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Abstract—This paper uses convex inner approximations (CIA)
of the AC power flow to tackle the optimization problem of
quantifying a three-phase distribution feeder’s capacity to host
distributed energy resources (DERs). This is often connoted host-
ing capacity (HC), but herein we consider separative bounds for
each node on positive and negative DER injections, which ensures
that injections within these nodal limits satisfy feeder voltage
and current limits and across nodes sum up to the feeder HC.
The methodology decomposes a three-phase feeder into separate
phases and applies CIA-based techniques to each phase. An
analysis is developed to determine the technical condition under
which this per-phase approach can still guarantee three-phase
constraints. New approaches are then presented that modify the
per-phase optimization problems to overcome conservativeness
inherent to CIA methods and increase HC, including selectively
modifying the per-phase impedances and iteratively relaxing per-
phase voltage bounds iterative method has been proposed to
modify the voltage bounds. Discussion is included on trade-offs
and feasibility. To validate the methodology simulation-based
analysis is conducted with the IEEE 37-node test feeder and
a real 534-node unbalanced radial distribution feeder.

Index Terms—Distributed energy resources, convex optimiza-
tion, hosting capacity, distribution system, three-phase power.

I. INTRODUCTION

As the deployment of distributed energy resources (DERs)
in power grids continues to accelerate, their utilization in
a number of ancillary services is increasing [1]. In this
context, DERs can be managed by aggregators, which dispatch
them in response to market signals, often without taking into
account the limitations of the grid. This lack of consideration
can potentially lead to violations of critical grid constraints,
including voltage and transformer limits. Therefore, there is
an urgent need for what is referred to as Grid-aware DER
coordination, which involves effectively accounting for AC
network constraints during the coordination of DERs [2].

Various methods have been proposed in the technical litera-
ture for grid-aware DER coordination. One common approach
is to restrict the amount of power that each customer can
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export to the grid [3]. However, this method can be overly
conservative, and with the rapid increase in the number of
DERs connected to the grid, these fixed limits can become
outdated and require frequent updates [4].

In direct control schemes, it is assumed that the grid
operator has access to all DER data and can directly control
DERs [5], [6]. While direct control methods can theoretically
provide optimal solutions, they often rely on strong assump-
tions related to observability and controllability. In practice,
DER aggregators do not have access to grid data, and grid
operators do not have full control over DERs.

Alternatively, [7] proposes an approach where the grid
operator adjusts locational marginal prices (LMPs) based on
grid conditions to incentivize the aggregator to adapt the DER
aggregate load accordingly. However, this paper assumes a
balanced distribution system, which may not hold in real-world
applications. In [8], two mechanisms are presented to allow the
grid operator to override DER aggregator dispatch decisions
to ensure grid constraints are not violated. One limitation is
that in certain electric markets, the grid operator may not have
the authority to block aggregator control decisions.

Another approach is for the grid operator to establish
limits on the amount of injection from each node to preserve
grid constraints. This approach requires minimal information
exchange between the grid operator and aggregator. In [4],
the concept of operating envelopes is introduced, where the
grid operator uses linear or model-free methods to issue time-
varying export/import limits to aggregators. A convex inner ap-
proximation (CIA) is presented in [9] for maximizing voltage
margins, which is generalized in [10] to compute feeder hos-
ing capacity of balanced or single-phase distribution feeders.
In [11], a sequential algorithm is presented that constructs a
convex restriction around an initial feasible point, subsequently
refining it to obtain an improved feasible solution. This work
is extended further in [12], where the approach is enhanced to
account for robustness against uncertainty in power injections.
In [13], a model-free approach is introduced, leveraging his-
torical meter data and neural networks to eliminate the need
for solving the non-convex AC OPF problem in unbalanced
distribution feeders. It demands access to substantial volumes
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of meter data, which may not always be readily available.
Additionally, it’s important to note that model-free methods
can exhibit sensitivity to the quality and distribution of data.
In [14] a bottom-up approach is presented where DERs submit
power injection requests based on their local controllers to the
grid operator. The grid operator can deny injection requests
if a three-phase power flow analysis indicates a risk of grid
constraint violation. An optimization model for assessing the
hosting capacity (HC) of DERs, taking into consideration
the anticipated network conditions during demand response
scheduling and adapting to the real-time network state is
developed in [15].

Thus, in the literature there are either simplified models used
to compute hosting capacities with no guarantees or guarantees
applicable only for simplified systems. It is within this context
that this paper contributes to the field of computing hosting
capacity for realistic systems with outlined trade-offs between
optimality and guaranteed feasibility:

• The recently presented optimization-based approach for
computing hosting capacity of single-phase distribution
feeders in [10] has been extended to three-phase, unba-
lanced distribution feeders. An analysis is also conducted
to provide technical conditions under which our proposed
per-phase HC estimates can be combined to guarantee
that 3-phase phase grid constraints are satisfied.

