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Abstract

With increased use of renewable energy such as wind and solar, electric power
generation is experiencing increased variability and uncertainty, which drives
larger imbalances between the electric demand and supply. To mitigate this
challenge, one can use distributed energy resources to beget flexible demand
from coordinating fleets of smart electric water heaters (EWH) and residen-
tial (kW-scale) batteries. To effectively coordinate and characterize such
a large and heterogeneous fleet of distributed energy resources (DERs), a
common abstraction is denoted a virtual battery (VB). While the state of
charge (SoC) of individual DERs (e.g., EWHs’s water temperature) can be
easily measured, determining the SoC of a controlled virtual battery ag-
gregation is a technically challenging task due to the fleet’s heterogeneous
nature, characterized by nonlinear, stochastic, partial differential equations
with time-varying parameters. In this paper, a data-driven approach is pre-
sented that utilizes a deep-learning-based Temporal Residual Causal Network
to determine the SoC for a heterogeneous fleet of DERs, updated using only
available end-use measurements. Unlike existing literature that generally
relies on complex physics-based models, our deep learning (DL) model is
trained using practical input-output data. The simulation results demon-
strate that accurate estimation can be achieved with a low computational
burden, considering a range of parametric variations at the device and fleet
levels, such as fleet population size, background demand, DER device param-
eters, and coordinator communication losses. The results suggest that the
proposed approach has appropriate generalization and robustness properties
for practical, real-time control settings.
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1. Introduction

With the increasing penetration of renewable generation like solar photo-
voltaic (PV), there is added uncertainty and variability in the supply that re-
quires careful consideration to avoid compromising reliable operations of the
electric power grid [1]. Recently, many schemes for coordinating distributed
energy resources (DERs), e.g. thermostatically controlled loads (TCLs) like
air conditioners and water heaters, electric vehicles (EVs), and energy storage
systems (ESSs), have been proposed to provide a range of ancillary services,
such as primary frequency control [2] and frequency regulation [3]. In [4], an
frequency regulation method is proposed that minimizes the impact of PV un-
certainty. Resources such as TCLs also represent a source of stored (thermal)
energy that is flexible (i.e., it can defer energy consumption/supply without
impacting the quality of service (QoS) for end-users). [5] proposes a method
to quantify the aggregate flexibility for a fleet of TCLs. When aggregated and
coordinated, thousands of TCLs can function as a single battery-like resource
or grid asset, known as a virtual battery (VB) model [6]. Such a VB model
can be a useful abstraction of a (large) collection of DERs for the purpose
of effectively dispatching DERs en masse. A VB model typically includes
a scalar state-of-charge (SoC) measured in megawatt-hours (MWh), as well
as upper and lower power bounds measured in megawatts (MW) and energy
capacity bounds measured in MWh. The SoC represents the average DER
energy level of the DER fleet, the power bounds inform the maximum and
minimum deviation in power consumption (from some established baseline
or an admissible operating range) that can be consumed or provided by the
devices, while the capacity bounds provide limits for the SoC. To effectively
design coordination and control schemes using the VB model, it is necessary
that the VB parameters are accurately estimated or identified.

Different studies have explored the identification of VB models for DERs.
For example, in [7], the charge rate limits and capacity parameters are identi-
fied for a collection of TCLs, whereas in [6], a detailed model of the load and
its control system is used to generate a VB model for a residential heating,
ventilation, and air conditioning (HVAC) system. In [8], the VB parameters



