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Abstract— There is growing interest in understanding how in-
teractions between system-wide objectives and local community
decision-making will impact the clean energy transition. The
concept of energysheds has gained traction in the areas of public
policy and social science as a way to study these relationships.
However, development of technical definitions of energysheds
that permit system analysis are still largely missing. In this
work, we propose a mathematical definition for energysheds,
and introduce an analytical framework for studying energyshed
concepts within the context of future electric power system
operations. This framework is used to develop insights into
the factors that impact a community’s ability to achieve
energyshed policy incentives within a larger connected power
grid, as well as the tradeoffs associated with different spatial
policy requirements. We also propose an optimization-based
energyshed policy design problem, and show that it can
be solved to global optimality within arbitrary precision by
employing concepts from quasi-convex optimization. Finally, we
investigate how interconnected energysheds can cooperatively
achieve their objectives in bulk power system operations.

I. INTRODUCTION

Public policies to decarbonize are going hand-in-hand
with scaling up the integration of (distributed) renewable
generation and electrification programs. These policies
are transforming the generation, heating, cooling and
transportation sectors nationally and globally. However, this
global transformation depends crucially on public buy-in
from regional and local communities, because top-down
policies and incentives require bottom-up participation to
succeed. For example, communities are very interested in
how local renewable generation can benefit local economies.
Local utilities in the U.S. are working with communities
to better understand how shared community solar, net-
metering, and energy technologies can avoid the need for
expensive grid upgrades [1]. In Europe, the formation of
local energy communities is becoming a popular solution
for enabling green energy transition [2], [3]. Clearly, there
is an interplay between local decisions, regional costs, and
global policy objectives and impacts [4].

Furthermore, the interactions between local communities,
regional utilities, and national policy-makers highlight
the importance of effective coordination. This is partly
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why the U.S. Department of Energy has recently focused
programs around studying Clean Energy Communities and
EnergySheds [5], [6].

The concept of an energyshed is similar to that of a water-
shed or foodshed [7]–[9]. While a watershed inherently limits
the sharing of its resources since it is defined by the inherent
(static) gradients of nature’s surfaces and reservoirs (storage),
a foodshed permits sharing its local food production
(resources) with other foodsheds [10]. The sharing between
foodsheds is enabled exactly by transportation networks
that interconnect them. This sharing among foodsheds also
means that not all food need to be produced locally, and
blurs the physical boundary of any individual foodshed. It is
in this context that we present energysheds as local energy
communities within (blurry) geographical areas in which
energy system objectives and constraints are determined
and between which energy can be actively exchanged.

These interactions also beget interesting questions about
how energyshed decisions (or constraints) affect the power
systems that interconnect them all. Conversely, the power
systems within which all energysheds reside and the gradi-
ents associated with the physical power flows may impose
constraints on what each energyshed can achieve locally. For
example, an energyshed at the end of a long radial feeder
may not have the network capacity available to meet 100%
of local demand with local (clean) generation over a day due
to export limits (caused by transformer or voltage bounds).
Thus, as far as the authors are aware, this paper is the first
attempt to analyze and better understand the role of the power
network in enabling or limiting local energyshed objectives.
Specifically, we propose a first mathematical definition of
an energyshed, and study fundamental tradeoffs associated
with energyshed decisions and interconnections and how
power systems can enable or limit energyshed objectives.
To this end, the key contributions of this work are:

1) A mathematical definition for energysheds, considering
spatiotemporal and techno-economic facets.

2) Theoretical analysis to provide insights into how lim-
ited resources and power system constraints impact the
ability of individual communities to meet policy goals.

3) An optimization-based framework for cooperative
energyshed policy, which helps ensure equitable
outcomes as communities invest in local generation
resources.

4) Computationally tractable methods, leveraging
concepts from quasi-convex optimization, for solving
the proposed optimization problem to global optimality
(to within arbitrary precision).



The rest of the paper is organized as follows. A technical
definition of an energyshed is introduced in Sec. II, and
theoretical insights associated with energyshed operations
are discussed. In Sec. III, a mathematical framework for
studying cooperative energyshed policy design is proposed.
Numerical case studies are presented in Sec. IV, and
Section V concludes and discusses future research directions.