• The HC estimate for unbalanced feeders is then improved
by iteratively adjusting voltage bounds within the per-
phase optimization framework, accounting for mutual
impedances and unbalanced loadd in the 3-phase system.

• Finally, the methodology is validated through simulation-
based analysis on the IEEE 37-node feeder and a real
3-phase network with more then 500 three-phase nodes.

The remainder of the paper is organized as follows: Sec-
tion II provides a concise overview of the preliminary concepts
used in this paper. The proposed approach to extend the CIA-
based method to three-phase unbalanced grids is presented
in Section III. In Section IV, an approach for ensuring grid
constraint satisfaction is detailed. Section V introduces an
iterative method designed to enhance HC. Finally, numerical
results are provided in Section VI followed by concluding
remarks in Section VII.

II. PRELIMINARIES

This section describes the modeling of distribution feeders
and their hosting capacity (HC). The CIA-based approach
detailed in [9], [10] employs a CIA of the set of feasible
admissible injections. An optimization problem is used to
determine the HC at each node of a distribution feeder. The
total feeder HC is the sum across all nodes. We aim to adapt
this for unbalanced feeders. Next, we discuss the single-phase
equivalent load flow, i.e., DistFlow [16], and the convex HC
formulation.

A. Balanced feeder HC via convex inner approximations

Consider a radial (single-phase) distribution feeder as a tree
graph G = (V, E) with N nodes V := {1, . . . , N} and N − 1

branches E ⊆ V×V , such that if nodes i and j are connected,
then (i, j) ∈ E . At each node i ∈ V , DistFlow considers the
square of the voltage phasor magnitude, i.e., Vi := |vi|2 and
complex power injections are denoted si = pi+ jqi. Node 0 is
assumed to be the substation (slack) node with a fixed voltage
V0. Through each branch with impedance zij = rij + jxij , we
consider the square of the current phasor, i.e., lij := |Iij |2 and
the active and reactive power flows, Pij and Qij . Thus, from
the DistFlow formulation and applying [17], the relationships
between voltages and branch power flows and nodal injections
and line currents can be defined as

V = V01N +Mpp+Mqq −Hl (1a)
P = Cp−DRl (1b)
Q = Cq −DX l, (1c)

where appropriately-sized matrices Mp, Mq , H , C, DR, DX

are detailed in [9], [10] and serve to map injections and
currents to corresponding voltages and branch power flows
across the network. Besides the linear equations in (1), the
DistFlow also relates voltages and power flows to currents via
non-convex

lij(P,Q, V ) = (P 2
ij +Q2

ij)/Vi. (2)

The non-linear (2) makes the DistFlow formulation non-
convex within an optimal power flow (OPF) setting. Thus, we
are interested in utilizing a CIA of the DistFlow formulation.
The CIA effectively bounds the nonlinear lij with a convex
envelope: l−(P,Q, V ) ≤ lij(P,Q, V ) ≤ l+(P,Q, V ), which
enables the creation of two sets of variables: upper (+) and
lower proxies (−), e.g., V − ≤ V ≤ V +. As long as the lower
proxies satisfy lower limits and upper proxies satisfy upper
limits, e.g., V ≤ V − and V + ≤ V̄ , then we are guaranteed
that the physical variable satisfies, e.g., V ≤ V ≤ V̄ . This
guarantee means that we can replace the physical variables
altogether and replace them with their convex proxies.

Consider for example a feeder with inductive branches, i.e.,
xij > 0, ∀(i, j) ∈ E [9]. Then, we can replace the non-convex
formulation in (1) and (2) with their convex proxies:

V + = V01N +Mpp+Mqq −Hl− (3a)
V − = V01N +Mpp+Mqq −Hl+ (3b)
P+ = Cp−DRl

− (3c)

P− = Cp−DRl
+ (3d)

Q+ = Cq −DX l
− (3e)

Q− = Cq −DX l
+. (3f)

l+ ≥ fquad(P
+, P−, Q+, Q−, V +, V −) (3g)

l− := faff(P
+, P−, Q+, Q−, V +, V −), (3h)

where l− is affine in the proxy variables while l+ is a convex
relaxation of a quadratic function of the proxy variables. Please
see Appendix A for derivations of faff and fquad and [9], [10]
for full details. Finally, the feeder HC is then the maximum
sum of nodal injections, p+i := p∗i , that drives the feeder to
its capacity (e.g., voltage, current, or power flow limits are

23rd Power Systems Computation Conference

PSCC 2024

Paris, France — June 4 – 7, 2024



active). The convex formulation that achieves this objective is

Pϕ,+
CIA : p+ := argmax

pi

N∑
i=1

wipi (4a)

subject to (3) (4b)

l ≤ l− l+ ≤ l (4c)

V ≤ V − V + ≤ V (4d)

p2i + q2i ≤ si2, ∀i ∈ V, (4e)

where wi are design parameters that differentiate nodal capac-
ities. Note that inequality (4e) is optional and captures limits
on active injections based on apparent power limits at each
node (e.g., from inverter, transformer, or power factor limits).
Other constraints on P+/−, Q+/− may also be added.