such as self-dissipation rate, and energy capacity are obtained via simula-
tion using a first-order VB model by repeatedly solving an optimal control
problem that minimizes the power tracking error for the aggregate. However,
a challenge with these methods is that they assume the availability of full
end-use device-specific parameters, which are often unknown in practice.
An alternative to model-based approaches for VB model identification,
e.g., [9], is data-driven methods using, for example, machine learning or,
specifically, deep learning [10]. Machine learning approaches are used for
a wide variety of applications ranging from state of health for Lithium-Ion
batteries [11, 12], recommender system [13] to music education [14]. Deep
learning involves training a neural network using operational data from DERs
to obtain the VB model. Recent works have explored identifying VB param-
eters using deep learning. For example, in [15], a transfer learning-based
stacked autoencoder is used to calculate the virtual battery state of a given
ensemble of flexible TCLs from available end-use measurements. In [16], a
variational autoencoder-based deep learning algorithm is proposed to iden-
tify the probability distribution of the parameters of a stochastic VB model,
such as self-dissipation rate, and power and energy capacities. The limita-
tion of with these works is that they assume that the coordinator has direct
controllability and full observability of all devices’ state information, which
is not practical in real-time implementations. Therefore, the aforementioned
identification methods are difficult to adapt to practice without incurring
high communication overhead, as they need real-time data streaming from
all devices to the coordinator. In this paper, we explicitly consider a scenario,
where the coordinator can neither directly control devices nor has full access
to device state information. Instead, the coordinator uses an indirect scheme,
whereby a device asynchronously (i.e., based on its own local clock and need
for energy) requests access to the grid, and the coordinator either accepts
or denies it. With the asynchronous nature of this implementation, the co-
ordinator receives a set number of requests per second (request rate) and
accepts a proportion of these requests (acceptance rate) to change the aggre-
gate power of the fleet. With only this indirect request and acceptance rates
from the fleet and the aggregate fleet power (i.e., a few scalar values), the
previous literature on VB identification is not applicable. This highlights the
need to develop a framework for such an indirect DER coordination scheme.
This work aims to adapt a deep learning methodology to identify the SoC
of the VB when the DERs are participating in a specific indirect coordination
scheme called Packetized Energy Management (PEM) [17]. In PEM, DERs
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asynchronously and stochastically send grid access requests to a coordinator,
which, if accepted, permits the device to consume or supply power for a
pre-specified, fixed epoch, called the packet length. The requests are either
accepted or denied by the coordinator in real-time to regulate the aggregate
net consumption of the fleet based on a provided power reference signal
that can change over time. PEM has been extensively studied and modeled
under assumptions on homogeneity in parameters for TCL, EV, and ESS
populations [17, 18, 19]. The key distinction of this work is that it is a data-
driven methodology for a heterogeneous DER fleet, making it a useful tool
in a practical setting where exact parameter values are unknown, and only a
distribution of parameter values is known. Moreover, even though the model
requires limited data for training, it is a surprisingly generalizable estimate
and applies across a range of operating conditions.

In this work, the focus is on the development of a novel machine learning-
based framework to accurately and robustly estimate the SoC for a popu-
lation of heterogeneous TCLs coordinated under PEM. The ML framework
relies on just the following six scalar time-series data streams that represent
the total number of 1) incoming requests, 2) accepted requests, 3) expired
packets, and 4) ON devices, 5) the reference power signal, and 6) the aggre-
gate fleet power output. Thus, the main contributions of the work are as
follows:

e A novel Deep Learning (DL)-based method is proposed to estimate
SoC of a virtual battery composed of a heterogeneous fleet of DERs
using Packetized Energy Management (PEM) in real-time with high
accuracy and minimal inputs.

e A Temporal Residual Causal Network (TRCN) model is presented
which is computationally lightweight and requires training only once
under ideal conditions. It does not need to be retrained under signifi-
cant parameter variation, making it suitable for practical implementa-
tion.

e Simulation-based studies validate the proposed DL-based model’s effec-
tiveness under various practically relevant fleet compositions and device
parameter variations, such as DER background demand, coordinator
communication losses, and heterogeneous DER device parameters.

The rest of the paper is organized as follows: Section 2, an overview of
Packetized Energy Management is provided. Section 3 discusses the virtual
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battery model. Section 4 describes the proposed methodology. The experi-
mental setup is described in section 5. In section 6, the simulation results
are conducted using TRCN. Concluding remarks are provided in section 7.

2. Packetized Energy Management

In this section, a brief overview of PEM for diverse DERs [17, 19] is
presented. Two types of DERs are used, EWHs and batteries. In PEM, a
DER with a local state-of-charge (SoC) z,[k] (e.g., temperature for an EWH
or state of charge for a battery), is designed to operate within a deadband
2,,, Zn] to maintain a certain level of consumer comfort. The dynamic state
for EWH n is given by the following equation:

nnprfateqsn[ki] . Zn[k] B Ta[k] _ Qn[k]) (1)

cppLy T cpp Ly,

where ¢, = 4.186 [kJ/kg-°C] is the specific heat constant for water, 7, is the
standing loss time constant to ambient temperature, p is the water density
close to 50°C, L,, is the tank capacity in [Liters], 7, is the efficiency, P* is
the power rating in [kW], and ¢, [k] is a binary variable determining if device
n is on or off. T, is the ambient temperature in [°C], At is the discretization
time-step in [s], and @, [k] is the heat loss from the tank due to water usage.
The dynamic model of batteries is summarized by the following equation:

Znk + 1] = 2, [k] + At(_nztzn[k] + gbn[k]P;atenn) (2)

where ¢, [k] is 41 if the device is discharging, and is -1 if device n is charging
at time k. If the device is in standby mode, ¢,[k] = 0. The efficiencies for
standing losses and charging are 75 and 7, respectively.

