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Abstract—In this paper, we illustrate a novel methodology for
comparing and quantifying the performance of different distributed
energy resources (DER) schemes’ ability to deliver frequency regulation
services across a number of salient criteria. The schemes considered in-
clude (bottom-up) packetized energy management, fitness-based meth-
ods, and (direct load control) optimization-based methods. The criteria
of interest include tracking performance, scalability of communication,
scalability of computation, device availability, ability to maintain con-
sumer quality of service (CQoS) relative to delivered hot water temper-
atures, and impact on the device quality of service (DQoS) such as aver-
age cycling rates. Moreover, we augment the fitness-based method with
an ability to estimate the fitness values dynamically which significantly
reduces the communication burden while maintaining the tracking
capability. Finally, the simulations and corresponding comparisons are
based on a representative subset of PJM’s historical Reg-D data.

Index Terms—Distributed energy resources, fitness-based coordina-
tion, packetized energy management, flexibility, frequency regulation

I. INTRODUCTION

Public opinion and policies concerning efforts to mitigate climate
change are driving increased penetration of renewable generation.
Integrating renewable energy sources into the electric grid while
maintaining reliability is a fundamental power engineering
challenge that will require large-scale deployment of grid-side
and demand-side flexibility. New advances in sensor technology
together with low-cost edge computing and connectivity enable
DER coordinators to regulate DERs remotely to respond to the
needs of the grid and leverage market opportunities while satisfying
customer usage [1]. This makes demand-side management a viable
option for ancillary services, such as frequency regulation [2] or
fast frequency response [3]. As a result, much research is focused
to study the potential uses of DER coordination in modern power
system operations in recent years.

For the DER coordination schemes to be valuable for system
operations, they should be capable of coordinating thousands of
kW-scale, flexible electric loads such as electric vehicles (EVs),
batteries, and thermostatically controlled loads (TCLs) [4]. At
this scale, the roles of computation, communication, and data
management requirements are critical. In addition, most of the DER
coordination schemes require that some data is shared between
consumers and a coordinator. This raises data privacy [5], as well as,
cyber-security concerns [6]. In fact, if consumers are not convinced
that their information is safe and secure, the participation rate will
drop, rendering the whole scheme unviable [7], [8]. Thus, DER
coordination architecture requires careful analysis and design.
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DER coordination schemes can generally be categorized into
direct/top-down and indirect/bottom-up architectures. In direct
control schemes, a central coordinator has full access to and control
over all DER information and actuation. While direct control
potentially leads to good performance, the large computation and
communication burden raises concerns about scalability. In indirect
control schemes, the decisions are made at each DER based on local
measurements, which reduces communication and computation
overhead, but raises concerns about tracking performance

Another key factor in DER coordination architectures is the
underlying data availability and communication requirements [9].
Indirect schemes can be further classified based on the level of
information shared between consumer and coordinator: i) mediated
coordination: coordinator collects DER information, ii) bilateral
coordination: DERs communicate with each other, and iii) implicit
coordination: individual DER information is not shared [9]. While
higher levels of information sharing improve the performance of
the coordination scheme, it can lead to privacy and security issues.

In this paper, key metrics that underpin DER coordination archi-
tectures are presented and illustrated for three different DER control
architectures: i) a bottom-up device-driven scheme called packetized
energy management (PEM) [10]; ii) a fitness-based prioritization
scheme [11], and iii) an optimization-based direct scheduling
scheme [12]. The main contributions of this paper are listed below:

• Quantitative methodology is proposed for holistically
analyzing the performance of DER coordination schemes
across a set of proposed salient and practical metrics.

• A fitness-based DER coordination scheme is specifically
extended by enabling the DER coordinator to dynamically up-
date the DER fleet’s fitness values, which permits significantly
lower communication burden and DQoS without negatively
impacting the ability to deliver grid services and CQoS.

• The real-time, cyber-enabled DER simulation platform
from [13] is extended to incorporate two more DER
coordination schemes. This improved platform is utilized in
the simulation of a fleet of 1000 electric water heaters (EWHs)
to illustrate the quantitative methodology for different DER
coordination schemes from the literature.

The remainder of the paper is organized as follows: In Section II,
different coordination schemes are briefly explained. The
methodology for comparing different schemes is presented in
Section III The simulation-based analysis is presented in Section IV
while Section V concludes the paper.



II. DER COORDINATION SCHEMES

Fleets of thermostatically controlled loads (TCLs) are used by
the DER coordinator to provide frequency regulation. Thus, we
first present a model of TCL. Second, we present three different
coordination schemes from the literature.