The HC for DER injections (e.g., solar PV) is defined as

HC :=
N∑
i

p+i = 1⊤
Np

+ > 0. (5)

Similarly, we can define the HC relative to consumption (e.g.,
electric vehicle HC) as HC :=

∑N
i p−i = 1⊤

Np
− < 0, where

p− is the solution that minimizes the nodal (net) injections,
i.e.,, solve corresponding Pϕ,−

CIA problem, whose details are
omitted due to page limits. Thus, HC ≤ 0 ≤ HC.

However, since Pϕ,+
CIA and Pϕ,−

CIA employ a CIA of Dist-
Flow, the HC estimates are valid only for balanced, radial
distribution feeders. We are now interested in how to adapt
this CIA-based method to a realistic unbalanced distribution
feeder, which means that we need to consider the effects of
mutual phase impedance and load unbalances.

B. Unbalanced distribution power flow

Consider a three-phase, radial graph G, wherein each node
represents three phases: a, b, c. Similarly, each branch repre-
sents a three-phase line section with a corresponding 3 × 3
impedance matrix, which is expressed as,

z3ϕij :=

za
ij zab

ij zac
ij

zba
ij zb

ij zbc
ij

zca
ij zcb

ij zc
ij

∀(i, j) ∈ E . (6)

Voltage at 3-phase node i is denoted V 3ϕ
i =

[
V a
i , V

b
i , V

c
i

]⊤
and current in branch (i, j) ∈ E is I3ϕij =

[
Iaij , I

b
ij , I

c
ij

]⊤
. The

line voltage drop and currents are related by

∆V 3ϕ
ij := V 3ϕ

i − V 3ϕ
j = z3ϕij I

3ϕ
ij ⇒ ∆V 3ϕ = Z3ϕI3ϕ, (7)

where, I3ϕ = [I3ϕij ](i,j)∈E ∈ C3(N−1) represents the complex
three-phase currents, V 3ϕ = [V 3ϕ

i ]i∈V ∈ C3N corresponds
to the three-phase voltages, Z3ϕ ∈ C3(N−1)×3(N−1) is the
complex three-phase impedance matrix

Next, we seek to extend the CIA-based method from bal-
anced (single-phase equivalent) feeders to unbalanced feeders.

III. EXTENDING CIA TO UNBALANCED FEEDERS

Given an unbalanced feeder, how can we approximate or
decompose it for HC analysis? In this section, we seek to
answer this question. Specifically, we consider methods for
1) approximating feeders as balanced (e.g., by modifying line
impedances and nodal loads and 2) decomposing feeders along
their phases. These are summarized next.

• Method 1 - balanced feeder approximation: This
strategy involves transforming an unbalanced feeder into
an approximate balanced model, which is then used to
determine p−, p+ from P

ϕ,+\−
CIA . The resulting per-phase

HC is then distributed equally to each phase. We consider
two different ways to approximate a balanced feeder:
i) Take the maximum line impedance and minimum loads

across all three phases to capture the worst-case voltage
drop/rise.

ii) Average line impedances and loads across phases a/b/c
to create a balanced approximation of a feeder. This
approximation can potentially cause voltage violations
at the corresponding HC value.

• Method 2 - per-phase analysis: In this approach, we
extract each phase separately and compute p− and p+.
This per-phase approach is considered for two different
implementations:
i) One phase is selected and nodal HC values, (p−i , p

+
i ),

are computed for that phase. For the 3-phase feeder, the
same (p−i , p

+
i ) values are then applied to all phases at

a three-phase node. We denote the sub-methods 2iϕ for
ϕ = {a, b, c}, e.g., HC3ϕ = 3×1⊤

Np
+
a for method 2ia.

ii) All three phases are extracted separately and we com-
pute (p−, p+) for each phase, which yields hosting
capacity, e.g., HC3ϕ = 1⊤

N (p+a + p+b + p+c ).
Each of these methods estimate the three-phase HC, e.g.,

HC by computing net nodal injections, e.g., p+ϕ , which are
then applied to the full three-phase network to determine
the corresponding three-phase voltages and currents. In Fig.1,
these voltage and current profiles for Method 2ii are presented
for the IEEE 37-node test feeder [18]. As can be seen, despite
single-phase analysis underpinning the HC estimate, phase
voltages are within V = 1.05 pu across all nodes and phases.
Next, we are interested in metrics that can be used to compare
the different methods.