Each DER measures its local SoC, z,[k]. If the SoC is outside the dead-
band, z,[k] ¢ [z,,%Zx], the DER automatically and temporarily opts out of
PEM to guarantee Quality of Service (QoS) and reverts to a conventional
control mode until the SoC is returned within limits after which it returns
to PEM operation. If the SoC is within the deadband, z € [z,,,Z,], the DER
probabilistically requests the PEM coordinator to either consume power from
the grid (charging) or inject power into the grid (discharging) for a pre-
specified epoch. The epoch corresponding to the energy packet is called
packet length and denoted as d,. The requests are given by the following
cumulative distribution function:

P (2, [K]) 1= 1 — e #CnlkDAL 3

req
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where p(z,[k]) > 0 is a rate parameter dependent on the local SoC and is
defined as,

p(znlK])
0, if z,[k] > Z,
= e (2gb) (), izt € 20F) | (4)

where mpr > 0 [Hz| is a design parameter that defines the mean time-to-
request (MTTR) for z,[k] = 2. A similar expression follows for u(z,[k])
and PE(z,[k]) in the case of discharging packets.

The energy packet requests then are sent to a coordinator asynchronously.
Each request is either accepted or rejected based on aggregate demand and
a market or grid reference signal. When a request for an energy packet is
accepted, after J,, seconds, the packet is expired, i.e., the DER stops charging
or discharging. Since the coordinator knows how many devices are accepted
at each time, it can accurately track the total number of charging N [k]
and discharging devices N35[k] in real time. The coordinator also receives
the number of devices that opt out during each time step, Nop[k]. Figure 1
illustrates the closed-loop feedback system for PEM. Each DER’s normal-
ized SoC is defined as E,[k] := (z,[k] — 2,)/(Zn — 2,,). When E,[k] > 1
or E,[k] < 0 DER n experiences discomfort (e.g., too hot or too cold) and
notifies the Aggregator that it opts out of PEM (temporarily). Thus, to
preserve customers’ quality of service, there is a desire on behalf of the Ag-
gregator to keep the DERs’ SoCs away from either extreme. Therefore, at
any given time k, it is very valuable to know or estimate the mean of the
distribution of SoCs (i.e., a key state of the fleet). Clearly, with full DER
information available, the average SoC can be simply obtained by averaging
over all DERs: Fayglk] := 2 E,[k]/N. However, the Aggregator does not
have access to the local, individual SoC measurements, E,[k]. Instead, it
needs to estimate this average Eavg[k] either using model-based methods or
data-driven methods. In the next section, a procedure from [20] is outlined
that summarizes the nonlinear and stochastic relationship between Aggrega-
tor inputs and outputs and the fleet’s average SoC to illustrate the challenge
with a physics-based approach to modeling and to motivate the proposed
data-driven, learning-based approach.
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Figure 1: Closed-loop feedback system used for PEM with P, provided by the grid
or market operator and the aggregate net-load Pgen measured by the Aggregator. The
Aggregator uses the tracking error, opt-in/out rates and request rates to estimate the
fleet’s average SoC, Eavg [k]. The fleet’s actual average SoC is given by the average of the
distribution of the DERs’ SoCs, {E,[k]}Y_; (in red dashed box), and denoted Eayg[k].

3. Virtual battery model

In this section, we motivate the proposed data-driven approach to es-
timate the average energy or SoC of a DER fleet, E,[k] by summariz-
ing the related physics-based modeling and estimation approach introduced
in [18, 20]. These past results accurately estimate Eavg[k:] under specific fleet
conditions (i.e., homogeneous device and control parameters). using only the
aggregate power consumption of the fleet, the incoming charging and dis-
charging packet requests, and total number of devices consuming/injecting
power and opting out — all received and tracked by the coordinator. From
this estimate, the authors use a physics-based predictive model of a fleet of
homogeneous DERs into a so-called PEM wvirtual battery or PEM-VB. The
PEM-VB is characterized by four salient dynamics states:

e Average energy, E,q[k].
e Total number of charging DERs, N&[k].

e Total number of discharging DERs, N3[k].



e Total number of Opt-outs, Nopt[K].

These states are coupled through the incoming packet requests. For example,
the higher E,.[k] is, the higher the fleet’s devices SoCs, which leads to a
lower aggregate request rate (e.g., as EWHs heat up, they need less energy
and how a lower probability of requesting a packet). Consequently, a lower
request rate limits the fleet’s ability to ramp up its aggregate power.

