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Abstract—Compared with large-scale physical batteries, aggregated

and coordinated generic energy storage (GES) resources provide low-

cost, but uncertain, flexibility for power grid operations. While GES

can be characterized by different types of uncertainty, the literature

mostly focuses on decision-independent uncertainties (DIUs), such as ex-

ogenous stochastic disturbances caused by weather conditions. Instead,

this manuscript focuses on newly-introduced decision-dependent uncer-

tainties (DDUs) and considers an optimal GES dispatch that accounts

for uncertain available state-of-charge (SoC) bounds that are affected

by incentive signals and discomfort levels. To incorporate DDUs, we

present a novel chance-constrained optimization (CCO) approach for

the day-ahead economic dispatch of GES units. Two tractable methods

are presented to solve the proposed CCO problem with DDUs: (i) a

robust reformulation for general but incomplete distributions of DDUs,

and (ii) an iterative algorithm for specific and known distributions of

DDUs. Furthermore, reliability indices are introduced to verify the

applicability of the proposed approach with respect to the reliability

of the response of GES units. Simulation-based analysis shows that the

proposed methods yield conservative, but credible, GES dispatch strate-

gies and reduced penalty cost by incorporating DDUs in the constraints

and leveraging data-driven parameter identification. This results in

improved availability and performance of coordinated GES units.

Index Terms—generic energy storage, chance-constrained

optimization, decision-dependent uncertainty, response reliability

NOMENCLATURE

Abbreviations

BES,VES,GES Battery/virtual/generic energy storage
CCO,RO,SO Chance-constrained/robust/stochastic

optimization
DIU,DDU Decision-independent/dependent uncertainty
DR Demand response
EV Electric vehicle
MCS Monte Carlo sampling
RES Renewable energy sources
SoC State of Charge
TCL Thermostatically controlled load
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y,z Set of decision variables/uncertain parameters
CostDA

,CostRT Day-ahead/real-time operational cost
CostTC Total operational cost
EP,CT Expansion/contraction effect of SoC bounds
ERNS Expected response energy not served
LORP Loss of response power probability
⌦E Set of TCL model parameters
⌦R,⌦S Set of RES/GES units
⌦T Set of time periods

Functions

P(·) Function of chance constraint
f(·) Probabilistic distribution function
F

�1
(·) Inversed cumulative distribution function

g(·),h(·) DDUs function of incentive/discomfort effect

Parameters

↵i,t Additional SoC changes from baseline
consumption of GES unit i

�i
U
,�

L
i Discomfort-aversion factors of upper/lower SoC

bound of GES unit i

�t,T Time-step/whole dispatch time period
⌘c,i,⌘d,i Charge/discharge efficiency of GES unit i

�,� Confidence level of chance con-
straint/convergence criterion of algorithm

� Weight between response intensity and
SoC-based discomfort

µ,� Mean/standard deviation of the distribution
P,P Maximum/minimum rated power of TCL unit
P c,i,t,P d,i,t Maximum charge/discharge power ratings of

GES unit i at time period t

SoCi,t,SoCi,t Upper/lower SoC bounds of GES unit i at time
period t

T
in
t ,T

in
t Upper/lower indoor temperature of TCL unit

C,R,K Thermal capacity/thermal resistance/conversion
efficiency of TCL unit

P
RS
i,t ,P

RS
i,t Upper/lower power bound of reserve unit i at

time period t

"i,Si Self-discharge rate/energy capacity of GES unit i

a,b Lower/upper bound of truncated normal
distribution

c
S
c,i,t,c

S
d,i,t Charge/discharge prices of GES unit i at time

period t

c
RS
i,t ,c

G
t Dispatch price of reserve unit i at time period

t/day-ahead time of use electricity price
P

RS
i,RU,P

RS
i,RD Up/down ramp rate of reserve i at time period t

pi,t,R
RS
i,t On-state probability of GES unit i /reliability
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of reserve unit i at time period t

P
B
i,t,SoC

B
i,t Baseline power consumption/baseline SoC of

GES unit i at time period t

SoCi,RU,SoCi,RD Up/down ramp rate for changes in SoC of GES
unit i

SoC
B,av
i,t ,SoC

DB
i,t Average baseline SoC/discomfort deadband of

GES unit i at time period t

!i,t On-off state of GES unit i at time period t

⇠i Model parameter of GES unit i

P
R
t ,P

L
t RES and load powers at time period t

Decision Variables

Pc,i,t,Pd,i,t Charge/discharge power of GES unit i at time
period t

PG,t Grid power at time period t

P
RS
i,t Response power of reserve unit i at time period t

RDi,t Response discomfort of GES unit i at time
period t

SoCi,t SoC of GES unit i at time period t

I. INTRODUCTION

The high penetration of renewable energy sources (RES) gives
rise to challenges associated with frequency and voltage regulation,
power system stability, and reliability [1]. Deterministic dispatchable
resources, such as conventional power plant (CPP) and physical
energy storage (ES), have been widely used to overcome these chal-
lenges. However, relying on these deterministic resources may not
be viable in the future. First, the number of fossil fuel power plants
will decrease dramatically due to carbon dioxide emission reduction
targets [2], [3]. Second, direct control of a myriad of ES assets within
different sectors (e.g., industrial, residential, etc.) will be costly and
unlikely. Thus, demand response (DR) and other forms of dispatch-
able distributed resources represent a less costly alternative and can
support reliable power system operations. Such flexibility may be
leveraged and controlled via price-based [4] or incentive-based [5]
mechanisms. Significant effects on risk hedging and economic oper-
ation have been reported [4]–[6], via optimal control of energy usage
of thermostatically controlled load (TCL), electric vehicle (EV), and
battery energy storage (BES). Most of distributed energy resources
have the attributes and abilities of ES devices, hence motivating the
term “virtual energy storage” (VES) [7]. In this paper, ES and VES
are considered under a common framework called generic energy
storage (GES) to unify modeling and uncertainty descriptions of
both an individual GES unit and a portfolio of GES units.

The literature related to the modeling and economic dispatch (ED)
of GES is vast. Early research mainly focused on modeling and
dispatching the flexibility of GES from diverse, responsive loads [7]–
[9]. Among these works, a virtual battery model is introduced
in [9] and describes how to obtain the GES parameters from TCL
assets by using first-order energy dynamics, but without considering
time-varying and stochastic features. However, the main difference
between GES and conventional ES is the inherent exogenous and en-
dogenous uncertainties of the former [10]. Exogenous uncertainties
are uncertainties triggered by factors external to the system and are
also called decision-independent uncertainties (DIUs), as they are
independent of the operation and control strategy (e.g., uncertainties
related to the outputs of RES). Probabilistic optimization of GES

under diverse DIUs have been widely investigated in past works
and generally considers uncertainty around power and energy
capacities and response probability of GES, which is derived
from a combination of the following: (i) forecast error of ambient
space (temperature) [11], (ii) DR duration [12] and customers’
comfort [13], (iii) economic effect driven by incentive or price [4],
and (iv) model reduction error [14] and SoC estimation error [15].
For these studies, the structure of DIUs can be fully determined in
advance with complete information of uncertainties. However, some
stochastic properties may practically be affected by decision vari-
ables/control strategies and thus be denoted as decision-dependent
uncertainties (DDUs). For instance, the response probability of
a GES unit will likely decrease with increased DR frequency,
magnitude, and duration [10]. And the magnitude and duration
of discomfort can beget manual overrides and result in reduced
capacity of a GES unit [16]. These relations are generally overlooked
or simplified away as static and known probability distributions.