II. ENERGYSHED DEFINITION AND ANALYSIS

Consider a power system represented as a graph,
G := (N ,E), where N is a set of nodes and E the set of
edges, such that (i,j)∈E if nodes i,j∈N are connected by
an edge. Denote the time window of interest, T , by a set of
discrete time intervals T . Then, each node i, at time t, has
local demand, P L

i,t ≥ 0, local generation, PG
i,t ≥ 0, and net

generation, PG
i,t−P L

i,t.
Furthermore, consider a community k consisting of a

contiguous set of nodes i∈Nk⊆N .1 We introduce a desired
ratio of local energy produced to local energy consumed,
denoted X , as a metric. We choose to define energysheds
with a ratio (as opposed to a difference between local
demand and generation) since public policy objectives are
often based on percentages (e.g., see Vermont’s renewable
energy portfolio standard [11]). Thus, we propose the
following definition of an energyshed:

Proposed Definition (Energyshed):
Energy community k defined by the spatiotemporal 3-
tuple (Xk,Nk,T ) represents an energyshed, if it satisfies

Xk≤
∑

i∈Nk

∑
t∈T P

G
i,t∑

i∈Nk

∑
t∈T P

L
i,t

, (1)

for every non-overlapping interval T of duration T .

For example, if Nk represents the U.S. state of Vermont’s
entire power network, T represents every year with X =0.9,
then (1) states that the state of Vermont becomes an
energyshed when it meets 90% of annual energy needs
from local generation. In another extreme, consider a
3-tuple representing a set of nodes that make up an islanded
microgrid, T being every second, and X =1 (with no load
shedding, as expected when islanded); then a microgrid
can also be cast as an energyshed. Between an entire state
over a year and a small microgrid over a second is a rich
set of relevant power systems that underpin diverse energy
communities as possible energysheds. Besides the ability
to use (1) to measure how far a given community is from
meeting the requirements of an energyshed (i.e., backcasting
historical data), we are also interested in understanding
what a community needs to or can do to meet their own re-
quirement(s), and how multiple interconnected communities
can satisfy their individual energyshed requirements with or
without sharing energy. This is discussed next.

1Formally, this means that the subgraph induced in G by Nk is connected.

A. Energyshed resource limits

In the following analysis, we consider each community to
embody a single node in the network, since networks can be
reduced via nodal aggregations and Kron-based reductions
(e.g., see [12]). Thus, in addition to dropping the sum over
Nk, the 3-tuple defining community k becomes (Xk, k, T ).
In making this simplification, we assume that constraints
internal to the community (e.g., internal line flow limits)
are not binding.

Consider that a community has access to certain resources,
which represent the capability of said community to invest
in energy assets, including (but not limited to) financial,
technological, or land use capabilities (e.g., transformer
upgrades, load control programs, electrification incentives,
batteries, electric vehicle charging stations, solar photovoltaic
arrays, wind farms, etc.). Investment in such energy assets
may enable a community to increase its local generation
ratio by providing additional operational flexibility. However,
the resources of each community k are subject to a certain
budget, which limits the community’s operational capacity to
modify its net generation. Therefore, we assume that com-
munity k at time t can modify its net operational flexibility
by P S

k,t=P S+
k,t −P S−

k,t ∈ [−P
S−
k,t,P

S+
k,t] , where P S+

k,t ,P
S−
k,t ≥0.

The goal of community k is then to understand how to
best use its available capacity to maximize Xk (i.e., achieve
its energyshed objectives), which now depends on P S

k,t as
follows:2

Xk=

∑
t∈T (P

G
k,t+P S+

k,t )∑
t∈T (P

L
k,t+P S−

k,t )
, (2)

where the additional power generated at time t by
energy assets (e.g., rooftop or utility solar, wind, batteries
discharging) in community k is represented by P S+

k,t ≥0, and
P S−
k,t ≥ 0 denotes additional power demand due to flexible

loads (e.g., battery charging, electric vehicles, heating, and
cooling loads). Clearly, in (2), we treat PG

k,t and P L
k,t as

fixed (historical or predicted) data, whereas P S+
k,t and P S−

k,t

are treated as variable operational decisions made by the
community in pursuit of policy goals.

Thus, given representative data for demand and existing
(non-dispatchable) generation, we can determine an analyt-
ical relationship between these operational capacity budgets
and the maximum value of Xk that can be achieved by a com-
munity. These relationships depend on the ability of a com-
munity to export excess generation to surrounding communi-
ties through the grid infrastructure, which is discussed next.

B. Communities with unconstrained power exports

First, we consider communities that can readily export
power to the grid during instances in time when local power
generation exceeds local power demand. Thus, we seek to
determine the maximum Xk, i.e., Xk, that a community can
achieve given a certain operational capacity, [−P

S−
k,t,P

S+
k,t].

2We consider energysheds with
∑

t∈T (P L
k,t − PG

k,t) > 0 before
modifying their net operational flexibility such that Xk<1.
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Fig. 1. Relationship between maximum achievable local generation ratio
and total energy capacity budget under different power export constraints
for two energysheds k. The total energy capacity budget is given in per
unit using the total energy demand,

∑
t∈T P L

k,t , as a base.

Proposition 1 (Maximum ratio with unconstrained export).
Given representative PG

k,t and P L
k,t and operational capacity

[−P
S−
k,t, P

S+
k,t] and no limit on PG

k,t + P S
k,t − P L

k,t, the

maximum Xk is given by X k = X 0
k + 1

γk

∑
t∈T P

S+
k,t, where

X 0
k :=

∑
t∈T PG

k,t∑
t∈T P L

k,t
and γk :=

∑
t∈T P

L
k,t.