Under homogeneous fleet parameter assumptions, one can consider the
fleet’s average power via Equation 1 and, by assuming a constant average
hot water consumption, fq, get the following expression for estimating the
average temperature for a EWH fleet, E,q[k]:

~ At

- AT, Atpg  nAtP™°(NSE] + Nop[k])
Eoolk+1] = (1 — =) Euelk — o
alk 1) = (1= ) Buglb] + =2 = T2 AL
(5)

The change in Eavg depends on the number of charging EWHs as well
as background demand. T, is assumed to be constant in this paper. Sim-
ilar expression can be obtained for a battery fleet using Equation 2. Note
that above expression is only valid when the parameters 7, L, P™"*, 2z, and
Z are common across all devices in the fleet (i.e., the homogeneity assump-
tion). Clearly, the average SoC increases the more ON and opt-out devices
there are, which are states driven by the rate of accepted requests. The re-
quests only come from devices in standby mode (i.e., not in ON (charging
or discharging) and not in opt-out modes) and are driven by Eavg [k] and the
request probabilistically in Equation 3. Therefore, the number of charging
requests received by the coordinator during the interval & is,

25" (k] = Preg(Bavg K] (N = Non[k] = Ne*[k] — Nope[K]) (6)
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A similar expression can be obtained for the estimated number of discharging
requests, z35[k]. Define SBq[k] and Bgis|k] as the ratio of accepted charging
and discharging requests during interval k, respectively. Then S [k] and
B4 k] are the proportion of expired charging and discharging requests during
interval k, respectively. The dynamics of the number of ON (charging and

discharging) devices can be expressed as:

Noalk + 1] = Ng[k] + Ben [k (K] — B, [K] Nen K], (7)
No Tk + 1] = NP [K] + Bais K] [k] — B[R] New[K]. (8)
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From this, it is clear that the number of ON devices increases if the coordi-
nator accepts more (new) device requests than are expiring (i.e., completing
their packet).

Finally, to capture the total number of devices opted out at timestep k,
we consider the number of devices opting out and the number of devices
opting back in as follows:

Nopt[k + 1] = Nopt[k] + Eoptoous[k] — Eoptoin[K] 9)

where Eoptout[k] and Eqptin[k] are the number of opt-outs and opt-ins during
timestep k, respectively.

In [20], the model described by Equation 5-Equation 9 is applied to a
homogeneous fleet of EWHs. An extended Kalman filter (EKF) was then
developed to accurately estimate Eavg. However, under heterogeneous con-
ditions and for a collection of mixed DERs (e.g., batteries and EWHs), the
model to estimate Eavg is not applicable. One common work-around is to
decompose the fleet into different homogeneous groups and then model each
group as a VB [3]. However, such approaches rely on the assumption that
each device’s set of parameters are accurately known, which is impractical [§].
Thus, in the case of a heterogeneous and diverse fleet of DERs, the above
methods are not directly applicable, modeling becomes challenging and com-
plex, and no guarantees exist on the observability of Eavg. With that in mind,
in the next section, a practical data-driven method is presented to accurately
estimate Eavg for a heterogeneous and diverse fleet under a variety of oper-
ating conditions. In particular, we will show that the data-driven approach
is practical, yet has favorable generalization and robustness properties.

4. Methodology

Due to the complexity of data, direct control over DERs is difficult to
manage in near real-time as the DER coordinator usually does not have full
access to device local measurements. To enable responsive DER control at
scale, indirect schemes should be used, which do not offer full observability
of states. This work develops an accurate estimation approach for SoC of
the VB model for the PEM scheme. The proposed approach addresses the
challenge of limited observability of states in the PEM scheme, by using the
available end-use measurements to estimate the SoC of the VB.

The proposed data-driven approach requires the following time-series
data: the number of charging requests z<'[k], the number of discharging

r
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requests 3[k], the proportion of charging requests accepted by coordina-
tor Se|k|, the proportion of discharging requests accepted by coordinator
Bais|k], proportion of devices that finish charging packets 5, [k]|, proportion
of devices that finish discharging packets (3 [k], the total number of DERs
in charge mode N[k], the total number of DERs in discharge mode NJis[k],
number of opt-outs Nop[k|, and power reference signal that PEM is track-
ing. It uses 240 samples at 2-second resolution to estimate the SoC of the
VB model, with a Moving Average (MA) filter having a window size of 30
seconds and a sampling rate of 2 seconds.

The deep learning approach estimates the average SoC of the VB model
for the PEM scheme, which is an effective tool for complicated computing
tasks. Recent advances in deep learning have led to impressive successes in
a wide range of energy applications, such as model parameter calibration,
forced oscillation localization, detection of GPS spoofing attacks on PMU
and electricity demand forecasting [21, 22, 23, 24].