Technically speaking, DDUs are derived from stochastic
programming (SO) and are divided into two distinct types, which we
will refer to as Type 1 and Type 2 [17]. For Type-1 DDUs, decisions
influence the parameter realizations by altering the underlying
probability distributions for the uncertain parameters. In contrast,
for Type-2 DDUs, decisions influence the parameter realizations
by affecting the timing or content of the information we observe.
The vast majority of existing work has addressed Type 2 DDUs in
long-time-scale planning problems by modeling decision-dependent
nonanticipativity with a conditional scenario tree [17], [18].
However, the size of the scenario tree grows exponentially with the
number of uncertain parameters and decisions within DDUs, which
leads to dramatically increased computational complexity even with
an efficient decomposition method [19]. Compared with SO-DDUs
method, robust optimization (RO) provides more tractable solution
approaches to fast time-scale GES operations described herein, with
Type 1-DDUs. Static and adaptive RO-DDUs methods are proposed
in [20], [21] with simplification of affine decision-dependency of
uncertainty sets on decision variables, which reduces RO-DDUs
problems into static RO problems under DIUs. While, in the more
general case, iterative RO-DDUs approaches are proposed in [22],
[23] , which adjust the DDU set and examine robust feasibility at
each iteration under a two-stage decomposition framework. The
related works indicate that the key to optimization under DDUs is to
reduce the DDUs into DIUs with simplification, or to decouple both
decisions and uncertainty description through iterative algorithms.
However, these methods are subject to (i) simplified linear modeling
of DDUs that guarantee convergence, (ii) infeasibility of assessing
the constraints violation and reliability performance, and (iii)

difficulty in learning accurate description of DDUs structure with
respect to bounds and worst-case scenarios. To ensure accurate
characterization of GES performance [24] and consideration for
complex decision-dependent customer behavior dynamics [16],
it becomes necessary to incorporate DDUs with nonlinear (but
convex) structure. Furthermore, to obtain tractable solution
approaches with different risk preferences and assess the reliability
of the response of GES units, chance-constrained optimization is
preferred relative to SO and RO. To the best of our knowledge,
no research work has yet concurrently modeled DDUs of GES in
the CCO framework, while describing a computationally tractable
approach to optimization under non-linear (convex) structure of
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DDUs with possibly unknown underlying uncertainty distributions.
To fill in the research gap in both modeling and solution

methodologies, this manuscript addresses the day-ahead chance-
constrained economic dispatch of GES with a modified baseline
model within which both DIUs and DDUs can be considered,
thus, providing a general framework for optimization of GES.
Specifically, the main contributions of this manuscript are threefold:

i) Modeling: We propose a modified baseline model and detailed
uncertainty description with DIUs and DDUs of GES. Compared
with the model from [9], the proposed GES model incorporates
time-varying and rate-limited properties and considers four common
device types where parameters can be obtained by a data-driven ap-
proach [14]. For the uncertainty description, we consider three types
of DIUs (on-off state probability, parameter identification errors and
uncertain baseline consumption) and two types of DDUs (available
SoC bounds affected by incentive price and response discomfort).

ii) Methodology: Two tractable reformulations are proposed to
effectively solve the CCO with DDUs by decoupling decisions and
uncertainties. For DDUs with general but incomplete knowledge of
distribution, a robust approximation approach is introduced to obtain
conservative results based on the maximum value of the unknown
inversed CDF, by different versions of Cantelli’s inequality. For
specific distribution of DDUs, an iterative algorithm allows reducing
the optimality gap, while using the robust approximation value as a
starting point. The iterative algorithm is also guaranteed to converge
to the optimum within a nonlinear (convex) DDU framework.
Three acceleration methods are further described to improve the
computational performance of the proposed algorithms.

iii) Numerical study: We introduce two new reliability indices,
loss-of-response probability and expected response energy not

served to assess the effectiveness and practicality of different
strategies and the consequence of overlooking various types of DIUs
and DDUs in the real-time dispatch. The case study shows that the
proposed models and methods substantially outperform previous ap-
proaches in terms of the real-time response reliability and economy
due to (1) reduced incomplete knowledge of DIUs via data-driven
parameter identification, (2) incorporating DDUs in constraints,
which effectively reduces the penalty cost of response losses and
improves availability and performance of coordinated GES units.

The remainder of the paper is organized as follows. The modified
baseline model of GES is proposed in Section II. Uncertainty
modeling with DIUs and DDUs is presented in Section III. CCO
under DIUs and DDUs, as well as two reformulation methods, are
proposed in Section IV. Numerical studies based on real-world data
are provided in Section V to illustrate comparative performance.
Extensions of the proposed model are discussed in Section VI.
Finally, conclusions are summarized in Section VII.

II. BASELINE MODEL OF GENERIC ENERGY STORAGE

The basic model of GES initially presented in [9] is extended
herein for four types of commonly used energy resources, i.e., BES,
inverter air-conditioner (IVA), and fixed-frequency air-conditioner
(FFA), and EV. This manuscript extends the basic GES model to
incorporate time-varying and ramp-rate properties as shown in (1a)-
(1f). Constraint (1a) defines the relationship between charging
and discharging actions, SoC, and additional energy input terms
from baseline consumption. The newly-introduced constraint (1b)

limits the charging/discharging ramp rates on changes in SoC. This
constraint is equivalent to the constraints (1e-1f) for BES-GES and
EV-GES. While for TCL-GES, it represents the limitation on the
changes in the temperature (SoC is equivalent to the state of temper-
ature for TCL-GES). Constraint (1c) represents time-varying upper
and lower bounds on SoC. Constraint (1d) ensures a sustainable
energy state for the GES over time. Constraints (1e) - (1f) limit the
upper and lower charging and discharging actions. Since sufficient
conditions are satisfied (i.e., charging price (“-”) is lower than
discharging price (“+”), the complementary constraint for charging
and discharging is relaxed and has been removed from model [25].
GES Constraints: 8t2⌦T , 8i2⌦S

SoCi,t+1=(1�"i)SoCi,t+⌘c,iPc,i,t�t/Si (1a)
�Pd,i,t�t/(⌘d,iSi)+↵i,t

�SoCi,RDSoCi,t+1�SoCi,tSoCi,RU (1b)
SoCi,tSoCi,tSoCi,t (1c)
SoCi,T =SoCi,0 (1d)
0Pc,i,tP c,i,t (1e)
0Pd,i,tP d,i,t (1f)

In the above, ⌦T and ⌦S are sets of time periods and GES units,
respectively. Subscripts i and t define GES unit and time period,
respectively. Decision variables Pc,i,t and Pd,i,t are the charge,
discharge power, which are the additional power actions besides
the baseline consumption P

B
i,t. Variables SoCi,t and �t define

SoC and time-step. Parameters P c,i,t and P d,i,t are the maximum
charge and discharge ratings, respectively, while SoCi,t and SoCi,t

are the upper and lower SoC bounds, respectively. Up and down
ramp rate for changes in SoC are given by SoCi,RU and SoCi,RD.
Parameters ⌘c,i and ⌘d,i are the charge and discharge efficiency,
while "i and Si are the self-discharge rate and energy capacity.
The newly introduced ↵i,t are specialized for TCL and EV as the
additional SoC changes from baseline consumption.

The relationship between modeling parameters and physical
parameters of each energy resource type is summarized in Table I.
Thermal capacity, thermal resistance, and conversion efficiency
of TCL are given by C, R, and K, while T

in
t and T

in
t define the

upper and lower indoor temperature. These parameters can be
obtained by data-driven methods (i.e., load decomposition and
parameter identification) [14]. The transformation of TCLs into
GES begins with the thermodynamics of a 1st order equivalent
thermal parameter (ETP) model, and the difference between IVA
and FFA lies in the control mode and power property The proof
of the transformation of a TCL and EV to a GES is provided
in [26]. Note that the different device types can beget different GES
parameters. For instance, the self-discharge rate " is usually ignored
for BES, but is not negligible for other GES types. In addition, most
of the parameters are constant for a BES, but time-varying for other
GES types, e.g., power and SoC bounds, addition SoC changes:
"SoC

B
t for TCLs and �SoC

B
t for EVs.