Proof. Since all quantities in (2) are positive, we can
maximize Xk by maximizing the numerator and minimizing
the denominator. This is achieved when P S+

k,t = P
S+
k,t and

P S−
k,t =0 for all times t. Thus, we obtain the maximum ratio

of local generation to local consumption,

X k=

∑
t∈T P

G
k,t∑

t∈T P
L
k,t

+

∑
t∈T P

S+
k,t∑

t∈T P
L
k,t

. (3)

Clearly, without constraints on net power exports, there is
linear relationship between the maximum local generation
ratio, X k, and the total energy capacity budget,

∑
t∈T P

S+
k,t,

as shown in Fig. 1. Note that the slope of this line is 1
γk

for community k. That is, communities with higher energy
demand will require more operational capacity to meet the
same energyshed policy goals (i.e., the same value of Xk).

Additionally, note that the y-intercept of (3) is X 0
k , which

is the ratio of energy produced by local base generation
to total demand over interval T . This also means that
communities with existing local generation will require less
operational capacity to meet their energyshed objectives.

C. Communities with constrained power exports

In practice, an energyshed’s ability to export power may
be constrained by a number of factors including capacity
limits of physical grid infrastructure (e.g., substation
transformers, hosting capacity, transmission or distribution
interconnections) or the willingness of surrounding

communities to consume that power. We model these
constraints as bounds on the net export generation. That is,

P S
k,t≤P S+

k,t −P S−
k,t ≤P

S
k,t. (4)

Note that since PG
k,t and P L

k,t are fixed base generation
and load data, constraints of the form (4) are sufficient to
capture limits on net exports from community k.

Proposition 2 (Maximum ratio with constrained export).
Given representative PG

k,t and P L
k,t and operational

capacity [−P
S−
k,t, P

S+
k,t] and constrained net exports

PG
k,t+P S

k,t−P L
k,t≤P

S

k,t, the maximum Xk is given by

X k=

∑
t∈T (P

G
k,t+P

S+
k,t)∑

t∈T (P
L
k,t+max{P S+

k,t−P
S
k,t,0})

. (5)

Proof. Following the same logic as in Sec. II-B, we seek to
maximize P S+

k,t and minimize P S−
k,t to maximize Xk. Now,

for some time t, consider two cases:
Case I: If P

S
k,t ≥P

S+
k,t , then P S+

k,t =P
S+
k,t and P S−

k,t =0 are
maximizing Xk as in Sec. II-B.
Case II: If P

S
k,t < P

S+
k,t, then (4) is binding. Therefore,

assuming
∑

t∈T P
S
k,t≥

∑
t∈T (P

L
k,t−PG

k,t), Xk is maximized

by setting P S−
k,t = P S+

k,t −P
S
k,t.

3 Thus, to maximize Xk we

set P S+
k,t = P

S+
k,t and P S−

k,t = P
S+
k,t − P

S
k,t. Combining the

two above cases (P
S
k,t ≥ P

S+
k,t and P

S
k,t < P

S+
k,t), we obtain

maximum X k.

Examples of the relationship between X k and total energy
capacity budget,

∑
t∈T P

S+
k,t, for different power export

constraints are shown in Fig. 1. Note that until point (A), all
curves (for k=1) follow the same line as the unconstrained
case. However, once a community’s ability to export excess
generation is constrained at some time t, it will begin to
require larger operational capacity in order to achieve the
same value of Xk as the unconstrained case.

Fig. 1 also shows the special case where a community is
unable to export any excess power.4 In order to achieve a
value of Xk = 1 in this case, the community will need to
invest in enough local generation capacity to completely meet
its local demand at all times (i.e., the community will need to
operate as a microgrid). This situation corresponds to point
(B) in Fig. 1. Furthermore, any power export constraints
between the unconstrained case and the zero export case will
fall between these curves (i.e., in the shaded region of Fig. 1).

D. Equity considerations in energyshed operations

It is important to recognize that different communities
will have different capabilities to invest in new energy
assets. Unless careful consideration is given to the diversity

3Note that if
∑

t∈T P
S
k,t<

∑
t∈T (P L

k,t−PG
k,t), then Xk is maximized

by setting P S+
k,t = P

S
k,t and P S−

k,t = 0. However, under these conditions,
Xk ≥ 1 for the proposed strategy. Since we are primarily interested in
communities where Xk<1, we choose to ignore this case.

4This scenario can be modeled by P
S
k,t=P L

k,t−PG
k,t for all times t.



in resources that is inherent to different communities,
some frameworks for energyshed operations can lead to
inequitable outcomes for some communities.