This research investigated both residual and classical deep learning mod-
els for the estimation of SoC of the VB. The proposed DL-model establishes
a mapping between VB coordinator information such as the number of ac-
cepted requests, number expiring packets and so on, and the SoC of the VB
model. The investigated deep learning models are described below. The pur-
pose of the investigation is to compare the performance and robustness of
these models in estimating the SoC of the VB and select the best-performing
model for the PEM scheme.

Data-driven approaches may generate results that contain noise or out-
liers, which can affect the PEM. Therefore, it is common practice to apply
filtering techniques to reveal the underlying trend. In this work, a MA fil-
ter was used, which works by taking a window of data and averaging it to
produce a single output. The advantage of using the MA filter is that it
preserves the causality of the data, meaning that the filtered output at a
particular time point is only dependent on the input data up to that time
point. Overall, the use of filtering techniques like MA filter is essential in
data-driven approaches to improve the reliability of the estimated results,
allowing for better decision-making.

4.1. Baseline Approaches

The performance of the proposed approach was compared with the base-
line benchmark approaches such as Convolutional Neural Networks (CNNs),
and feed-forward Neural Networks (FFNNs). DL-model should be accurate
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and precise to ensure reliable operation of the electric power grid. The com-
parison was done by evaluating the performance of the approaches using
various metrics as explained in Section 4.4.

4.1.1. Feed-Forward Neural Networks
Feed-forward Neural networks [25] are relatively straightforward and widely

used structures in deep learning. They are called feed-forward because the
information flows through the network in one direction, from the input layer
to the output layer, without looping back. However, FFNN faces many issues
such as loss of neighborhood information, over-fitting the data, and vanishing
and exploding gradient problems, which refer to the gradients of the error
function becoming too small or too large during the training process, which
can slow down or prevent the model from converging [26]. Additionally,
FFNNs can have a large number of parameters to optimize, which can make
the training process computationally expensive and time-consuming.

4.1.2. Convolutional Neural Networks

In recent years, the CNN-based approach has been widely utilized in var-
ious fields, including image and signal processing. A typical CNN model
consists of multiple layers, including convolutional, non-linearity, pooling,
and fully connected layers [27]. However, when dealing with long input mea-
surements, such as those with a high sampling rate, the CNN models may
require large kernels to increase the receptive field, which can make the op-
timization of model parameters challenging. One of the major obstacles in
training deep CNNs is the vanishing gradient problem. This can impede the
convergence of the CNN model. To mitigate this problem, several solutions
have been proposed, such as batch normalization, dropout, and residual con-
nections have been proven to be effective in addressing the vanishing gradient
problem and improving the performance of CNN models [28].

4.2. Temporal Causal Convolutional Networks

The architecture of the proposed TRCNSs for SoC estimation is illustrated
in Figure 2. Key features of TRCNs is the utilization of dilated convolution
operations and residual connections [26, 29], which solves the limitations of
classical deep learning approaches for SoC estimation, and allows for an expo-
nential increase in the receptive field with the number of layers, thus enabling
the model to achieve a large receptive field with a relatively small number
of layers. Additionally, these feature enable TRCNs to effectively handle
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Figure 2: The network architecture of TRCN-based model.

long-range temporal dependencies , which is crucial for accurate prediction
of SoC.

To process the input sequence, a series of residual blocks are employed,
incorporating dilated convolution operations and residual connections, with
increasing dilation rates. Additionally, Weight Normalization is utilized to
normalize the weights of the neural network layer. This technique enhances
the convergence of the network during training by decreasing the internal
covariate shift. Furthermore, it reduces the network’s sensitivity to the initial
weights, resulting in a more stable optimization process. To avoid overfitting
and enhance the neural network’s generalization performance, Dropout, a
deep learning regularization technique, is applied. During training, dropout
randomly drops out (i.e., sets to zero) some of the neurons in a layer. The
final step involves using a fully connected layer to perform regression and
obtain the current state of charge.

TRCNs have a backpropagation path that different from the temporal
direction of the sequence. The input data bypass the convolution opera-
tion through skip connections, and the outputs of both the skip connection
and the convolution operation are then added together to form the output
of the entire block. This mechanism allows the gradients to flow more effi-
ciently through the network, thereby improving the overall performance of
the model.
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When designing a TRCN for online application, a key consideration is
the principle of causality, which implies that the output of the network yr at
any given time step 7' should only depend on the convolutions of elements
of the input sequence x, ..., zp. In this way, only the previous history of the
measurements is used to predict the label at anytime 7. That’s meaning
there is no information ”leakage” from the future to the past.