III. UNCERTAINTIES IN GES OPERATIONS

To capture the effect of exogenous and endogenous uncertainties,
this section defines three types of DIUs and two type of DDUs in op-
erations of GES. For time-independent uncertainty, the uncertainty is
affected by states and decisions at the current time only, and denoted
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TABLE I
MAPPING GES MODEL PARAMETERS TO PHYSICAL RESOURCES

GES model Physical Physical Physical
parameters BES TCL (IVA/FFA) EV

SoCt SoCt
T

in�T in
t

T
in�T in

SoCt

P c,t P c P�PB
t P c�PB

c,t

P d,t P d PB
t �P P d�PB

d,t

SoCt SoC
T

in�T
in
t

T
in�T in

SoCt

SoCt SoC
T

in�T in
t

T
in�T in

SoCt

" " 1�e��t/RC "

S S
�t(T

in�T in)

KR(1�e��t/RC)
S

⌘c/d ⌘c/d 1 ⌘c/d

↵t 0 (1�e��t/RC)SoCB
t �SoCB

t

as “single time”. In contrast, “across time” refers to the case where
the uncertainty is affected by states and decisions over multiple time
instants. While the results are general, we use the example case of
TCL assets to guide the presentation of concepts and methods.

A. Three types of decision-independent uncertainties

(a) On-off State Probability (DIU, Single Time)

GES units usually only respond to DR commands when in
on-state. Under conventional operations, local control logic defines
the on-off transitions, which means that a GES unit is not always
responsive to DR commands. Thus, the probability distribution of
on-off state !i,t can be modeled as a Bernoulli distribution:

f(!i,t)=

(
pi,t !i,t=1

1�pi,t !i,t=0
, 8t2⌦T ,8i2⌦S (2)

i.e., with the on-state probability pi,t (for unit i and time t) obtained
from historical data. This DIU clearly affects the reliability of the
response of GES units.
(b) Parameter Identification Errors (DIU, Single Time)

Identification errors of GES parameters (e.g., R, C, T
in

, T in,
P , P for TCL units)are inherent to the process since we employ a
simple low-order, lumped model that ignores higher-order realities.
The distribution of identification errors strongly depends on both the
data and data-driven method. Without loss of generality, parameter
identification errors can be modeled with a truncated normal
distribution based on the data-driven results in [14], [27]:

⇠i⇠N (µ⇠i,�⇠i,a⇠i,b⇠i), 8⇠i2⌦E, (3)

where ⇠i is a uncertain GES parameter. For a TCL unit, the model
parameters are given by ⌦E = {Ri,Ci,T

in
i ,T

in
i ,P i,P i},8i 2⌦S.

The mean and standard deviation of parameters are given by µ⇠i

and �⇠i , and ⇠i lies within interval [a⇠i,b⇠i]. The parameters of the
distribution can be obtained after analysis of historical ground-truth
data and using a parameter estimation approach. However, for
convenience, prior knowledge can also be used to qualify them (e.g.,

the identification error is generally within 10% of mean value). This
DIU mainly affects GES power and SoC bounds collated in Table I.
(c) Uncertain baseline consumption (DIU, Single Time)

The distribution of GES baseline consumption can be determined
from historical data. Based on the ground-truth data analysis [14],
a lognormal distribution is employed to model this uncertainty:

P
B
i,t⇠LN (µPB

i,t
,�PB

i,t
), 8t2⌦T ,8i2⌦S. (4)

The mean and standard deviation of baseline consumption are
denoted by µPB

i,t
and �PB

i,t
, while the baseline SoC is denoted by

SoC
B
i,t and related with baseline consumption. All the parameters

characterising DIUs(c) can be obtained after statistic analysis of his-
torical data. This DIU mainly affects the power bounds of GES units.

As shown, DIU(a)-(c) can capture different exogenous
uncertainties, however, to characterize endogenous uncertainties
we present two types of DDUs next.

B. Two types of decision-dependent uncertainties

(a) Available SoC bounds Expansion Effect Driven by Incentive

Price (DDU, Single Time) and (b) Contraction Effect Driven

by Response Discomfort (DDU, Across Time)

The ability of a GES to actively deliver grid services with
sufficient capacity levels is another important uncertainty to
consider. Physically, SoC is bounded by known limits that satisfy
SoCt 2 [0,1] as marked with blue lines in Fig. 1. In addition, the
available bounds of SoC are strictly contained within the interval
(0,1) and time-varying, due to the uncertain baseline consumption
(i.e., DIU (b-c)). This is illustrated in Fig. 1 in green rainbow lines.

However, incentives and discomfort will further affect the avail-
able SoC bounds, which comes as a trade-off between discomfort
(i.e., disutility sustained during grid services) and expected earnings
(i.e., incentives or prices) from managing a GES. Thus, the available
SoC bounds are dependent on (past) grid service commands. Specif-
ically, the decision-dependent bounds will expand and contract

based on incentive payments and discomfort, respectively, as shown
with red rainbow lines in Fig. 1. In particular, the response of a GES
to a specific incentive or discomfort is uncertain and begets DDUs.

Thus, a general structure that characterizes these two opposing
DDUs (i.e., expansion and contraction) is presented next in (5):

SoC
DDU
i,t =h(g(SoC

DIU
i,t ,c

S
c,i,t), �

U
i RDi,t) (5a)

SoC
DDU
i,t =h(g(SoC

DIU
i,t ,c

S
d,i,t), �

L
i RDi,t) (5b)

RDi,t=�

tX

⌧=1

�
Pc,i,⌧/P c,i+Pd,i,⌧/P d,i

�
/T (5c)

+(1��)max{|SoCi,t�SoCB,av
i,t |�SoCDB

i,t /2,0},

where g is a non-decreasing function of the GES incentive payment
(charging/discharging prices, cS

c/d,i,t) and represents the expanded
SoC bounds without contraction effects. Functionh is monotonically
decreasing in response discomfort RDi,t associated with different
discomfort-aversion factors, �L

i � �i
U � 0. The GES discomfort

is modeled in (5c) as a weighted normalized function of disutility
and discomfort. The right part of equation represents the relative
response intensity affecting disutility, while the right-most part
describes the absolute deviation of actual SoC from average baseline
SoC, which is inspired by the symmetric thermostat of a TCL cen-
tered by the comfortable status. This function can be generalized by
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incorporating a discomfort deadband, SoCDB
i,t , around the average

baseline SoC, SoCB,av
i,t within which no discomfort is accumulated.

The bounds of deadband is named as comfortable SoC bounds
(i.e., SoCB,av

i,t ±SoCDB
i,t /2 ). Finally, the total response intensity and

discomfort are combined as a convex combination with parameter�.
The comparison of the physical, DIUs, DDUs, and comfortable

SoC bounds (SoC
C
i,t and SoC

C
i,t) are shown in Fig.1. Since the

focus herein is CCO, the uncertain SoC bounds are illustrated with
rainbow color to represent the different probability levels. Remarks
on DDU intuition, structure, probability distributions follow next:
Remark (Intuition on incentives and discomfort). During the
expansion stage, the effects of the incentive outweighs the
discomfort, however, discomfort levels are increasing. Thus, the
mode of the upper available DDU bound, SoC

DDU
i,t , shifts from

g(SoC
DIU
i,t ,c

S
c,i,t) to upper available DIU bound SoC

DIU
i,t . Similarly

holds for the lower available DDU bound, SoCDDU
i,t , and lower

available DIU bound, SoCDIU
i,t . During the contraction stage, when

incentive effects are dominated by discomfort effects, discomfort
levels are decreasing, i.e., the mode continues to decline from
SoC

DIU
i,t and SoC

DIU
i,t to SoC

C
i,t and SoC

C
i,t, respectively.