For example, communities with the capability (more re-
sources, larger budget) to invest in local generation resources
the fastest will be able to achieve values of Xk ≥ 1 more
quickly by exporting excess generation to less-privileged
communities. However, if each community makes indepen-
dent decisions with the goal of maximizing its own Xk, then
as the least privileged communities invest in local generation
resources, they may not have the opportunity to export
excess power (since importing power would decrease Xk for
surrounding communities). Thus, communities which are the
slowest to achieve their energyshed policy goals will have to
invest disproportionately more resources to meet those goals.
This motivates the need for a cooperative framework for en-
ergyshed operations, where the impact of decisions made by
one community on neighboring communities is considered
explicitly, in order to achieve better system-wide outcomes.

III. FRAMEWORK FOR ENERGYSHED OPERATIONS

In this section, we explore how the technical definition
for energysheds proposed in Sec. II can be used to develop a
mathematical framework for studying energysheds within the
context of future power system operations. We begin by con-
sidering a scenario in which energyshed policy requirements
are already established and study how communities can meet
these constraints at minimum cost. Then, we propose meth-
ods for designing energyshed policies and explore tradeoffs
between policy requirements and system-wide costs.

A. Constraining the minimum local generation ratios

Consider the case where each community k places a
requirement (e.g., due to policy decisions or laws) on the
minimum local generation ratio, denoted X k, that it must
achieve over the time interval T . We take the perspective of
a centralized power system operator who wishes to manage
power flows within the network in order to minimize system
costs, while adhering to energyshed policy requirements and
without violating the limits of physical infrastructure. This
is encapsulated by the following optimization problem:

(P1) min
P S+

i,t ,P
S−
i,t

f0(P
S+
i,t ,P

S−
i,t ), (6a)

s.t. PG
i,t−P L

i,t+P S
i,t=

∑
j:(i,j)∈E

Pij,t, ∀i∈N , ∀t∈T ,

(6b)
Pij,txij=θi,t−θj,t, ∀(i,j)∈E , ∀t∈T , (6c)

P ij,t≤Pij,t≤P ij,t, ∀(i,j)∈E , ∀t∈T , (6d)

P S
i,t=P S+

i,t −P S−
i,t , ∀i∈N , ∀t∈T , (6e)

0≤P S+
i,t ≤P

S+
i,t , ∀i∈N , ∀t∈T , (6f)

0≤P S−
i,t ≤P

S−
i,t , ∀i∈N , ∀t∈T , (6g)∑

i∈Nk

∑
t∈T (P

G
i,t+P S+

i,t )∑
i∈Nk

∑
t∈T (P

L
i,t+P S−

i,t )
≥X k, ∀k∈S,

(6h)

where the constraints (6b)–(6c) represent the DC power flow
at each time t, xij is the reactance of line (i,j), and θi,t
(with θ1,t = 0) is the voltage phase angle (reference angle)
in radians of node i. Constraint (6d) captures flow limits
of lines and transformers in the network. The definition of
P S
i,t is given by (6e), whereas constraints (6f)–(6g) enforce

bounds on P S+
i,t and P S−

i,t . Finally, the constraint (6h)
captures the minimum local generation ratio requirement for
each energyshed, based on the energyshed definition in (2),
where S denotes the set of energyshed indices.

The objective function in (6a) is characterized by a future
power system, where the majority of generation comes
from zero-marginal-cost renewable sources. Thus, rather
than operational costs based on fuel consumption and heat
rate curves, we consider system costs that are driven by
the required capacities of distributed energy resources [13].
Towards that goal, consider the following objective function:

f0(P
S+
i,t ,P

S−
i,t )=

∑
i∈N

αi

(
max
t∈T

{P S+
i,t }

)2

+βi

(
max
t∈T

{P S−
i,t }

)2

,

(7)
which captures this with quadratic functions of the capacities
of P S+

i,t and P S−
i,t across all nodes in the system. We chose to

use a quadratic function of capacity costs because we assume
that the incremental cost of adding capacity will increase
with higher existing capacity in an area (e.g., due to different
technologies, land-use constraints, and hosting capacity
issues). Furthermore, we introduce weights αi and βi to
account for the fact that the costs of installing additional
capacity may be different at each node in the network.

Proposition 3. If f0(P
S+
i,t , P S−

i,t ) is convex, then the
optimization problem (P1) is convex.

Proof. This is trivial since the denominator in (6h) is strictly
positive by definition and X k is data. Thus, constraint (6h)
can be reformulated as a simple linear inequality.

By solving (P1), we can determine the flexiblity required
at each network bus in order to meet given energyshed
policy requirements while minimizing system-wide costs.
Next, we explore how such policy requirements could be
designed to ensure more equitable outcomes.

