacity.
As the maximum hosting capacity, Pmax, is reduced, a feasible solution that
satisfies all network constraints is found..

developed such a convex inner approximation of the power
flow equations [5], which can be used to determine a feeder’s
maximum, network-admissible active power nodal injections
(i.e., nodal hosting capacity). A summary of the convex inner
approximation formulation from [5] will be provided next.

III. CONVEX INNER APPROXIMATIONS PRELIMINARIES

In order to obtain a convex inner approximation (CIA)
formulation first we define the vector form of (1a)-(1c) as:

V =v01N +Mpp+Mqq �Hl, (8)
P =Cp�DRl, Q = Cq �DXl, (9)

where P := [Pij ](i,j)2L 2 R
N , Q := [Qij ](i,j)2L 2 R

N ,
V := [vi]i2N 2 R

N , p := [pi]i2N 2 R
N , pg := [pg,i]i2N 2

R
N , PL := [PL,i]i2N 2 R

N , q := [qi]i2N 2 R
N ,

QL := [QL,i]i2N 2 R
N , and l := [lij ](i,j)2L 2 R

N

and matrices R := diag{rij}(i,j)2L 2 R
N⇥N , X :=

diag{xij}(i,j)2L 2 R
N⇥N , Z2 := diag{z2ij}(i,j)2L 2 R

N⇥N ,
and A := [0N IN ]B � IN and B 2 R

(N+1)⇥N is the
incidence matrix of G relating the branches in L to the nodes
in N [ {0}, where IN is the N ⇥N identity matrix and 0N
is a column vector of N rows. Also matrices Mp := 2CT

RC,
Mq := 2CT

XC, H := C
T (2(RDR + XDX) + Z

2)
and C := (IN � A)�1, DR := (IN � A)�1

AR, and
DX := (IN � A)�1

AX describe the network topology and
impedance parameters. Further details about this formulation
of the DistFlow equations can be found in [14], [21], [5].

Based on the linear model of the DistFlow equations in (8)-
(9) and considering llb and lub as the new proxy variables
for lower and upper bounds on l. Then, we can define the
corresponding upper (.)+ and lower (.)� bounds of P , Q and
V as follows:
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P
+ :=Cp�DRllb (10a)

P
� :=Cp�DRlub (10b)

Q
+ :=Cq �DX+ llb �DX� lub (10c)

Q
� :=Cq �DX+ lub �DX� llb (10d)

V
+ :=v01n +Mpp+Mqq �H+llb �H�lub (10e)

V
� :=v01n +Mpp+Mqq �H+lub �H�llb, (10f)

where DX+ and H+ include the non-negative elements of DX
and H , respectively, and DX� and H� are the corresponding
negative elements. These bounds llb, lub allow us to neglect the
non-linear term in (1d). Next we will obtain the expression for
these bounds on l.

Based on any nominal operating point x
0
ij :=

col{P 0
ij , Q

0
ij , v

0
j } 2 R

3, the second-order approximation
for (1d) can be expressed as

lij ⇡ l
0
ij + J

>
ij�ij +

1

2
�
>
ijHe,ij�ij , (11)

where l
0
ij := lij(x0

ij) are squared branch currents, �ij :=
[Pij�P

0
ij , Qij�Q

0
ij , vj�v

0
j ]

> and Jacobian Jij 2 R
3⇥1 and

Hessian He,ij 2 R
3⇥3 are defined for each branch (i, j) as

detailed in [5]. Furthermore, since He,ij is provably positive
semi-definite per [21] the second-order approximation in (11)
can be used to derive lower and upper bounds of lij for all
(i, j) 2 L. This is described as follows:

lij = |lij | ⇡ |l0ij + J
>
ij�ij +

1

2
�
>
ijHe,ij�ij | (12)

 |l0ij |+ |J>
ij�ij |+ |1

2
�
>
ijHe,ij�ij | (13)

 l
0
ij +max{2|J>

ij�ij |, |�>ijHe,ij�ij |} (14)
) lij  l

0
ij +max{2|J>

ij+�
+
ij + J

>
ij��

�
ij |, ij}  lub,ij ,

(15)
and lij � l

0
ij + J

>
ij+�

�
ij + J

>
ij��

+
ij =: llb,ij , (16)

where Jij+ and Jij� includes the positive and
negative elements of Jij , �

+
ij := �ij(P

+
ij , Q

+
ij , v

+
j , x

0
ij)

and �
�
ij := �ij(P

�
ij , Q

�
ij , v

�
j , x

0
ij), and  ij :=

max{(�+,�
ij )>He,ij(�

+,�
ij )}, which represents the largest

of eight possible combinations of P/Q/v terms in �ij with
mixed +,� superscripts. A detailed description of these terms
together with an analysis on the accuracy of this second-order
Taylor series approximation can be found in [21], [5].