Remark (Structure). The practical SoC bounds can be inferred
from the over/under-response of GES units. And, via comparison of
practical and theoretical SoC bounds, the shape and parameters of g

and h can be obtained by analysis and estimation based on historical
data. More generally, g could be an affine function based on price
elasticity function [4] and h could be a polynomial function. In
Section V, we will propose a convex and specific structure for DDUs.
Remark (Probability distributions). Functions g and h are also
associated with probability distributions, which can be determined
from real-world actions and using a Kolmogorov-Smirnov test
for instance. Specially, truncated normal distributions can be used
to describe the expansion associated with incentive payment, and
unimodal distributions can be used to describe the contraction
associated with response discomfort.

Fig. 1. Visualization of DIUs and DDUs in SoC bounds.

The scope of the uncertainties in the proposed ED problem are
limited to the options presented above with DIU(a-c) and DDU(a-b).
That is, other uncertainties, such as annualized capacity degradation,
is deemed outside of scope and is not included in this paper. Next,
we incorporate DIU(b-c) and DDU(a-b) into ED formulation, while
DIU(a) is the focus of Section VI.

IV. CHANCE-CONSTRAINED OPTIMIZATION

UNDER DIUS AND DDUS

A. Original Problem Formulation

In this paper, we consider DA-ED problem for a microgrid. The
microgrid system operator aggregates GESs assets (e.g., TCL-GES
and BES-GES), RES assets (e.g., wind and solar generation), and
conventional loads. The goal of the system operator of the microgrid
is to supply a DA dispatch of the assets to minimize operational
costs while maintaining the power balance and considering various
DIUs and DDUs. The full formulation is detailed next. First,
consider the objective function:

min
y

G(y,z)=
X

t2⌦T

(C
S
t +CG

t ) (6)

where

C
S
t =

X

i2⌦S

(c
S
d,i,tPd,i,t+cS

c,i,tPc,i,t)�t (7a)

C
G
t =c

G
t P

G
t �t (7b)

The operational cost includes the incentive cost of GESs CS
t and

the cost of power bought from the grid C
G
t . The power imported

from the grid is denoted P
G
t . The DA time of use (ToU) price

is given by c
G
t . The marginal costs of PV and WT assets are

zero. The set of uncertain parameters described in Section III
is given by z, while the set of decision variables is given by
y :=

�
Pd,i,t,Pc,i,t,P

G
t ,SoCi,t,RDi,t

 
. Next, we will present the

constraints of the ED optimization problem.

GES chance constraints: 8t2⌦T , 8i2⌦S

P(Pc,i,tP c,i,t)�1�� (8a)
P(Pd,i,tP d,i,t)�1�� (8b)
P(SoCi,tSoCi,t)�1�� (8c)
P(SoCi,tSoCi,t)�1��, (8d)

Chance constrained power balance: 8t2⌦T

P
 
X

i2⌦R

P
R
i,t+

X

i2⌦S

(Pd,i,t�Pc,i,t)+P
G
t �PL

t

!
�1��, (9)

where P
R
i,t and P

L
t are the stochastic RES and load powers,

while RES includes wind and solar generation from RES set ⌦R.
Note that constraints (8-9) represent chance constraints that each
individually should be satisfied simultaneously with confidence
level 1 � �. While constraints in (8) focus on uncertain power
and energy limits of the GES, constraint (9) captures uncertainty
associated with the power balance constraint to ensure reliable
power supply in the (copper-plate model of a) microgrid. More
importantly, the two types of chance constraints can adopt different
confidence levels for different reliability preferences [28].

Other constraint: 8t2⌦T

0PG
t P

G
, (10)

where P
G

is the maximum power import from the grid.
It is noted that in this manuscript, the power flow constraints

are overlooked within the dispatch model since the microgrid
network is generally designed with high reliability and large
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redundancy, which is sufficient to deliver the necessary energy
from RES, GES, and the grid when it is needed. Thus, we only
adopt the power balance constraint (9), which is akin to a copper
plate model and commonly used in the relevant studies [29], [30].
Further extensions to multi-microgrids or distribution systems
would require explicitly including the AC power flow constraints or
their convex counterparts [31], [32] to ensure a network-aware and
reliable dispatch of the GES fleet. Next, we present the complete
problem formulations with DIUs and DDUs.

Complete CCO-DIUs & CCO-DDUs formulations:

The overall problem with DIUs and DDUs can be formulated as:

min
y

G(y,z)

s.t. (1a-1f), (8a-8d), (9-10), (CCO-DIUs) (11)
(5a-5c) (CCO-DDUs)

The difference mainly lies in the consideration of DDUs (5a) - (5c)),
besides traditionally considered DIUs. The CCO-DIU is a convex
optimization formulation, however, the CCO-DDU is only
guaranteed to be convex for specific structure of DDUs and certain
conditions. This proof is developed in Appendix A.

B. Problem Reformulation

(a) Chance-constrained reformulation under DIUs:

Without using scenario-based methods, chance constraints (8a)-
(8d), (9) admit a deterministic and tractable reformulation. We
employ the standard reformulation from [11], and yields:

Pc,i,tµP c,i,t
�F�1

P c,i,t
(1��)�P c,i,t

(12a)

Pd,i,tµP d,i,t
�F�1

P d,i,t
(1��)�P d,i,t

(12b)

SoCi,tµSoCi,t
�F�1

SoCi,t
(1��)�SoCi,t

(12c)

SoCi,t�µSoCi,t
+F�1

SoCi,t
(1��)�SoCi,t

(12d)
X

i2⌦R

(µPR
i,t
�F�1

PR
i,t
(1��)�PR

i,t
)+PG

t +
X

i2⌦S

(Pd,i,t�Pc,i,t)

�µPL
t
+F�1

PL
t
(1��)�PL

t
(12e)

Where normalized inverse cumulative distribution function F
�1

can be obtained by Monte Carlo sampling (MCS) [33] of any kind
of distribution (e.g., normal distribution, beta distribution).
(b) Chance-constrained reformulation under DDUs:

(R1) Robust Approximation: For reformulation under DDUs,
the value of F

�1
(1 � �, y) is unknown before optimization.

Thus, generalizations of the Cantelli’s inequality can be used to
estimate the best probability bound (i.e., the maximum value of
F

�1
(1��,y)) according to different general information about the

distribution, with both mean and variance. The maximum values
of F�1

(1��,y) for six widely used distributions are derived and
listed in Table II and the visualization is shown in Fig 2. These
can be readily employed in any CCO-DDUs problems without
complete knowledge of DDUs distribution. The supporting proofs
are provided in Appendix B. It is observed that the value decreases
with increasing security levels. Besides, the first 4 approximation
types listed in Table II relies on less information about the type of
distribution at hand. Consequently, they lead to more conservative
approximations (i.e., as a higher value forF�1

(1��,y)), which will

further lead to higher security levels and tighter bounds. Since we do
not know the exact distribution of DDUs in advance, but at least we
can obtain the approximate shape of the distribution (e.g., unimodal
or symmetric, etc.) through some live measurements or prior knowl-
edge. For instance, if the unknown distribution is a Beta-like distribu-
tion, the approximation type for a unimodal distrtibution (3rd entry
in Table II) can be used to replaceF�1

(1��,y) in the reformulation,
and CCO-DDUs are then reduced to CCO-DIUs. This eventually
yields a robust reformulation that is less conservative than using that
without any distributional assumption (first entry in Table II). Noted
that robust approximations can generate over-conservative solutions
to CCO-DDUs problems, but at least they guarantee that the prac-
tical performance of the response lies within the required security
level. And, it is especially applicable for the black-start of system
without sufficient historical data of GES. To optimize with specific
g,h distributions for DDUs, we next present an iterative algorithm.