(Yo, -y y1) = f(T0y -0y TT) (10)

So, TRCNs satisfies the causal constraint that yr depends only on x, ..., xT
and not on any future inputs, making the TRCNs suitable for real-time ex-
ecution. In the sequence modeling, the purpose of learning is to discover
a network that minimizes some expected loss between actual outputs and
predictions.

The utilization of a causal convolutional structure is necessary to prevent
future information leakage. However, applying a causal convolution directly
to deal with long time series problems poses a significant challenge, as it
limits the ability of the network to look back at historical data, with a linear
size in the depth of the network [30]. To overcome this limitation, the pro-
posed approach employs dilated convolutions that enable an exponentially
large receptive field without increasing the model parameters [31]. Unlike
standard convolution, where each kernel covers the same range as its length,
dilated convolution’s kernel skips input samples with a fixed step to cover a
longer range, as shown in Figure 2. The receptive field size of the TRCN is
dependent on the network depth N, filter size K and dilation factor d, thus
making the TRCN deeper and larger is crucial to obtain sufficiently large
receptive field.

4.8. Hyper-Parameters Optimization

In order to achieve optimal performance for any deep learning-based
model, the selection of appropriate hyper-parameters is crucial, and several
hyper-parameters were considered to tune. Random Search [32] was used
to find the network’s optimal hyper-parameter combinations in this study.
The optimal hyper-parameters for optimizer type, learning rate, filter size,
and number of residual blocks were found to Adam [33], 2 x 1075, 3, and
5 respectively. The experiments were conducted using Python 3.8 and the
Tensorflow v2.8.0.
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Table 1: DER fleet parameters

Parameter Distribution
Power rating for EWHs and batteries (kW) | Paten ~ U(3.2,4.8)
Tank size for EWHs L,, ~ U(240, 360)
Battery efficiency M ~ N (0.95,0.03)
Battery capacity (kWh) Zn ~ N(13.5,2)

4.4. Evaluation Criteria

In this work, Root Mean Square Error (RMSE), and mean absolute error
(MAE) were utilized as metrics to measure the difference between the esti-
mated and actually observed SoC value. These metric are defined as follows:

1 & ~ 2
RMSE = | = ; <Eavg[k] - Eavg[k]) (11a)
MAE = % ’; ‘Eavg (k] — g [k]‘ (11b)

where K is the total number of samples and Ey,[k] and E,[k] are the
actual and estimated SoC at time k. The RMSE indicates the robustness of
the estimation while the MAE indicates the accuracy of the estimation [34].

5. Experimental Setup

The following experiments are conducted to verify and evaluate the per-
formance, generalization capability and robustness of the proposed approach.
Two different fleet are used to verify the results. ¢ heterogeneous fleet of 500
EWHs. i heterogeneous fleet of 250 EWHs and 250 batteries. The fleet
is tracking a scaled power reference signal with nominal power (P"™ =
200KW). The packet length, d, is 3 minutes for all packets while p = 3
minutes. The Parameters for the DER fleet are presented in Table 1.

The estimation of SoC based on deep learning can be divided into two
distinct phases: model training and model testing. In the model training
phase, several experiments were conducted in a PEM environment under ideal
conditions i.e, no parametric variations. This was done to generate a three-
day training data set. A 70-30% split was employed, 70% of the available
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training data were chosen for training and 30% for validation. The main
computational load demanded by these DL-models happens during training
phase, making it feasible for implementation for online applications. In the
testing phase, testing data were generated under various demand profiles,
and various parametric variations. A brief description of these experiments
is provided in the following subsections.

5.1. Data-Driven Models Comparison

The first set of experiments focuses on identifying the optimal DL ar-
chitecture for addressing the SoC estimation problem. This is accomplished
by employing a consistent evaluation methodology to compare the perfor-
mance of various DL-models. In this experiment, a comparison study was
conducted between TRCNs, as described in subsection 4.2, and baseline DL-
models, namely FFNNs, and CNNs. To ensure consistency, the models were
trained using the same data and underwent the same validation and testing
procedures.

5.2. Robustness Against Different Parametric Variations

In order to assess the the robustness and generalization capability of pro-
posed DL-based model, the model was tested under a variety of conditions in
this experiment. The model was evaluated under ideal conditions with un-
seen power reference signal, as well as under practical conditions that simu-
late real-world scenarios [35, 36]. These scenarios include varying population
sizes, background demands, device parameters, and coordinator communica-
tion loss rates. This allows for an assessment of the model’s ability to adapt
and perform well in different scenarios.