This inner approximation of the DistFlow equations (10a)-
(10f),(15),(16) is provably convex and will henceforth be
referred to as the convex inner approximation (CIA). This
CIA can be employed to obtain a hyper-rectangle charac-
terization of the set of active power nodal injections where
the corner points represent the feeders nodal capacity limits
for the flexibility. Further analysis in [5] also proves the
admissibility of the range �pg := [p�g , p

+
g ] obtained through

the CIA formulation and also presents an iterative algorithm
that increases the size of the admissible set. The next section
will lay out the market clearing problem to allocate flexibility
amongst Aggregators based on the CIA formulation.

Fig. 6. Illustration of the DSO’s market clearing mechanism for grid-aware
allocation of Aggregator flexibility.

IV. MARKET-BASED GRID-AWARE FORMULATION

To formulate the market-clearing problem, the DSO receives
capacity and price bids from the Aggregators. The capacity
bids represent an upper bound on the Aggregator’s available
flexibility at each node and the price bid represents an upper
bound on acceptable capacity charges at each nodes. Based on
these bids, the DSO allocates flexible capacity to Aggregators
at each node in the distribution network. The DSO’s market-
clearing problem is implemented as a two-step market opti-
mization problem. The flowchart in Fig. 6 illustrates the two-
step approach. In Step 1, the DSO checks feasibility of hosting
all Aggregators’ flexible capacity. If congestion is expected
to result from any Aggregator dispatch, Step 2 is used to
prioritize allocated flexibility based on the Aggregators’ price
bid, which represent their maximum access charges. This two-
step approach is detailed next.

A. Step 1: Network feasibility certificate

In Step 1, the DSO first checks the feasibility of network
to host the total Aggregators’ flexibility (MW) and does not
require prioritizing any node or Aggregator and, thus, does
not require the price element from the Aggregators’ bids. To
determine the impact of active power injections, the DSO
leverages the CIA presented above to formulate an inner
approximation of the non-convex (NLP) problem. This is
illustrated below in (P1). That is, in Step 1, the DSO solves
(P1) and, if no slack variables are activated (i.e., s⇤i = 0 8i),
the DSO informs the Aggregators that all flexible capacity
can be accommodated by the network and no premium access
charge are transferred to the Aggregators. This optimization
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problem can be formulated as:

(P1) s
⇤
i = argmin

s+i

NX

i=1

s
+
i (17a)

s.t. (10a) � (10f), (15), (16) (17b)
pi = p

+
g,i � PL,i � s

+
i 8i 2 N (17c)

vi  vi  vi 8i 2 N (17d)
lub,ij  lij 8(i, j) 2 L (17e)

s
+
i � 0 8i 2 N (17f)

where p
+
g,i :=

P
m p

bid
m,i, with p

bid
m,i being the flexible capacity

bid (MW) of the mth Aggregator at node i, where m 2 M,
with M being the set of Aggregators. Also, let km,i be the
price bid ($/MW) provided by the m-th Aggregator to the
DSO to define its upper bound on acceptable network access
charges at node i. Now, if (P1) predicts that any slack variables
will become active (i.e., any s

⇤
i > 0), then some Aggregator

flexibility must be curtailed and, thus, we require a grid-
aware allocation that prioritizes nodal flexibility in certain
locations and from certain Aggregators (who are willing to pay
higher access fees). Thus, we need to leverage the available
pricing information from each Aggregator. This prioritization
is described in Step 2 in the following section.

B. Step 2: Network-aware optimal allocation

If the DSO predicts network congestion by solving (P1),
then the DSO needs to allocate flexible capacity optimally
based on price information. This is the goal of Step 2,
where we solve for an optimal capacity allocation of the
Aggregators based on both the capacity (MW) and price bids
($/MW). Thus, Step 2 determines the maximum DNO access
charge that an Aggregator is willing to pay. This represents a
generalization of the author’s prior work on CIA [5], where
the formulation now support multiple Aggregators competing
for nodal hosting capacity via flexibility capacity bids (MW
and $/MW). Specifically, the Aggregator capacities feature in
the energy balance constraints while the price bids enter in the
objective function to prioritize aggregator flexibility across the
network.

Based on the price bids and flexibility offered by various
Agregators, the DSO solves a centralized market optimization
problem that determines the admissible flexibility range and
the market clearing price for each Aggregator at each node,
i.e., �pm,i = p

+
m,i � p

�
m,i. The optimization problem is

formulated as:

(P2) p
+
m,i = argmax

pm,i

X

m

X

i

km,ipm,i (18a)

s.t. p
bid
m,i � pm,i � 0 8m 2 M, 8i 2 N (18b)

pi =
X

m

pm,i � PL,i 8i 2 N (18c)

(10a) � (10f), (15), (16) (18d)
V  V

�(p, q) V
+(p, q) V (18e)
lub  l. (18f)

Fig. 7. (a) Day-ahead Aggregator prices in a distribution feeder (assuming
Aggregators have same prices at different nodes), (b) Day-ahead Aggregator
flexibility bids into the the DSO clearing market.