(R2) Iterative Algorithm: We propose an iterative algorithm in
Algorithm 1 for more precise structure (known function and distribu-
tion of g and h), if sufficient live measurement/data about GES are
provided. First, the robust reformulation (R1) is used as the starting
point of F�1

(1� �,yk) which generates the most conservative
result y0. Afterward, the iteration begins with the updated value of
F

�1
(1��,yk) to obtain the updated strategy yk. And the updated

strategy yk is further used to update the distribution of DDUs. Then,
the value of F�1

(1��,yk+1) is computed via MCS of the updated
distribution. The iterations stop when the the convergence criterion
is met. The convergence of the iterative algorithm is guaranteed by
the convexity of CCO-DDUs (exactly the convexity of the mean
function of DDUs), also shown in Appendix A.

Fig. 2. Visualization of inverse CDF with six types of distribution.

V. NUMERICAL ANALYSIS

The system is set up with ground truth data obtained from the
Pecan Street dataset and used for the data-driven analysis of 100
TCL units as GES units. Historical data of RES unit and demand
are collected from the urban distribution area of Jiangsu province,
China in 2020. The tiered electricity price of Jiangsu province,
China, is used for day-ahead electricity price. All the data used
in this paper are publically available [26]. Optimization problems
are coded in MATLAB with YALMIP interface and solved by
GUROBI 9.5 solver. The programming environment is Core
i7-1165G7 @ 2.80GHz laptop with 16GB RAM.

A. Baseline Results Compared with Different Models

We next compute and compare the solutions of three test models
(M1-M3) that differ in how they incorporate uncertainty in the
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TABLE II
APPROXIMATION OF WIDELY USED NORMALIZED INVERSE CUMULATIVE

DISTRIBUTION

Type & Shape F�1(1��,y)max �

1) No distribution assumption (NA)
p

(1��)/� 0<�1

2) Symmetric distribution (S)
p

1/2� 0<�1/2

0 1/2<�1

3) Unimodal distribution (U)
p

(4�9�)/9� 0<�1/6
p

(3�3�)/(1+3�) 1/6<�1

4) Symmetric & unimodal
distribution (SU)

p
2/9� 0<�1/6

p
3(1�2�) 1/6<�1/2

0 1/2<�1

5) Student’s t distribution (ST) t�1
⌫,�(1��) 0<�1

6) Normal distribution (N) ��1(1��) 0<�1

Algorithm 1 Iterative algorithm for CCO-DDUs

Input: Probability level �, convergence criterion �, deterministic
and reformulated random parameters under DIUs.
Output: Decision variables y and cost function F(y,z).
Step 1 - Initialization:

Set k=0, and F
�1

(1��,y0) with robust reformulation value
referred to Table II. Compute CCO-DDUs with F

�1
(1��,y0)

to obtain initial value of y0. Use y0 to update F�1
(1��,y1) via

MCS. Calculate ✏k=
��F�1

(1��,y1)�F�1
(1��,y0)

��.
Step 2 - Iteration:

While ✏k>� do

k k+1

Compute CCO-DDUs with F
�1

(1��,yk) to obtain yk.
Use yk to update F�1

(1��,yk+1) via MCS.
Calculate ✏k=

��F�1
(1��,yk+1)�F�1

(1��,yk)
��.

end

Step 3 - Return: y=yk, G(y,z)=G(yk,z)

optimization formulation:
(M1) Deterministic LP: this deterministic baseline model of GES
was proposed in [9] and considers no uncertainties and no time-
varying parameters (i.e., assumes large SoC bounds and averaged
exogenous conditions), rendering an LP with constant parameters.
(M2) CCO-DIUs: this stochastic baseline model uses CCO with
DIUs, which is common in the literature [11], [15], and yields a
decision-independent CCO problem with varying, stochastic SoC
bounds.
(M3) CCO-DDUs: this CCO model illustrates the novel convex
DDU structure along with different DIUs. The formulation then
reflects a decision-dependent CCO problem.

We first adopt a convex structure, as shown in (13) below,

g=

(
(SoC

PY
i,t�SoC

DIU
i,t )N (µgU,�g)+SoC

DIU
i,t

(SoC
PY
i,t�SoCDIU

i,t )N (µgL,�g)+SoC
DIU
i,t

(13a)

h=

(
(SoC

C
i,t�QgU)LN (µhU,�h)+QgU

(SoC
C
i,t�QgL)LN (µhL,�h)+QgL

(13b)

µgU/L =c
S
c/d,i,t/c

S, µhU/L =�
U/L
i RDi,t, (13c)

Where normal distribution g and lognormal distribution h describe

the DDUs. The quantile function of g is defined as Qg. We set
c

S
=1.5, cS

c,i,t=0.3, cS
d,i,t=0.6, �U

i =3, �L
i =6, �g =0.5, �h=0.1,

�= 0.7. The different settings of prices and discomfort aversion
factors beget trade-off between charging and discharging actions. It
is since that, compared with charge flexibility, discharge flexibility
is more required to reduce peak load and to maintain power balance,
so that higher price are set for discharge demand. Hence, occupants
will feel more uncomfortable with higher setpoint temperature
rather than lower ones which results in higher discomfort aversion
for lower SoC bound. The ToU pricing is set to be 0.5-0.9-1.4
(CNY/kWh) while the confidence level for CCO is set to be 95%.

Comparisons of M1-M3 are shown in Fig. 3, while Table III
summarizes the results. Great difference has been observed between
M1-M3 concerning the SoC distribution and charge/discharge power.
GES units discharge for most of the time and maintain the lowest
SoC during peak load in M1, while the discharge response is reduced
evidently after 16 h in M2 & M3 to guarantee the available lower
SoC bound, which results in a charging action at the end of dispatch.
In terms of optimality, M3 operations represent the highest costs,
because a trade-off is exacted between comfort and revenue. The
other optimization results mainly focus on the difference in SoC
bounds shown in Fig. 4 (a). It is observed that SoC bounds are
reduced in M2 because of compressed temperature preference (i.e.,
customers’ behavior), while SoC is limited within [0,1] in M1 and
significantly over-estimate the capability of GES. Additionally, the
difference between SoC bounds are shown in Fig. 4(b). Compared
with DIU bounds, the expansion effect is witnessed in M3 before
11 am and then followed with contraction effects. And the average
expansion and contraction percentage for (Upper and lower) bounds
are ([8.6,37.0]%,[-5.9,-42.0]%). It’s observed that the accumulated
discharging actions increase the discomfort and reduce the expansion
effect in the morning, then the increased contraction effect mainly
results from the SoC-based discomfort in the afternoon. The
recovery of SoC to the comfortable bounds causes the reduced
contraction effect in the evening. But the deviation from comfortable
bounds increases contraction effect at night peak load period.

TABLE III
OPTIMIZATION RESULTS WITH DIFFERENT MODELS AND UNCERTAINTIES

Metric M1 M2 M3

CostDA (CNY) 2034.6 2727.6 2799.7
P

Pd,i,t�t (kWh) 750.6 337.9 164.9
P

Pc,i,t�t (kWh) 35.7 60.5 40.3
P

PG
t �t (kWh) 1495.1 2288.8 2443.2

Moreover, it is observed that SoC changes are not consistent with
grid response because different power actions exist (e.g., grid net
charge, energy losses from self discharge, additional energy input
from baseline consumption). Different power actions of M3 are illus-
trated in Fig. 5, where self discharge changes with SoC and is always
negative. Additional energy input is always positive and calculated
based on baseline SoC. And it is clear that the residual flexibility
and capacity for grid response is quite limited compared with other
energy actions, which has been overlooked in prior work [9].
B. Benefit from considering DDUs

1) Reliability performance: At first glance, the results of M1
and M2 appear superior to M3. This is due to M1 and M2 having
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Fig. 3. Comparison between model (1) & (2): (a) SoC distribution, boxplot:
distribution of individual GES units, thick line: mean value of GES portfolio, (b)
aggregated charge or discharge power, and (c) power from grid.