B. Cooperative energyshed policy design

In Sec. III-A, we assumed that the minimum local gener-
ation ratio for each energyshed was known based on policy
requirements. However, in this case, we investigate how poli-
cies can be designed to best enable communities to achieve
their energy transition goals. More specifically, policy makers
may be interested in understanding what energyshed require-
ments are achievable given available resources. To this end,



we consider the following max-min optimization problem:

(P2) max
P S+

i,t ,P
S−
i,t ,Xk

min
k∈S

{Xk}, (8a)

s.t. (6b)–(6g), (8b)∑
i∈Nk

∑
t∈T (P

G
i,t+P S+

i,t )∑
i∈Nk

∑
t∈T (P

L
i,t+P S−

i,t )
=Xk, ∀k∈S.

(8c)

The goal of the objective function (8a) is to maximize the
minimum value of Xk across all energysheds. The solution
of the optimization problem (P2), denoted X ∗

k̂
, is the largest

lower bound on Xk that all energysheds k can achieve for a
given base load and generation profile, line flow limits, and
resource capacities, P

S+
i,t and P

S−
i,t , at each node i∈Nk of

each energyshed k. We denote the energyshed achieving X ∗
k̂

as energyshed k̂. Therefore, if policies are put in place that
require any energyshed k̂ to achieve X k̂ > X ∗

k̂
, then these

policies will not be achievable. Also, note that the choice of
objective function promotes other communities to actively
support energyshed k̂ in maximizing its local generation
ratio. Thus, (P2) represents a cooperative approach to
energyshed operations and informs energyshed policy
design, in contrast to the competitive (myopic) approach
discussed in Sec. II-D.

Of course, to find the optimal local generation ratio,
denoted X ∗

k , for each energyshed k, we need to solve (P2).
However, since Xk is a variable in the linear fractional
equality constraint that is (8c) (and not data as in (P1)), (P2)
is clearly non-convex.5 However, (P2) can be reformulated
as a quasi-convex optimization problem for which standard
methods exist for finding the globally optimal solutions.

Proposition 4. The non-convex optimization problem (P2)
can be solved to global optimality within arbitrary precision.

Proof. Reformulate (P2) using the epigraph of (8c):

(P3) max
P S+

i,t ,P
S−
i,t ,τ

τ , (9a)

s.t. (6b)–(6g), (9b)∑
i∈Nk

∑
t∈T (P

G
i,t+P S+

i,t )∑
i∈Nk

∑
t∈T (P

L
i,t+P S−

i,t )
≥τ , ∀k∈S.

(9c)

Since the left-hand side of (8c) is a linear-fractional
function, it is quasi-linear and, hence, quasi-concave, which
means that its super-level sets are convex [14].

Thus, for a fixed value (e.g., guess) of τ , the problem (P3)
represents a convex feasiblity problem. If (P3) is feasible
for a given fixed value of τ , then we know that the optimal
solution to (P2) satisfies X ∗

k̂
≥ τ . Conversely, if (P3) is

infeasible for a given τ , then X ∗
k̂
< τ . Since the minimum

X ∗
k̂

is expected to reside in the compact interval [0,1], we
can apply the bisection method to solve (P2) to within

5Note that multiplying both sides of (8c) by the denominator of the
left-hand side results in bi-linear terms (associated with multiplication of
the variables Xk and P S−

i,t ) on the right-hand side.

ϵ-optimality in log2(1/ϵ) iterations [14]. For example, in
20 iterations of the bisection method applied to (P3), we
can find a solution to (P2) that is within ϵ = 10−6 of the
globally optimal solution. This completes the proof.

There are several reasons for which it may be desired to
extend the framework proposed in this subsection (Sec. III-B)
to include more general objective functions. First, while (P2)
illuminates what energyshed policies are possible given
available operational resources, it is agnostic to the costs of
flexibility necessary to achieve such policies. For example,
policy makers may be interested in understanding not only
if certain policies are technically feasible, but also the
inherent tradeoffs between policy decisions and economic,
environmental, and social costs. Second, the solution of the
optimization problem (P2) is non-unique, since Xk variables
that are not the minimum (i.e., k ̸= k̂) can take multiple
values at optimality. By adding additional terms to the
objective function (8a), we can attempt to reduce the number
of non-unique solutions. Thus, we introduce a generalized
framework for cooperative energyshed policy design next.

C. Generalized cooperative energyshed policy design

Consider the following generalization of (P2):

(P4) max
P S+

i,t ,P
S−
i,t ,Xk

min
k∈S

{Xk}−
1

ζ
f0(P

S+
i,t ,P

S−
i,t ), (10a)

s.t. (6b)–(6g) and (8c). (10b)

Here, we introduce a generic cost function f0(P
S+
i,t ,P

S−
i,t )

and scalar weight, ζ. The function f0 could consist of
a number of system costs that we desire to minimize,
including network losses, generation costs, or the quadratic
costs on operational capacity P S+

i,t and P S−
i,t introduced

in (7). However, since quasi-concavity is not preserved
under addition, the objective function in (P4) need not be
quasi-concave, even if f0 is convex or quasi-convex. Thus,
the bisection method used to iteratively solve (P2) cannot
be directly applied in (P4). Nevertheless, we can leverage
quasi-linearity and a similar reformulation as in Sec. III-B
to develop methods for solving (P4) to global optimality.