A. Thermostatically controlled load model

Consider a first-order, difference equation modeling the evolution
of the tank temperature, zn, of an electric water heater (EWH):
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where c, ⇢, and L are the specific heat capacity, water density at 50
degrees, and the tank capacity, respectively, while P rate

n is the power
consumed by the heating element and ⌘n the efficiency of delivering
power to the water. The binary ON(1)/OFF(0) variable is denoted
sn[k] while insulation losses are defined by ⌧n. Finally, Tamb,Tinlet
are the ambient and inlet temperatures, respectively, while !n[k]
is the stochastic water withdrawal rate and �t is the sampling time.

The goal of any DER coordinator managing N TCLs is then
to maintain CQoS (i.e., keep zn[k] close to a customer’s desired
set-point zset
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coordinator will need to cycle devices on/off while considering
possible device lock-on/off constraints on device operations
(impacting DQoS) and rely on computing and communications
to be responsive to changes in the reference signal. The next three
subsections will examine three different DER coordination schemes
that attempt to achieve these goals.

B. Optimization-based method

A naive approach to achieve the coordinator’s objectives is
to, at each time step, schedule the on/off state of TCLs using
optimization-based methods:
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sn[k]

w1✏+w2

NX

n=1

(zn[k+1]�zset
n )2 (2a)

s. t. zmin
n zn[k]zmax

n 8n (2b)

|Pref[k]�
NX

n=1

sn[k]P
rate
n |✏ (2c)

sn[k]2{0,1} (2d)

✏ is chosen smaller than P rate
n . The method assumes full

knowledge of the fleet’s dynamic state. This means that for every
time step, all of the devices must send their temperature data to
the coordinator. This results in a large communication overhead,
which challenges implementation at scale. In addition, the cycling
of devices is not captured in the formulation, which should result
in low DQoS. In this paper, we consider two versions of (2):

(i) Opti(0): Allow DERs to cycle each time-step.
(ii) Opti(a): Limit cycling by locking the DER state sn[k] for

a minutes every time we transition.
Since the optimization-based method does not look ahead more
than one time step, we expect that locking will serve to simplify the

problem (fewer decision variables), reduce cycling (and improve
DQoS), and reduce communication overhead (since we do not need
state info for locked TCLs), but at the cost of worse tracking and
more CQoS violations.

C. Packetized energy management

Packetized energy management (PEM) is a bottom-up/indirect
DER coordination scheme that coordinates flexible loads in
real-time to harness their potential for different grid services [14].
The scheme uses the concept of energy packets, which is energy
delivered as a fixed amount of power for a fixed duration (e.g.,
5kW for 3 minutes). In PEM, DERs request energy packets using
a probabilistic request rule based on dynamic state zn[k]:

Pr(zn[k])=1�e�µ(zn[k])�t, (3)

where µ is a function that maps zn[k] to a mean-time-to-request
(or MTTR) as follows:
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with design parameter, mR > 0 chosen to define the inverse of
MTTR for zn[k]=zset

n The design is aimed at driving the device’s
dynamic state close to the set point: the lower the zn[k], the lower
the MTTR, which increases the probability of a request being sent
to the coordinator, which increases the likelihood of getting access
to an energy packet, which drives zn[k] back up. The requests
are sent to a coordinator asynchronously, and the coordinator
accepts/rejects requests based on the market or market reference
signal. In addition, to guarantee CQoS, PEM is equipped with an
opt-out mechanism which permits the DERs to temporarily exit
PEM when zn[k] /2 [zmin

n ,zmax
n ] and return to conventional operation

(e.g., heating water) until zn[k]2(zmin
n ,zmax

n ).
In this comparison, two versions of PEM are considered:

(i) PEM(a,mR): fixed packet length a and MTTR parameter mR

for all DERs in fleet.
(ii) PEM([a, ā], mR): every accepted request has random (and

uniformly distributed) packet duration, a⇠U [a,ā], [2].
Next, we present and extend a different indirect method called

the fitness-based method, which, unlike PEM, keeps a list of device
priorities (i.e., ranked by their fitness to turn on and off) and then
selects the fittest devices to actuate to minimize tracking error.

D. Fitness-based method

In the fitness-based method, each DER calculates fitness values
based on its local dynamic state, zn[k], its operating state, sn[k],
and its availability of response (e.g., is device locked, opted out,
or otherwise unavailable) [15]. The coordinator then receives fitness
values from DERs and sorts the devices based on their fitness values.
This simplifies the coordinator’s process of actively determining
which devices to turn on/off as the power reference signal changes.