A similar optimization problem needs to be solved for the
lower ranges, p�m,i. To illustrate this two-step market mecha-
nism, next we present case studies on the modified IEEE-37
node distribution network with multiple Aggregators.

1) Case study 1: Feeder-level prices per Aggregator:

To showcase the market-clearing problem (P1) and (P2), we
utilize a modified IEEE-37 node system from [8] and consider
a scenario where each Aggregator’s bid consists of nodal
capacities (MW) and a fixed capacity price ($/MW ) for all
nodes as shown in Fig. 7a. The price bid values are adopted
from commercial demand charges based on available cost-
optimization models [22]. In this case study we only consider
the upper range of flexibility as depicted in Fig. 7b. Based on
the Aggregator bids, the DSO first solves (P1) and checks if
||s⇤i ||1 > ✏, where tolerance ✏ chosen to be 10 W. In this case
study, (P1) yields ||s⇤i ||1 = 0.9 MW, which indicates that
the Aggregators’ flexibility could cause network congestion.
Hence, the DSO proceeds to Step 2 and solves (P2), which
uses the capacity prices to prioritize Aggregators access and
satisfy network constraints.

Based on predicted congestion, DSO solves (P2) and the
resulting flexibility allocation is shown in Fig. 8a and high-
lights that Aggregators willing to pay less for hosting capacity
are allocated less flexibility. Here, Aggregator 1 is prioritized
due to its willingness to pay a higher price to access the
network’s capacity. This point is further illustrated in Table I
which shows what fraction of Aggregator and nodal flexibility
is allocated by the DSO. The results show that nodes close to
the substation get priority in capacity allocation.

After the Aggregators’ flexible capacities are allocated by
the DSO, we utilize a price-clearing scheme where the lowest
price at each node decides the market clearing price [23] as
depicted in Fig. 8b. The figure shows three different clearing
prices, with the nodes closer to the substation having a lower
price because of less congestion at those nodes. The revenue
earned by the DNO in this case is calculated according to (19)
and comes out to $72, 870.

Total DNO Revenue =
X

i

X

m

kc,ipm,i (19)

where kc,i is the clearing price at node i.
This case study employed feeder-level prices per Aggrega-

tor, which means that all nodes are priced the same by each
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Fig. 8. Case Study 1 results. (a) Allocation of Aggregator flexibility after
market clearing, (b) Clearing price after market allocation based on cheapest
allocation at each node.

TABLE I
FRACTION OF FLEXIBLE CAPACITY ALLOCATED ACROSS NODES AND

AGGREGATORS

Item 1 2 3 4 5 6 7 8
Nodes 0.99 0.73 0.3 0.36 0.69 0.71 0.36 0.22

Agg. 1 0.52 0.47 0.05

TABLE II
DATA FOR NODAL-LEVEL AGGREGATOR CAPACITY PRICES ($/MW)

Node 1 2 3 4 5 6 7 8
Agg. 1 9.8 10.9 1.2 2.5 12.9 13.5 13.4 4.1
Agg. 2 4.6 6.1 5.6 1.6 3.60 7.0 4.6 2.6
Agg. 3 29.1 9.0 6.8 14.0 21.0 2.7 0.9 15.6
Agg. 4 13.2 1.6 11.4 12.7 1.3 4.8 2.5 12.7

Aggregator, which could represent some average customer or
flexible load acquisition costs. In the next case study, we
explore nodal-level capacity prices for the Aggregators, which
is similar to the concept of distribution locational marginal
prices (DLMPs) [10]. However, unlike much of the literature
on DLMPs, this work focuses on pricing access to network
capacity (similar to demand charges) rather than incentivizing
DER participation by broadcasting (variable) prices in the
distribution network.

2) Case study 2: Nodal Aggregator pricing: In this case
study, we consider a nodal-level Aggregator pricing structure
as shown in Table II for the four Aggregators considered. The
price bid values are chosen randomly but are again based on
the concept of commercial demand charges based on available
cost-optimization models [22]. Based on these prices, we
solve the (P2) market optimization problem to determine the
capacity allocations which are shown in Fig. 9a. Based on this
allocation, we again compute the clearing price based on the
least-price allocation of an Aggregator at each node, which
is shown in Fig. 9b. The DNO revenue in this scenario is
calculated to be $41, 460.

V. ROBUST ALLOCATION OF FLEXIBILITY

The analysis provided up to this point has been based
on the assumption that the background demand is known in
advance. However, in practice that may not be the case and it
becomes important for the DSO to consider the uncertainties
in forecasting background demand. To address this problem,
we augment optimization formulations (P1) and (P2).