Proposition 5. If f0 is convex, then an ϵ-optimal solution
to the non-convex problem (P4) can found by solving a
sequence of convex problems of the form (P1) by fixing τ .

Proof. First, we consider the following equivalent
reformulation of (P4) based on the epigraph of the first term:

(P5) max
P S+

i,t ,P
S−
i,t ,τ

τ− 1

ζ
f0(P

S+
i,t ,P

S−
i,t ), (11a)

s.t. (6b)–(6g), (11b)∑
i∈Nk

∑
t∈T (P

G
i,t+P S+

i,t )∑
i∈Nk

∑
t∈T (P

L
i,t+P S−

i,t )
≥τ , ∀k∈S.

(11c)

Next, since the objective function in (P5) is separable
in scalar τ , we derive the following equivalent bilevel



optimization problem from (P5):

(P6) max
τ

τ− 1

ζ
f0(y(τ)), (12a)

s.t. y(τ)= argmin
P S+

i,t ,P
S−
i,t

f0(P
S+
i,t ,P

S−
i,t ), (12b)

s.t. (6b)–(6g), (12c)∑
i∈Nk

∑
t∈T (P

G
i,t+P S+

i,t )∑
i∈Nk

∑
t∈T (P

L
i,t+P S−

i,t )
≥τ , ∀k∈S.

(12d)

Note that in this reformulation, τ is a variable in the upper-
level problem, but a parameter (i.e., data) in the lower-level
problem. In fact, the lower-level problem is a special case of
(P1), where we set X k=τ for all energysheds k∈S . More-
over, for a given value of τ , we can evaluate the objective
function (12a) as τ− 1

ζ f0(yτ ), where yτ :=y(τ) denotes the
solution of a specific instance of the convex problem (P1)
parameterized by τ . Thus, if we assume that the optimal
value of τ ∈ [Xlb,Xub]=[0,1], then the global optimal solution
of (P4) can be found to within arbitrary precision ϵ by sweep-
ing through this interval and evaluating τ− 1

ζ f0(yτ ).

The mesh resolution used to sweep through values of τ
is key for ensuring the global optimal is found. Clearly, a
finer mesh requires solving more instances of the convex
problem (P1), and thus is more computationally expensive.
If the objective function (12a) is relatively smooth (does not
change sharply for small changes in τ ), then this approach
can be computationally tractable. In the numerical case
studies to follow, we will show that (12a) is smooth for the
specific choice of f0 in (7).

In summary, we have developed a mathematical frame-
work for studying energyshed policy design and operations in
future power systems. We showed that when policy require-
ments are fixed, system capacity costs can be minimized by
solving the convex problem (P1). We also proposed a coop-
erative policy design problem (P2) and extended it to include
more general objective functions in (P4). Finally, we showed
that these non-convex problems can be solved to global opti-
mality. Next, we apply these results in illustrative examples.

IV. NUMERICAL CASE STUDY

In order to study the fundamental tradeoffs associated
with energyshed policy decisions within future power
system operations, we tested the proposed energyshed
framework discussed in Sec. III on the IEEE 39-bus New
England transmission network shown in Fig. 2 [15]. The
optimization problems (P1) and (P4) are implemented in
Julia (v1.9.3) using the JuMP (v1.20.0) package [16], and
are solved using IPOPT (v1.6.1) [17].

A. Modifications to 39-bus system and case study setup

Since we are considering a future power system where
most generation comes from distributed and renewable
sources, we have removed the conventional synchronous
generator units from the 39-bus test network. We also
introduce solar DG at Buses 3, 4, 8, 12, 16, 20, 24,
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Fig. 2. IEEE 39-bus New England power system [15]. Different colors
represent the three control areas, and shaded regions show energyshed
boundaries for the medium aggregation case in Sec. IV-A.
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Fig. 3. Hourly load and solar PV profiles at each load bus.
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Fig. 4. Capacity cost weights, αi and βi, for each load bus.

25, 27, and 28. This solar PV is treated as pre-existing
and non-dispatchable generation (i.e., part of PG

i,t) within
the energyshed framework. Load and existing distributed
generation profiles over the day at each bus are based on
the ACTIVSg time series data, and shown in Fig. 3 [18].
We consider the set T as every hour over the course of
one day. Line flow limits for each transmission line, with
P ij,t = −P ij,t, are identical to those in the MATPOWER
case data for the 39-bus system [15]. Unless otherwise noted,
per unit quantities are provided on a 100 MVA system base.