Thus, this method depends on device computing and the coor-
dinator ranking a set of fitness values. There are different ways to
compute fitness values based on available (local) device information:
zn[k],sn[k], including time since the last on/off transition.



1) DER fitness values: The fitness values for device n can be
defined based only on the dynamic state:
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For example, for EWHs, if a device’s temperature is low, then it
has a high fitness value for turning ON (FON

n ) and a low fitness value
for turning OFF (FOFF

n ). This prioritizes EWHs with lower temper-
atures (high fitness) to be selected for turning on if the reference
signal increases. Similar to PEM, an internal opt-out mechanism is
incorporated in the scheme to ensure that the temperature comfort
range (zmin

n ,zmax
n ) is not violated. In addition, when a device cycles,

it may be locked on/off for a certain duration before it can cycle
again. This locked device behavior reduces cycling (i.e., improves
DQoS) but also limits the availability of DERs.

Thus, to capture the availability and prioritize DQoS, a device
can augment its fitness value with a DQoS term in the fitness
function, as shown below:
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where ⌧off/on
n is the time elapsed (in hours) since the last off/on

transition. The DER will then send the coordinator its fitness values
based on either (5) or (6), which is used in actively coordinating
the DER fleet and described next.

2) Fitness-based coordination and estimation: To achieve the
desired coordinator objectives (tracking and CQoS), the coordinator
forms separate queues for on and off fitness values. When aggregate
DER fleet power,
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when aggregate fleet power is lower than the reference signal is sim-
ilar with the coordinator selecting the highest FON

n [k] devices to turn
on. A key challenge with the fitness-based method is the communi-
cation overhead associated with the coordinator keeping a fleet’s fit-
ness values up-to-date. That is, since TCLs compute their fitness val-
ues based on their dynamic state, which is a function of background
demand, a device’s fitness value may change significantly over a
period of 5-15 minutes. This means that devices perceived by the co-
ordinator to have a high/medium fitness value, may in-fact no longer
be “fit” for coordination and cause unexpected tracking errors or
CQoS challenges. To address this challenge, we augment the fitness-
based coordinator with a simple dynamic estimate of fitness values
based on historical fitness data available to the coordinator. Thus,
the dynamic fitness estimation should provide the coordinator with a
more accurate estimate of the state of the fitness queues and improve
CQoS. In improving CQoS, we expect lower opt-outs and more
accurate tracking at an equivalent or lower communication overhead.

Thus, the coordinator is able to estimate the evolution of each de-
vice’s ON and OFF fitness values with the following simple model:

FON
est,n[k+1]=FON

est,n[k]+↵ON
n , FON

est,n[0]=FON
n [0] (7)

where constant parameter ↵ON
n is obtained from the coordinator’s

historical data on device n’s fitness values using linear regression.
The case of FOFF

est,n and ↵ON
n is identical. In the interval between

devices updating their fitness value, the coordinator uses the
dynamic estimate of fitness. Every 5-15 minutes, DERs update their
fitness value based on the measured zn using equation (5) which
resets the fitness values at coordinator to the actual ones.

In this paper, we consider a different version of the fitness-based
method, Fit(a,b,C), where a, b, and C represents the devices’
update rate for fitness values (mins), devices’ locked out duration
after cycling (mins), and whether coordinator employs dynamic
fitness estimation or not (i.e., C=E means with estimation).

Finally, Fig.1 summarizes the information flow for the
aforementioned schemes, highlighting that they all represent
different feedback control schemes that are each implemented
in the real-time DER simulation platform from [13]. The green,
red, and the blue text describes the types of information shared in
Opti, Fit, and PEM schemes, respectively. In the next section,
we briefly outline the methodology for quantitatively comparing
DER coordination schemes.
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Fig. 1: Feedback control system for different coordination schemes.

III. METHODOLOGY FOR COMPARING DER SCHEMES

To compare DER schemes, we have designed a set of metrics
that are relevant for practical implementation and technical
evaluation. To quantify the performance of any DER schemes in
providing frequency regulation, consider Ns 1-hour samples of
PJM’s historical Reg-D data set, where each sample i2{1,...,Ns}
representswi2 [0,1] proportion of the Reg-D data-set and

P
iwi=1.