Fig. 4. (a) Comparison between different SoC bounds and (b) expansion or
contraction effect compared with DIU bounds

greedy utilization of flexibility and low day-ahead operational costs.
However, the predicted results of M1 and M2 are unlikely to be
realized in practice due to a lack of reliability of dispatch and the
unavailability of GES units [10], [24]. To capture these practical
shortcomings of M1 and M2, we introduce two reliability indices in
this paper to assess the difference between predicted strategies and
real actions: i) loss of response power probability (LORP) and ii)

Fig. 5. Comparison between different parts of power actions of M3.

expected response energy not served (ERNS). The basic idea is to
compare the difference between practical SoC bounds (calculated
with DDUs effect that is observed in real-time operations) and
predicted SoC bounds from the different models. The indices
are defined in (14), where Xk|y,z represents the reliability loss
events under strategy y and uncertainty z. R(.|.) is the function of
response energy losses and can be calculated by the deviation of
SoC strategy from the practical SoC bounds.

LORP=

X

k

P(Xk|y,z) (14a)

ERNS=

X

k

P(Xk|y,z)R(Xk|y,z) (14b)

Fig. 6 shows the reliability performance comparison between
M1-M3 with respect to SoC bounds and reliability indices. Practical
SoC bounds are illustrated by gradient colors to represent uncertain
bounds with different probability level (darker for higher probability
level). Compared with theoretical SoC bounds, the practical ones
contracted gradually in M1-M2 and end with few flexibility to
response. For M1, we observe that the shortages cover a period of 24
hours with a peak at 60% of capacity. While for M2, the observed
shortage is reduced to a duration of 14 hours with a maximum
capacity of 20% only. This provides a convincing explanation of
the response unavailability of DR, especially during the peak load
period using previous greedy strategies. While theoretical bounds
are a little more conservative than practical ones (without shortage
in capacity) in M3 using robust approximation method. In terms of
reliability indices, lower reliability (i.e., higher LORP & ERNS) are
revealed in M1-M2 due to the overestimation of the feasible region.
The negative value of ERNS represents the under-response of GES
units during the expansion stage, while the positive one represents
the over-response of GES units during the contraction stage.
Moreover, the expected reliability results shown in Table IV indicate
that the reliability indices are constant (LORP: 0.6, ERNS: 30.6) for
M1 regardless of the security level, while the reliability performance
of M2 and M3 worsen for operations with a lower security level.
And the reliability indices using M1/M2 are far beyond the security
level 1��, while results of M3 are maintained within the security
level because we incorporate DDUs into the formulation of M3.
In practice, decision-makers would determine � according to their
risk preference, which is a trade-off between costs and risks.

2) Penalty of response unavailability: Additionally, the real-time
penalty costs (CostRT) and total costs (CostTC) are compared.
Without loss of generality, the real-time market price for over-
response/under-response is assumed to be 0.7/1.3 times of the
day-ahead ToU price. It demonstrates that the over-response will
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Fig. 6. Reliability performance comparison with respect to (a) practical and
theoretical SoC bounds (95%) and (b) ERNS.

TABLE IV
RELIABILITY AND ECONOMIC PERFORMANCE OF DIFFERENT MODELS AND

PROBABILITY LEVEL

� Indices M1 M2 M3

0.05
LORP / ERNS 0.3 / 12.0 0.0 / 0.0

CostRT / CostTC
LORP 0.6 365.6 / 3039.1 0.0 / 2799.7

0.25
LORP / ERNS ERNS 30.8 0.4 / 14.0 0.1 / 3.0

CostRT / CostTC CostRT 1057.9 440.0 / 2909.0 0.0 / 2799.7

0.45
LORP / ERNS CostTC 3088.3 0.4 / 15.2 0.2 / 3.6

CostRT / CostTC 487.4 / 2810.4 0.0 / 2407.7

cause a 30% reduced revenue, while the under-response should
undertake the 30% penalty. Note that the penalty cost only involves
the contribution of the response unavailability of GES, while the
real-time corrective dispatch of RES and GES are not within the
scope of our research. Compared with the relatively lower day-ahead
operational costs (CostDA), the higher penalty and total cost are
observed for M1 & M2. Moreover, the penalty costs account for
nearly 34% and 15% of the total cost for M1 & M2, respectively. On
the contrary, operations with M3 suffers few (nearly zero) penalty.

In summary, the improved reliability and overall economic
performance illustrates how optimization under DDUs can provide
an admissible strategy, while improving the availability to deliver
of grid services and reducing penalty costs.

C. Flexibility with Different Dispatch Modes and DDUs Structure

The increasing contraction effect on SoC bounds (especially
during peak load time) shown in Fig. 4 indicates that it is not
suitable for the system operator to fully leverage the flexibility
of GES units throughout the day, but it may be better to use GES
for short-time period to reduce the contraction effect. Thus, in this
subsection, we consider additional dispatch modes: (D1) all-day
dispatch, and (D2) peak-time dispatch (7 pm-10 pm). In addition,
different RD structures are investigated for different GESs types.
For example, BES owners wish to maximize unit lifetime, which
emphasizes the disutility function (F1), while TCL and EV units
employ both the disutility and SoC-based discomfort. TCL units
may have symmetric levels of SoC-based discomfort, which

can be modeled with absolute value or dead-band function (F2).
However, EV units just need to meet a minimum SoC threshold
and discomfort, thus can be modelled linearly (F3).

Herein, we only change the dispatch time duration and
discomfort function while the other factors remain unchanged from
the baseline case study. The comparison of flexibility and DDUs
expansion/contraction effects are shown in Table V. Specifically,
deviated from the SoC bounds under DIUs, the average expansion
(EP) and contraction (CT) of the upper and lower SoC bounds are
denoted as EP, CT and EP, CT, respectively. It is observed that
BES units outperform other GES units in terms of flexibility and
cost due to BES units being relatively unaffected by DDUs. And
the symmetrical effect of SoC-based discomfort inherently limits
the flexibility utilization of TCL units and makes TCL units least
economic in dispatch. More importantly, for typical days with
night peak time, discharge quantity and contraction effect are two
decisive factors, while charge actions and expansion effect are not
relatively important because they rarely contribute to the dispatch.
And operations with more discharge actions (e.g., operations in F1)
and less contraction effect (e.g., operations in D2) tend to perform
more optimized. Finally, GESs with asymmetric SoC-preference
(e.g., BES and EV) and short-time period dispatch (e.g., peak load
shaving and emergency power supply) are better suited to retain
larger available capacity of GES, thus, improving DR performance.