For simplicity, we assume that the net flexibility P S
i,t

can only be modified at buses with existing load (i.e.,
P

S+
i,t = P

S−
i,t = 0 if γi = 0). The weights, αi and βi,

associated with the quadratic capacity costs in (7) for each
of these buses are shown in Fig. 4.

Finally, in order to study how the definition of energyshed
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Fig. 5. Distribution of local generation ratio (a) and additional flexibility
capacity (b) across load buses under different energyshed policy constraints.
Buses are arranged from left to right in order of increasing generation
capacity costs (αi). Note that X ∗

k is larger than 2.0 for some buses, but
we truncate the plot at this value for improved legibility.

geographic boundaries impacts energyshed policy design,
we consider different configurations of the sets Nk.
Specifically, we consider three cases with varying levels
of spatial aggregation: (i) low aggregation, where each
individual load bus is an energyshed (i.e., Nk={i} for all i
such that γi ̸=0); (ii) medium aggregation, where energyshed
boundaries are defined by the shaded regions shown in
Fig. 2; and (iii) high aggregation, where energyshed
boundaries are defined by the three control areas in Fig. 2.

B. Impact of Local Generation Ratio Constraints

In this section, we consider the low spatial aggregation
case and solve (P1) under two scenarios of energyshed re-
quirements. First, we consider the situation where X k=0 for
all energysheds, which corresponds to no energyshed require-
ments being enforced. We treat this as a baseline case. Next,
we consider the situation where X k=1 for all energysheds.
Fig. 5 shows the local generation ratio (LGR) and additional
capacity for flexibility (both generation and demand) that
minimize capacity costs for these two scenarios. Note that in
the baseline case, zero additional demand capacity is added
(maxt∈T {P S−

i,t } = 0); however, some additional generation
capacity is required in order to meet existing demand (even
though no energyshed policy requirements are in place).
Furthermore, when X k = 0, some of the energysheds (e.g.,
those with smaller αi) have Xk>1, while other energysheds
have Xk<1. Clearly, when the energyshed policy constraint
requires X k = 1, all energysheds have Xk = 1. To achieve
this, we can see that energysheds with Xk>1 in the baseline
case (e.g., Buses 3, 27, 12) decrease their generation capacity,
while energysheds with Xk<1 in the baseline case (e.g., Bus
39) increase their generation capacity. Furthermore, some
energysheds with Xk > 1 in the baseline case also increase
their demand capacity, which allows them to import from
surrounding energysheds with expensive generation capacity
costs during periods of excess generation.
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Fig. 6. Value of objective function (12a) as local generation ratio is swept
in the interval [0,1], for three different values of ζ, in the medium spatial
aggregation case. Objective function values are normalized with respect to
the baseline case.

C. Case study on cooperative energyshed policy design

Next, we study energyshed policy design by solving (P4)
for the different spatial aggregation cases. We begin by
showing an example of solving (P4) to global optimality for
the medium aggregration case. Fig. 6 shows the objective
function (12a) as τ is swept through the interval [0,1] in
steps of 0.01, for different values of the weight parameter ζ.
For this choice of f0, the objective function value of (12a)
as a function of τ is quite smooth and unimodal; however,
note that this may not hold for general f0. The solid dots
in Fig. 6 mark the solution found using this sweeping
approach, which is clearly optimal.

The Pareto-optimal front, parameterized by ζ, of (P4)
for the three spatial aggregation cases is shown in Fig. 7.
These curves present tradeoffs between the minimum local
generation ratio required by energyshed policy decisions
and system-wide costs of increasing capacity for operational
flexibility. It is observed that as policy decisions require com-
munities to meet more demand from local generation, system
capacity costs increase. Moreover, the larger energyshed
boundaries become, the less expensive it is to achieve policy
objectives for those energysheds. For example, a 102%
increase in capacity costs over the baseline is required to
reach X k=1 when each load bus is an energyshed, whereas
only a 13.5% increase in costs occurs when energysheds
are defined by the boundaries in Fig. 2. Furthermore, when
energysheds are based on the control areas of the 39-bus
system (high aggregation case), it is possible to achieve
X k = 1 without additional capacity costs over the baseline
case (i.e. the Pareto-optimal front is a single point).

The scalar weight ζ plays an important role in balancing
the tradeoff between capacity costs and minimum local
generation ratio requirements. In particular, policy makers
may be interested in placing a value on a specific energyshed
policy requirement in terms of system costs. Fig. 8 shows
the optimal energyshed policy requirement obtained from
solving (P4) for different values of ζ. It is envisioned that
these curves could be useful in helping policy makers assign
value (or prices) to local generation ratio requirements
relative to other system costs.
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V. CONCLUSION

In this paper, we proposed a mathematical definition
for energysheds, and studied the fundamental tradeoffs
associated with energyshed policy decisions and operations
within the context of future electric power systems.
We also explored how interactions between energyshed
operations across different communities can potentially lead
to inequitable outcomes, and introduced a framework for
cooperative energyshed policy design. Theoretical insights
into energyshed concepts as well as a numerical case study
were also presented.