Specifically, the metrics used to evaluate the performance of each
scheme are denoted as follows for each 1-hour Reg-D sample i:

1) Device QoS (DQoS): M4,i =1�X4,i/maxi{X4,i}, where
X4,i is the total number of DER cycles across fleet.

2) Consumer QoS (CQoS): M3,i = 1 � X3,i/maxi{X3,i},
where X3,i is the number of devices that experience opt-out.

3) Scalability of communications (SoComm):
M5,i = 1 �X5,i/maxi{X5,i}, where X5,i is the average
communication in kilobits per second (kbps) per device sent
to/from the coordinator from/to DERs in one hour.

4) Tracking accuracy: M1,i = 1�X1,i/maxi{X1,i}, where

X1,i =

r
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⇣
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, where

K=1800 is the number of time-steps in Reg-D sample i.



5) PJM composite score: M22 [0,1] is PJM’s formula and in-
cludes accuracy, precision, and delay component defined in [2].

6) Scalability of computing (SoComp): M6,i =
1�X6,i/maxi{X6,i}, where X6,i is the total processing time
used by coordinator.

7) Device availability: M7,i 2 [0,1] is defined as the average
fraction of available devices [16], i.e., devices that are not
locked nor opted out.

The above metrics are used to capture different facets of DER
coordination. Because of trade-offs in control and communications,
no single method will dominate across all metrics. Thus, a utility
or aggregator must weigh the metrics based on their preferences.
Now, for each 1-hour Reg-D sample i2{1,...,Ns}, consider metric
j, Mji, for j = 1, ... ,NM . Then, a DER coordination scheme’s
weighted average metric j is Mj=

PNs

i=1Mjiwi 8j=1,...,NM . In
addition, to further characterize how each scheme performs across
the set of Ns samples, we also consider the worst-case performance,
Mj=mini{Mij} for all NM metrics. In the next section, we illus-
trate the methodology by quantifying the weighted mean and worst-
case performance of three different classes of DER coordination
across a representative subset of PJM’s 8760-hour Reg-D data-set.

IV. SIMULATION RESULTS

In this section, a simulation-based illustration of the methodology
for comparing DER schemes is presented. The simulations consider
sixteen representative 1-hour Reg-D samples of AGC. The process
for selecting the representative samples (and their weights wi) is
briefly described next.

A. Determining representative 1-hour AGC samples

In this section, we select a representative subset of the PJM
Reg-D annual (8760 samples) data set by using K-mean clustering.
This method partitions the PJM data set into K sub-sets from which
we can select representative “centroids” and appropriate weights
(related to relative sizes of the sub-sets).

In this work, for each 1-hour Reg-D sample, the sample’s average
and pegging amount (which is the number of instances in the sample
where the reference signal is at ±1) are used in a K-mean clustering
algorithm [17] to find the representative subset of the sample.
Based on applying the K-mean algorithm and sweeping across
a range of K, it was found that Ns = 16 clusters were optimal.
Interestingly, the resulting 16 samples represent eight months of the
year, all days of the week, and nine day hours. In the next section,
simulation-based analysis is used to illustrate the methodology for
comparing DER coordination schemes across these Ns samples.

B. Simulation case study

The results are shown next and leverage and extend the real-time,
cyber-enabled DER simulation platform, which is detailed in [13].
Specifically, this paper augments the platform with the optimization
and fitness-based methods to enable comparisons of DER coordi-
nation methods. The simulation platform uses Python 3.9 for the
simulation of diverse DER fleets. Local DER control logic and
model is implemented in C/C++ based on simplified first-order state
of charge dynamics. Gurobi 9.0.1 solver is used for the optimization-
based method. The DER coordinator is implemented in Python using

requests module and an open-source event-driven networking engine
called Twisted. Specifically, Hypertext Transfer Protocol (HTTP)
which is a standard protocol for asynchronous communication
between Web servers and clients, is used to exchange messages
between DERs and coordinator. The platform uses communication
mechanisms that closely align with those used by IoT-enabled
devices in real-world demand dispatch. Specifically, the simulation
platform enables a real-time simulation of 1000 EWHs, each of
which has a 4.5 kW power rating, and the DER coordinator responds,
in aggregate, to a Reg-D power reference signal that is updated
every 2 seconds with a baseline power value equal to 400 kW and
an amplitude (capacity) of ±200 kW. The results for mean and
worst performance are summarized in Table I where avg and worst

refer to the average and worst values of Xj,i across i=1,...,Ns. To
better illustrate the results, in Fig. 2, Mj is compared for seven DER
coordination schemes. In addition, in Fig. 3, the worst performance
across all representative 1-hour samples is compared.