TABLE V
OPERATIONS WITH DISPATCH MODES AND DDUS STRUCTURE

DDUs
Structure

Dispatch
Mode

CostTC

(CNY)

P
Pd,i,t�t
(kWh)

P
Pc,i,t�t
(kWh)

EP
(%)

EP
(%)

CT
(%)

CT
(%)

F1 D1 2772.4 187.8 31.7 9.4 37.9 -4.2 -26.7
D2 2749.2 174.3 0.8 0.0 7.5 -0.4 -0.7

F2 D1 2799.7 164.9 40.3 8.6 37.0 -5.9 -42.0
D2 2766.5 152.7 0.9 2.6 28.8 -3.1 -13.3

F3 D1 2785.4 171.2 32.1 9.4 39.8 -4.8 -31.2
D2 2755.8 167.1 1.4 0.2 13.2 -1.8 -5.4

D. Computational performance of the convex reformulation

In this subsection, we first investigate the approximation error
of the robust reformulation method based on the different approx-
imation types listed in Table II. If the distribution of DDUs obeys
Log-normal distribution, the cases when no distribution assumption
(NA) is made about the distribution and when a unimodal (U) shape
is assumed can be employed in the robust reformulation, because the
Log-normal distribution is unimodal, resulting in the operational cost
of 2860.5 and 2799.7, respectively (i.e., 2.8% and 0.6% optimality
gap compared with the result of the practical distribution: 2781.9).
While if the distribution of DDUs obeys normal distribution, the
first four approximation types can all be employed in the robust
reformulation because the normal distribution is unimodal and
symmetric shape, resulting in the operational cost of 2860.5, 2811.4,
2799.7, and 2787.5, respectively (i.e., 2.9%, 1.1%, 0.7%, and 0.2%
optimality gap compared with the result of the practical distribution:
2780). This demonstrates that having less information about the
distribution, requires more conservative assumptions, which results
in larger optimality gaps. In particular, with no assumption on the
distribution, the solution is very conservative as evidence by the
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considerable optimality gap. And it is worth mentioning that the
assumed distribution generally deviates from the practical distribu-
tion, but the practical result will be distributed within the range of
the result with no distribution assumption (the most conservative
one) and normal distribution assumption (the least conservative one).
Thus, the unimodal distribution (U) is recommended since it is the
trade-off option to avoid either large positive or negative optimality
gap and most of the distribution is unimodal. Furthermore, in Fig. 7,
numerical sensitivity analysis is performed to compare the optimality
gap for different standard deviations (�) and DDU probability levels
(�) for the Lognormal distribution. Interestingly, the numerical
analysis shows that the optimality gap improves with larger � at
first but then it increases significantly for �>0.15. Furthermore, it
is found that that the relationship between the optimality gap and
the distributions’ standard deviation is almost linear, which can help
decision-makers map levels to optimality if the prior knowledge of
GES is insufficient to obtain the accurate structure of DDUs.

Fig. 7. Sensitivity of gap with probability level and standard deviations

Moreover, the convergence of iterative algorithm to optimality is
shown in Fig. 8 for two common types of distributions (Beta and
Lognormal) applied to h. It can be seen that the iterative algorithm
converges within four iterations while maintaining the same starting
point from the robust reformulation based on the unimodal (U)
shape assumption. In addition, a comparison of the computational
performance for these two reformulated methods is shown in
Table VI with different DDUs structure and distribution, where both
distributions use the robust value based on the unimodal (U) shape
assumption. The computational complexity depends on both the
complexity of the response discomfort function and the distribution
of DDUs. Specially, the updating step for both the inverse CDF
and the distribution parameters accounts for a substantial part of the
computation time. For instance, more time is required when using a
Beta distribution and an absolute value function for the discomfort
function of TCLs. From Table VI, it is clear that R1 outperforms R2
in terms of solve time, but with a (slightly) higher cost (i.e., more
conservative results). That is, since the optimality gap between the
two reformulation methods is within 1%, R1 can be used extensively
even if the DDU’s distribution is unknown.

Finally, to improve the computational efficiency of the two
reformulation methods, please consider the following acceleration
methods:

(A1) Employ GES aggregator: the small-scale distributed GES
units can contribute to microgrid operations via aggregation and
integration of a GES aggregator. A GES aggregator can act as the
coordinator to obtain accurate information of individual units and dis-
tribute heterogenous setpoint command to individual units according

Fig. 8. Convergence performance under Beta and Lognormal distribution (95%)

TABLE VI
OPERATIONS COMPARED WITH DIFFERENT REFORMULATION METHODS

DDUs
Structure

Distribution
Type

R1 R2

CostTC Time CostTC Time
(CNY) (s) (CNY) (s)

F1
Beta

Distribution

2772.4 24.6 2750.0 2751.0
F2 2799.7 211.3 2779.1 6406.7
F3 2785.4 28.0 2764.3 3032.2

F1
Lognormal
Distribution

2772.4 24.6 2752.3 132.1
F2 2799.7 211.3 2781.9 1039.9
F3 2785.4 28.0 2766.6 103.9

to their respective capacity. And this disaggregation can be imple-
mented via either direct load control (each device measured and con-
trolled) or more advanced indirect coordination schemes, e.g., [9].

(A2) Limit the number of iterations: as is shown in Fig. 8,
near-optimal performance can be achieved after just two iterations
for both distributions. This is because after the first update, the value
of F�1

(1��,y) has been adjusted to the updated level of decision
variables rather than using the robust value. Thus, limiting the
number of iterations may not affect the optimality gap significantly,
but can save significant computational effort.

(A3) Revert to robust reformulation: compared with the
(R2) iterative algorithm, the (R1) robust reformulation method
avoids updating the parameter and inverse CDF of DDUs,
which profoundly reduces the computational complexity while
guaranteeing an acceptable optimality gap.

Considering the worst computational performance from Table VI
(i.e., row F2 with the TCL-GES units and the absolute value
function), we apply (A1-A3) for different GES populations
to compare the different acceleration methods. The results are
summarized in Table VII. Clearly, aggregation in method (A1)
outperforms the others with respect to computational effort, because
the aggregated model dramatically reduces the number of decision
variables and constraints from thousands to tens, but it is challenging
for the aggregator to obtain the accurate equivalent aggregated
parameters of the GES portfolio, thus, producing the largest
optimality gap. In this case, a negative gap refers to a more optimistic
result due to the model approximation errors, since the aggregated
model only guarantees the constraints of the portfolio regardless
of individual units. Please refer to [27] for aggregated modeling
and approximation errors analysis. While the other two acceleration
methods (A2 and A3) are helpful to accelerate smaller populations
of GES but should be combined with A1 for larger GES portfolios.
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TABLE VII
OPERATIONS COMPARED WITH DIFFERENT ACCELERATION METHODS

Acceleration
Method

Distribution
Type

100 GES units 1000 GES units

Gap Time Gap Time
(%) (s) (%) (s)

A1
Beta

Distribution

-0.90 27.0 -1.24 28.1
A2 0.04 2113.6 0.04 128802.7
A3 0.74 211.3 0.81 5792.6

A1
Lognormal
Distribution

-0.92 3.8 -1.08 4.0
A2 0.01 471.9 0.02 8845.3
A3 0.64 211.3 0.76 5792.6

VI. DISCUSSION OF EXTENDED PROBLEMS

Compared with deterministic ES, the key challenges to overcome
for broad adoption of stochastic GES in power system operations
include: (i) non-trivial energy losses due to self-discharge and
uncertain baseline consumption; (ii) time-varying parameters and
flexibility; (iii) DIUs and DDUs in SoC bounds; (iv) on-off state
probability due to customers’ behavior. The prior case studies in
Section V accurately mitigates effects of challenges (i-iii), i.e.,
incorporate all the dynamics, time-varying property, DIUs and
DDUs into the GES operational constraints in Eq. (1). However,
it is difficult to incorporate the discrete uncertainties (i.e., challenge
(iv)) into the day-ahead dispatch. Thus, in this subsection, we
further propose two approaches to mitigate challenge (iv).

(S1) - Portfolio with Deterministic Reserve

The on-state probability tends to be quite low especially for
night-time and working hours in the residential sector. So system
operators should participate in DA reserve market to enhance the
security level under the support of deterministic reserve, such as
ES and CPP. For those GES units whose on-state probability is
lower than the security level, deterministic reserves will replace
the unavailable response power of GES units as P

RS
i,t , and the

constraints for deterministic reserves (i.e., power and ramp limits)
are added into the GES operations as (15):

P
RS
i,tPRS

i,t P
RS
i,t (15a)

�PRS
i,RDPRS

i,t+1�PRS
i,t PRS

i,RU (15b)
P

RS
i,t =Pd,i,t�Pc,i,t, (15c)

Where upper and lower power bounds of reserve are denoted P
RS
i,t

and P
RS
i,t , respectively. The up and down ramp rates of reserve are

given by P
RS
i,RU and P

RS
i,RD.