There are numerous potential avenues for future research
in energyshed thinking. First, the proposed framework
could be extended to consider AC network analysis (i.e.,
system voltages, reactive power flows, and line losses) or
multi-energy systems (e.g., district heating or transportation
systems), rather than only considering electric infrastructure.
Future work could also study how investments in energy
efficiency, which would enable decreasing of local demand,
may impact energyshed policy design. An investigation of
how different temporal energyshed policy requirements (e.g.,
enforcing ratios over every second, hour, day, or year) effect
system costs would also be of interest. Additionally, further
analysis into computationally efficient methods for solving
(P4), such as conditions under which it is quasi-convex,
would enable improvements in scalability to larger systems.

Finally, the application of the proposed framework to large
regions with realistic data, and consideration of economic,
environmental, and social aspects of community energy
operations, planning, and investment would be valuable.

ACKNOWLEDGMENT

The authors greatly appreciate numerous team discussions
about energysheds with colleagues at UVM, including
Jeff Marshall, Jon Erickson, Greg Rowangould, Dana
Rowangould, Bindu Panikkar, Hamid Ossareh, Eric
Seegerstrom, Emmanuel Badmus, and Omid Mokhtari, as
well as utility partners at Green Mountain Power (GMP),
Vermont Electric Cooperative (VEC), Stowe Electric
Department, and Vermont Electric Company (VELCO), and
helpful feedback from Lorenzo Kristov.

REFERENCES

[1] A. De La Garza, “This Vermont utility is revolutionizing its power
grid to fight climate change. Will the rest of the country follow suit?”
Time Magazine, Jul. 2021.

[2] S. E. Berggren et al., “Energy communities,” Nordic Energy Research,
August 2023.

[3] The Federal Assembly of the Swiss Confederation, “Federal law on
a secure electricity supply with renewable energies,” Editions of the
Federal Gazette, September 2023.

[4] L. Kristov, P. De Martini, and J. D. Taft, “A tale of two visions:
Designing a decentralized transactive electric system,” IEEE Power
and Energy Magazine, vol. 14, no. 3, pp. 63–69, 2016.

[5] U.S. Department of Energy Office of Energy Efficiency &
Renewable Energy, “Clean energy to communities program,”
energy.gov, Accessed: Nov. 18, 2023. [Online.] Available:
https://www.energy.gov/eere/clean-energy-communities-program.

[6] L. Illing, K. Yee, and R. Knapp, “From watershed to energyshed:
Determining the implications of place-based power generation
workshop and request for information summary report,” U.S.
Department of Energy Office of Energy Efficiency & Renewable
Energy, Washington D.C., USA, Tech. Rep., 2022.

[7] J. C. Evarts, “Energyshed framework: Defining and designing
the fundamental land unit of renewable energy,” Master’s thesis,
Dalhousie University, Halifax, Nova Scotia, April 2016.

[8] C. DeRolph et al., “City energysheds and renewable energy in the
United States,” Nature Sustainability, no. 2, pp. 412–420, 2019.

[9] A. Thomas and J. D. Erickson, “Rethinking the geography of energy
transitions: Low carbon energy pathways through energyshed design,”
Energy Research & Social Science, vol. 74, p. 101941, 2021.

[10] K. Schreiber et al., “Quantifying the foodshed: a systematic review
of urban food flow and local food self-sufficiency research,”
Environmental Research Letters, vol. 16, no. 2, p. 023003, 2021.

[11] “2022 Vermont comprehensive energy plan,” Vermont Department of
Public Service, Montpelier, VT, Tech. Rep., 2022.

[12] S. Chevalier and M. R. Almassalkhi, “Towards optimal Kron-based
reduction of networks (Opti-KRON) for the electric power grid,” in
IEEE CDC, Cancún, Mexico, 2022, pp. 5713–5718.

[13] H. Lo, S. Blumsack, P. Hines, and S. Meyn, “Electricity rates for the
zero marginal cost grid,” The Electricity Journal, vol. 32, no. 3, pp.
39–43, 2019.

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
UK: Cambridge University Press, 2004, ch. 4, pp. 144–146.

[15] R. Zimmerman et al., “Matpower: Steady-state operations, planning,
and analysis tools for power systems research and education,” IEEE
Trans. Power Syst., vol. 26, no. 1, pp. 12–19, 2011.

[16] M. Lubin et al., “JuMP 1.0: Recent improvements to a modeling
language for mathematical optimization,” Math. Program.
Computation, 2023.
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