By comparing Fit(15,3,NE) and Fit(15,3,E) in table I it can
be seen that CQoS is improved significantly when estimation is
added to fitness based method (i.e., (7)). On the other hand, by
comparing Fit(3,3,NE) and Fit(3,3,E), very small difference
is seen. This shows that the estimation method is more useful
when the fitness update time. When the update time is small, the
error in fitness values is insignificant leading to a small impact
on estimation. As expected, by increasing the update time, CQoS
decreases due to an increase in the number of opt-outs.

As expected, Opt(0) outperforms other methods in tracking M4

since it does have access to full knowledge and control. The main
drawback is that the scalability of communication is low which
makes the implementation difficult for large fleets. As expected,
the DQoS index is the lowest for the optimization-based method
since this method leads to more frequent cycling. By adding a lock
in the optimization-based method it can be seen that the number
of cyclings significantly drops, but this will worsen tracking, and
PJM scores considerably. In fact, lock-out represents a plant model
change and the results show that the optimization method is not
adapting well to this change in the plant model (i.e., when reality
hits). By comparing Fit(15,3,E) and Fit(15,0,NE) it can be seen
that removing the cycling constraint and using Eq. (6) improves the
tracking ability both in terms of PJM composite score and tracking.
The same impact is seen for the 3-minute fitness update time. In
the PEM method, we can see that randomizing packets improves
the tracking significantly while decreasing the CQoS since there
exist longer packets in this case which are more likely to exceed the
temperature limit. The results show that the fitness-based method
and PEM can provide tracking scores close to the optimization-
based method while providing much higher M6 and M7 scores.

V. CONCLUSION

In this paper, a simulation-based analysis is used to validate a
novel methodology for quantifying and comparing the performance
of different DER coordination schemes. The methodology
enables comparison across seven different, practical, and
relevant metrics. For example, it is clearly shown that while
the optimization-based method provides excellent tracking
capability and CQoS, its high communication burden makes it



TABLE I: Comparing the performance of DER coordination schemes in terms of average and worst values of Xj,i across i=1,...,Ns

Method DQoS CQoS SoComm(bps) Tracking (kW) PJM score SoComp(sec) Availability
avg worst avg worst avg worst avg worst avg worst avg worst avg worst

Fit(3,3,NE) 1608 2145 62.0 104 1.470 2.942 7.9 30.2 0.940 0.896 0.031 0.039 0.967 0.963
Fit(3,3,E) 1606 2139 63.4 101 1.470 2.942 7.5 28.7 0.940 0.896 0.137 0.148 0.967 0.964
Fit(3,0,E) 1619 2221 62.8 99 1.470 2.942 1.5 1.6 0.943 0.902 0.142 0.155 0.999 0.998
Fit(15,3,NE) 1774 2385 150.7 223 0.2978 0.2978 11.3 48.8 0.939 0.891 0.032 0.038 0.969 0.965
Fit(15,3,E) 1605 2145 62.5 103 0.2978 0.2978 7.5 30.2 0.940 0.896 0.137 0.151 0.967 0.963
Fit(15,0,E) 1617 2213 63.6 106 0.2978 0.2978 1.5 1.6 0.943 0.902 0.140 0.159 0.999 0.998
Opt(0) 49862 55449 0.063 1 68.11 68.12 4.6 6.6 0.944 0.905 9.117 10.98 0.999 0.999
Opt(3) 3558 4039 163 248 68.01 68.01 166.1 248.4 0.747 0.639 3.343 3.876 0.966 0.964
PEM(3,3) 3797 4188 100.6 151 0.107 0.116 65.1 108.5 0.855 0.739 0.021 0.055 0.995 0.992
PEM([1,5],3) 3665 4057 112.7 150 0.107 0.113 37.1 72.9 0.919 0.863 0.023 0.047 0.997 0.996

Fig. 2: Comparing mean performance of coordination schemes.

Fig. 3: Comparing worst performance of coordination schemes.
inappropriate for large-scale applications. It was also shown that
by appropriate selection of the parameters, the proposed modified
fitness-based method and PEM are able to provide comparable
tracking capability to the optimization-based method with much
lower communication requirements. Future work will focus on
developing a comprehensive metric that quantifies the “efficiency of
coordination” as well as considering network constraints/bottlenecks,
and different types of devices/loads and grid services.
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