5.8. Influence of Training Data Size

In order to investigate the impact of training data size on the performance
of SoC estimation, several experiments were conducted. The same deep
learning architecture and testing sets were used to ensure a fair comparison.
The goal of this study was to examine how the size of the training dataset
affect the performance of the proposed deep learning-based model, providing
insight into the relationship between training dataset and model performance.
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5.4. Robustness against diverse population

In order to evaluate the robustness of the proposed approach under a
diverse fleet of devices , such as water heaters (EWHs) and energy storage
systems (ESSs), this experiment was conducted. A VB was used as an energy-
based aggregate model of a heterogeneous fleet of 250 EWHs and 250 ESSs.
The fleet was designed to track a scaled power reference signal.

To address the complexity of the heterogeneous diverse fleet, the proposed
deep learning model was restructured to incorporate additional end-use mea-
surements such as z3[k|, Bais[k], By.[k], and N3$[k] using 240 samples at
2-second resolution to estimate the SoC of the VB model. The model was
evaluated in this experiment with unseen AGC signals, providing insight into
the model’s ability to handle diverse and complex fleets of devices.

6. Numerical Results and Discussion

This section presents the numerical results obtained from the experiments
described in section 5, all experiments reported in this section used the pro-
posed TRCN model.

6.1. Data-Driven models comparison

Accurate and precise are two terms that are commonly used in the field
of data analysis, machine learning, and statistical modeling. Accurate refers
to how close the estimated values are to the actual values. In other words,
if the estimated values are close to the actual values, then the model is said
to be accurate. Precision, on the other hand, refers to the consistency of the
estimated values. If the estimated values are close to each other, then the
model is said to be precise, even if it is not necessarily close to the true value.

In order to determine the optimal DL architecture for the SoC estimation,
the performance of the proposed deep network was evaluated against baseline
DL-models, namely FFNNs, and CNNs. The results showed that while the
FFNN approach yielded accurate estimation, it lacked precision. On the
other hand, the CNN approach produces precise estimation, but they were
inaccurate, as shown in the comparison results presented in Table 2 and
Figure 3. Thus, both the FFNNs and the CNNs models were not considered
for the implementation. The proposed approach demonstrated an accurate
and precise performance, which means that the estimated values are close
to the actual values. In addition, the results are precise which means that
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the estimated error values are close to each other. Therefore, the proposed
estimator is able to capture the underlying dynamics effectively.

Table 2: Performance Comparison of CNN, FFNN, and TRCN Models

RMSE MAE Accurate  Precise

CNN 0.0255 0.0229 v

FFNN 0.0244 0.0165 v

TRCN (Proposed) | 0.0051 0.0035 v v

RMSE: 0.0255, MAE: 0.0229 RMSE: 0.0244, MAE: 0.0165
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Figure 3: Results of SoC estimation under same testing scenario using: (a) CNNs; (b)
FFNNs; (c) TCNs.
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6.2. Robustness against parameter variation

This section presents different parametric variations tests which used to
evaluate the SoC estimation robustness and generalization capability.

6.2.1. Population Size

The proposed approach was trained on a heterogeneous fleet of 500 EWHs.
However, in practical scenarios, the population size may change during the
operation, making it essential for the model to be robust model to popula-
tion size variation. Therefore, N in (6) is set to 500 for training, and then
the population size () is varied between —30% to +50%. Which is a wide
enough to test the proposed approach’s ability to handle significant changes
in population size. It covers a decrease of almost a third of the original
population size and an increase of half the original population size.

The results indicate that the proposed model is generalizable and able to
adapt to different population sizes without retraining the network. As the
number of population diverges from the number of population the model was
trained on, the estimated SoCs start to deviate from the true values as shown
in Figure 5.

The estimation RMSE and MAE are both less than 1.5% for [—10%, +30%)
percentage of the change in population size, indicating that the trained net-
work shows the ability to adapt untrained number of population. Figure 4
illustrates the results of SoC estimation under population of 550 heteroge-
neous devices, further demonstrating the model’s ability to adapt to diverse
population sizes.

6.2.2. Background Demand

Due to the unpredictability of the human activities such as taking shower,
etc, the background water usage can not be predicted accurately and can di-
verge from the predicted values. In this subsection, different experiments are
conducted to evaluate the model’s robustness against parametric variation
in the average water usage. Same distribution i.e., same CDF is used for de-
termining the starting time of the events, but the average number of events
per hour is changed between [—45%, +60%).

The results indicate that the proposed model is robust to background
demand variation as shown in Figure 6. The estimation RMSE and MAE
are both less than 1.5% within [-25%, +30%)] of the trained mean background
demand. Figure 7 illustrates the results of SoC estimation for one day with
15% increase of background demand, and background demand for the case.
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Figure 4: VB SoC estimation under population of 550 heterogeneous devices.
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Figure 5: VB SoC estimation error vs percentage change in DER population.