(S2) - Portfolio with Probabilistic Reserve

It should be mentioned that it can be costly to use 100%
reliable reserve for normal grid operations, so herein we explore
probabilistic reserves as an alternative [34]. The requirement of
reliability combination with probabilistic reserve denotes constraint
(16a). And constraint (16b) describes that the price of probablistic
reserve decreases exponentially with its reliability.

(1�pi,t)(1�RRS
i,t)=� (16a)

c
RS
i,t=a

RS
(R

RS
i,t)

bRS

(16b)

Where RRS
i,t is the reliability of probabilistic reserve and c

RS
i,t is the

corresponding price. aRS and b
RS are coefficients of price curve.

Based on the historical data of the residential consumption [26],
the on-state probability of 100 TCL-GES units is analyzed and the
maximum and minimum average on-state probability are 0.99 and
0.83, respectively. The corresponding time periods are 7 pm and 9
am, respectively. Thus, the real-time security level for DR produced
by TCL-GES units can be described as pi,t(1 � �), so system
operators should rely on other reserves to guarantee the system
security requirement (1� �). For reserve price, we set aRS

= 1

(price for 100% reliability), bRS
=2, and we compute the modified

results with different reserves. Results of S1 and S2 shown in Table
VIII are more credible but less economic than just considering
challenges (1-3). It is observed that the power demand of GESs is
reduced and gradually transferred to demand of reserve with the
decrease of security level. Moreover, portfolio with probabilistic
reserves outperforms the deterministic ones in terms of overall cost.

TABLE VIII
MODIFIED RESULTS WITH TWO TYPES OF RESERVE

�

S1 S2

CostTC P
Pc/d,i,t�t

P
PRS
i,t�t CostTC P

Pc/d,i,t�t
P

PRS
i,t�t

(CNY) (kWh) (kWh) (CNY) (kWh) (kWh)

0.05 2835.4 63.8 119.1 2839.3 51.0 121.0
0.30 2519.2 25.4 190.6 2511.4 37.3 184.9
0.55 2351.8 10.3 216.7 2347.2 15.4 213.9
0.80 2174.0 0.00 232.2 2174.0 0.0 232.2

VII. CONCLUSION

In this paper, we proposed a novel CCO formulation for the
day-ahead economic dispatch of uncertain GES units, which fully
incorporates dynamic properties and various types of DIUs and
DDUs. Specially, we modelled the human behavior of GES units as
the endogenous uncertain SoC bounds affected by incentive signals
and discomfort levels. The numerical results show that the dynamic
flexibility of GES units is reduced and limited by DDUs effect
and time-varying user preferences. And by considering DDUs, we
enable decision-makers to systematically trade-off between overall
profit and customers’ (dis)comfort ranges and incorporate real-
time non-anticipativity. This produces more conservative, but more
credible strategies. These results illustrate how improved availability
and economic performance of uncertain GES units can benefit
practical DR programs. In addition, we proposed two tractable
solution methods for CCO-DDUs while the computational perfor-
mance shows that a robust approximation outperforms the iteration
algorithm in computational efficiency (by a few minutes) while
maintaining a good performance (within 1% optimality gap). And
the major attraction is that robust approximation can be applicable
in any CCO problem without complete knowledge of DDUs, which
is more applicable to be used as the black start of DR programs.

Future work will focus on the grid-aware GES coordination with
network constraints and achieving a trade-off between expected
profit and risk by considering portfolio optimization of heterogenous
GESs. In addition, measurements/data from GES units should be fur-
ther analyzed to possibly infer and learn the structure of DDUs. And
another valuable research direction is also suggested to find acceler-
ation methods for operations under DDUs with complex distribution
(e.g., Beta distribution, generalized extreme value distribution, etc.)
and complex discomfort function (e.g., deadband function, etc.).
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APPENDIX

A. Convexity and Convergence Conditions

According to the convexity condition of CCO and reformulation
(13c-13d), CCO-DDUs problem (11) is only guaranteed to be con-
vex under the condition (i)-(ii). The convergence of the iterative al-
gorithm is guaranteed when the convexity condition is satisfied [35].

(i) µSoCi,t
and F

�1
SoCi,t

(1� �)�SoCi,t
are convex function of

decision variables y.
(ii)�µSoCi,t

and F
�1
SoCi,t

(1��)�SoCi,t
are convex function of

decision variables y.
For DDUs designed in (13), the inside functions are given:

µSoCi,t
=(SoC

B
i,t�QgU)�

U
i RDi,t+QgU (17a)

µSoCi,t
=(SoC

B
i,t�QgD)�

D
i RDi,t+QgD (17b)

F
�1
SoCi,t

(1��)�SoCi,t
=(QgU�SoCB

i,t)F
�1
hU (1��,y)�hU (17c)

F
�1
SoCi,t

(1��)�SoCi,t
=(QgD�SoCB

i,t)F
�1
hD (1��,y)�hD (17d)

Thus, the convexity conditions are further simplified as:
(a) RDi,t is a convex function of y.
(b) F�1

h (1��,y) is a convex function of y.

The convex function described in (5c) guarantees the convexity
condition (a). And since we fix the variance of the distribution,
the convexity of F

�1
h (1 � �,y) is equivalent to the convexity

of F�1
h (1� �,µ). For lognormal distributions, F�1

h (1� �,µ) =

exp(µ+
p
2�2erf�1

(1�2�)), which guarantees the convexity con-
dition (b). While, for other complex distributions (e.g., Beta), there
is no explicit expression for the inverse CDF, and numerical simu-
lations in Fig. 8 shows that it can not guarantee convexity overall.
There exists, however, a convex region which contains the iterations
using Beta distribution. Thus, global optimality can be verified for
this convex region and corresponding constraints can be added to
limit response discomfort (µ) of GES units within that region.

Fig. 9. Numerical test of convexity

B. Proof of the value of Robust Approximation

We write F the CDF function, P the PDF function, k � 0 a
constant, and ⇠ as the probabilistic parameter with zero mean and
unit variance under the chosen distribution. Different versions of
Cantelli’s inequality [36] are used to obtain the following results.

1) Classical Cantelli inequality can be used without distribution
assumption of DDUs and infers the following conclusion.

F(k)=1� sup
P2NA

P[⇠�k]=k
2
/1+k

2 (18a)

F
�1

(1��)=
p
(1��)/� (18b)

2) Chebyshev’s inequality can be used with symmetric
distribution of DDUs and infers the following conclusion.

F(k)=1�sup
P2S

P[⇠�k]=1� 1

2
sup
P2S

P[|⇠|�k]=1� 1

2k2
(19a)

F
�1

(1��)=
p
1/2� (19b)

3) VySoChanskij–Petunin inequality can be used with unimodal
distribution of DDUs and infers the following conclusion.

F(k)=1� sup
P2U

P[⇠�k]

=

(
1�4/(9k2+9) k�

p
5/3

1�(3�k2)/(3+3k
2
) 0k

p
5/3

(20a)

F
�1

(1��)=
( p

2/9� 0<�1/6
p
3(1�2�) 1/6<�1/2 (20b)

4) Gauss’s inequality can be used for symmetric & unimodal
distribution of DDUs and infers the following conclusion.

F(k)=1� sup
P2SU

P[⇠�k]=1� 1

2
sup
P2U

P[|⇠|�k]

=

(
1�2/9k2 k�2/

p
3

1/2+k/2
p
3 0k2/

p
3

(21a)

F
�1

(1��)=
( p

2/9� 0<�1/6
p
3(1�2�) 1/6<�1/2 (21b)

5-6) For student’s t and normal distribution of DDUs, the
normalized CDFs t�1

⌫,�(1��) and �
�1

(1��) can be used without
introducing approximation errors.
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