Fig. 9. Case Study 2 results. (a) Allocation of Aggregator flexibility after
market clearing under nodal Aggregator pricing, (b) Clearing price after
market allocation based on cheapest allocation at each node

A. Robust formulation

In this method, we consider the uncertainty in background
demand to be bounded and obtain a formulation that is robust
to the worst-case of the bounded uncertainty. The robust
versions of (P1) is formulated as shown below:

(ROB-P1) s
⇤
i = argmin

s+i

NX

i=1

s
+
i (20a)

s.t. (10a) � (10f), (15), (16) (20b)
pi = p

+
g,i � PL,i � s

+
i +D

+
i 8i 2 N (20c)

vi  vi  vi 8i 2 N (20d)
lub,ij  lij 8(i, j) 2 L (20e)

s
+
i � 0 8i 2 N (20f)

where D
+
i in (20c) is the upper robust bound on the uncer-

tainty in background demand at node n, which is considered
alongside the upper flexibility range p

+
g,i, respectively. A

similar problem would consider the lower robust bound on
uncertainty D

�
i in order to determine the feasibility of the

lower flexibility range p
�
g,i. In a similar fashion, the robust

(P2) is formulated as follows:

(ROB-P2) p
+
m,i = argmax

pm,i

X

m

X

i

km,ipm,i (21a)

s.t. p
bid
m,i � pm,i � 0 8m 2 M, 8i 2 N (21b)

pi =
X

m

pm,i � PL,i +D
+
i (D

�
i ) 8i 2 N (21c)

(10a) � (10f), (15), (16) (21d)
V  V

�(p, q) V
+(p, q) V (21e)

lub  l (21f)

A similar optimization problem would consider the lower
robust bound on uncertainty D

�
i in order to determine the

lower flexibility allocation p
�
m,i. This formulation ensures that

the market allocation p
+
m,i(p

�
m,i) accounts for the uncertainty

D
+
i (D

�
i ).

1) Simulations under uncertainty: In the previous sections,
the simulations assumed a known background demand at each
node. However, in forecasting the background demand at each
node, we need to account for prediction errors to ensure a grid-
aware allocation of flexibility. In this section, we consider a
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TABLE III
UNCERTAINTY IN BACKGROUND DEMAND AT FLEXIBLE NODES (MW)

Node 1 2 3 4 5 6 7 8
Uncertainty 0.2 0.1 0.02 0.1 0.2 0.03 0.02 0.03

Fig. 10. (a) Allocation of Aggregator flexibility after market clearing under
varying Aggregator prices and demand uncertainty, (b) Clearing price based
on cheapest allocation at each node under uncertainty in demand.

robust formulation by accounting for the uncertainty at each
flexible node as shown in Table III. Based on this demand
uncertainty, we solve (ROB-P1) and (ROB-P2) to obtain the
grid-aware Aggregator capacity allocation, which is shown in
Fig. 10a. From Fig. 10a, the total allocation is reduced by 0.44
MW in this case (compared to the deterministic case) as (ROB-
P1) and (ROB-P2) need to reserve certain amount of network
capacity to account for the uncertainty in background demand.
Based on this allocation, we again determine the clearing price
based on the least price Aggregator at each flexible node
(which is again higher than the price in the deterministic
case) and this clearing price for the robust case is depicted
in Fig. 10b. Since robustness raises the cleared price but
reduces flexible capacity, there is a trade-off when calculating
DNO revenue. In this case the DNO revenue is calculated as
$39, 540, which is 4.8% less than the deterministic case. Even
though the simulation results in this paper utilized a modified
IEEE-37 node system, the CIA formulation is convex and has
been shown to scale to larger networks [5].

VI. CONCLUSIONS AND FUTURE WORK

Leveraging recent work on convex inner approximation, we
have now formulated a novel grid-aware allocation market-
clearing mechanism which is executed in two steps. Step 1
considers a feasibility check to determine whether the available
Aggregator flexibility can be safely hosted on the network.
In Step 2, flexibility is prioritized based on Aggregator’s bids
and AC network physics and constraints to provide grid-aware
allocation across nodes in the network.

Future work will extend the work on uncertainty in back-
ground (net) demand, especially at non-flexible nodes, to con-
sider DNO margins and Aggregator flexibility reserves. Recent
work by [24] offers an interesting and systematic approach
to develop a robust convex inner approximation that can be
employed in (P1) and (P2). Finally, the authors are pursuing
a hybrid solution to manage uncertainty that considers that
the Utility can share real-time grid measurements with the

Aggregators, which can then adapt its cleared grid-aware
allocations dynamically. This approach raises the prospect that
Aggregators can then offer the DNO flexibility reserves to
incentivize improved forecasts of background demand.
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