6.2.3. Device Parameters

To further evaluate the robustness of the SoC estimator against variation
in DER parameters, two experiments were conducted; i) parametric variation
in tank size and i7) parametric variation in power rating of DERs.
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Figure 6: VB SoC estimation error vs percentage change in background demand.

To examine the robustness of the proposed method against variation in
tank size, the estimator is trained on a set of random parameters s € S,
then the mean tank size is changed between —50% to +80%, while other
parameters are same as S. The result of +20% change is shown in Figure 8.
It can be seen that RMSE and MAE are both less than 1.5% for tested range
of average tank size. This shows the robustness of the proposed method
against estimation error in tank size as shown in Figure 9.

Next, the variation in power rating is taken into account by using S
parameters but this time changing the average value of DER power rat-
ing. In the training set, Pre ~ U(3.2,4.8)kW. In the testing set, Pt ~
U(4(1+a) —0.8,4(1 + a) + 0.8)kW, where a € [-30%, +60%)]. In fact, the
distribution of P, is shifting with factor a, to study the impact of inaccu-
racy in estimating P, on our SoC estimator. The result of +10% change is
shown in Figure 10. It can be seen in Figure 11 that the RMSE and MAE
both are less than 1.5% for a wide range of —25% to +40% error in P, .

6.2.4. Communication errors

One of the significant practical issues in DER coordination are the com-
munication errors. Communication error can happen in both directions, i.e.,
1. lost packets which means that some of the requests sent by DERs are
not received by the coordinator or ii. Some of the decisions made by the
coordinator are not received by DERs. In this subsection, the goal is to
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Figure 7: Results in case of background demand variation: (a)VB SoC estimation; (b)
Background demand profile.

demonstrate the robustness of the proposed method against communication
errors. The results for lost 10% of packets and lost 10% of decisions are
presented in Figure 12 and Figure 13, respectively.

In both scenarios as shown Figure 14 and Figure 15, the performance of
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Figure 9: VB SoC estimation vs percentage change in EWH tank size.

the SoC estimator in terms of RMSE and MAE are acceptable up to 10% of
requests/commands are lost. Table 3 shows a summary of above experiments.
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6.3. Time Efficiency

An essential metric to consider when running deep learning models for
online applications is the computation time. In this research, a Windows
PC with Intel(R) Core(TM) i7-9700 @3.00 GHz, 32GB memory, NVIDIA
GeForce RTX 2080Ti was used to run the pre-trained models. The results
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Figure 12: VB SoC estimation when 10% of packets are lost.
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Figure 13: VB SoC estimation when 10% of charge/discharge decisions by the PEM
coordinator are lost.

show that the average testing computing time was 28.4 milliseconds.
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6.4. Influence of training data size

To achieve good SoC estimation, DL-based model require a certain amount
of data for training. However, obtaining this amount of data can be chal-

lenging.

Overall, the results show that DL models benefit from more training
data for efficiently training and generalization ability as shown in Figure 16.
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Although there is a trend of improvement with more data, the effect of more
training data does saturate after 72 hrs, indicating that a certain amount of
data is sufficient for good performance.
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Figure 16: Proposed DL-model performance for different training data sizes.

6.5. Robustness against diverse population

The proposed DL-model was restructured to get more features as input.
This section presents the evaluation of the model under diverse fleet of de-
vices (e.g., EWHs, ESSs). The results of SoC estimation under diverse DER
population is shown in Figure 17. The results of this study indicate that
the model demonstrates robustness against diverse population, with high
accuracy.
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Figure 17: VB SoC estimation performance under diverse DER population.
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7. Conclusion

This paper developed a deep learning approach to estimate the average
SoC for a heterogeneous ensemble of EWHs and batteries operating under
PEM. DL-based model capable of accurately estimating the SoC under dif-
ferent type of parametric variations such as population size, background de-
mand, device parameter, and communication errors was presented. Compar-
isons were made among the different DL architectures and the results show
the efficiency and good performance of the proposed method. The estimation
of the PEM-VB SoC has been illustrated with an DL implementation for both
EWH fleet and diverse fleet (including both EWHs and batteries) and the
results show that in both cases the error RMSE is within 1.5%. Future work
can focus on extending the current framework to include additional virtual
battery parameters, such as upper and lower energy and power bounds. In
addition, the proposed ML-based estimation method can be combined with
predictive (physics-based) models to optimize the dispatch of DER fleets.
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Appendix A.
The following GitHub repository contains the data used in this document:
https://github.com/mmatar3/VB_data
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