• Total number of violations, Nv , counts the number of
nodes and phases for which |V 3ϕ

i | /∈ [V , V ].
• Maximum violation in per unit, Mv , provides a measure

of the severity of the violations:

Mv = max
i=1,...,3N

{
max

{
0, Eu

i , E
l
i

}}
, (8)

where, Eu := |V 3ϕ| − V 13N and El := V 13N − |V 3ϕ|.
• Sum of violations, Sv , captures the cumulative severity

of violations across the network:

Sv =

3N∑
i=1

max
(
0, Eu

i , E
l
i

)
. (9)
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Fig. 1. Illustrating the effects of Method 2ii on three-phase voltage and current
profiles following the addition of nodal injections p+a +p+b +p+c . The dashed
red line indicates the ANSI voltage limits of [0.95, 1.05] pu.

• Average voltage margin, WM , measures how conserva-
tive the HC results from P

ϕ,+/−
CIA are:

WM =
1

3N

3N∑
i=1

max {0,∆Wi} , (10)

where ∆Wi := min
{
|V 3ϕ

i | − V , V − |V
3ϕ
i |

}
.

• Voltage unbalance factor (VUF) provides a relative
measure (in %) of voltage unbalance caused by nodal
HC injections:

VUF =
100

N

N∑
i=1

max
{
|V 3ϕ

i | − 1
31

⊤
3 |V

3ϕ
i |13

}
1
31

⊤
3 |V

3ϕ
i |

. (11)

Table I uses the metrics above to compare HC estimates, i.e.,
using Pϕ,+

CIA . Notably, the comparison shows that Method 2ii
provides the largest HC without incurring any voltage vio-
lations. It should be noted that although the HC is larger
in method 2ic, the corresponding nodal HC injections cause
undesirable voltage violations.

Given that Method 2ii uses information from all phases
without averaging, it is somewhat expected that Method 2ii
could outperform the other approaches. Of course, when
optimizing nodal injections across phases separately can lead
to (net) load imbalances that cause larger VUF (but still
well within typical 2% limits). Nonetheless, results in Table I
justifies the selection of Method 2ii for further analysis.

It is important to note that HC results obtained from per-
phase analysis with Pϕ,+

CIA and Pϕ,−
CIA can result in voltage

violations when applied to unbalanced networks, including for
Method 2ii This is because per-phase methods neglect mutual
impedances. In the next section, technical conditions are
presented under which per-phase analysis and HC optimization
extend to three-phase networks.

TABLE I
PERFORMANCE OF THE PROPOSED METHODS

Method Nv Mv(pu) VUF
(%)

Sv

(pu)
WM

(pu)
HC
(MW)

1i 0 0 0.21 0 0.026 15.33
1ii 1 0.001 0.23 0.001 0.025 15.55

2ia 0 0 0.22 0 0.025 15.20
2ib 0 0 0.22 0 0.029 15.54
2ic 3 0.003 0.23 0.005 0.023 15.94

2ii 0 0 0.33 0 0.025 15.57

IV. GUARANTEEING THREE-PHASE GRID CONSTRAINTS

In this section, we present an approach for adapting the per-
phase HC estimates while guaranteeing no voltage violations
when applied to the full three-phase network. The method
effectively modifies the impedance matrix. We also modify
the approach to adjust the conservativeness and show that the
corresponding voltage violations are significantly reduced. The
approach makes the following assumptions:

Assumption 1. The sum of the phase load currents is zero.

Assumption 2. Three-phase lines are transposed, such that

mutual impedances are identical: z3ϕij =

zaij zmij zmij
zmij zbij zmij
zmij zmij zcij

.

From the above assumptions, the following theorem holds.

Theorem 1. Given a 3-phase system that satisfies Assump-
tions 1 and 2, if per-phase optimization Pϕ,+

CIA satisfies V ≤
Vi(p

+) ≤ V ∀i ∈ V , then the three-phase system satisfies
V ≤ V 3ϕ

i (p+) ≤ V ∀i ∈ V . Same holds for Pϕ,−
CIA and Vi(p−).

Proof: please see Appendix B.

Theorem 1 states when a three-phase distribution feeder can
be decomposed into three decoupled single-phase distribution
systems with modified impedances, zϕij − zmij , to provide
guarantees that the resulting HC will not engender voltage
violations in the three-phase system.

Remark 1. Using a similar approach, and by further as-
suming identical conductor impedances zaij = zbij = zcij ,
Theorem 1 extends to Delta-connected loads.

To illustrate Theorem 1, we briefly modify the IEEE 37-
node feeder by setting all mutual impedances equal to zab

ij ,
while simultaneously matching the loadings of phases b and c
to that of phase a.

From each phase, we construct a sub-feeder from which
we can compute nodal HC (net) injections p−i and p+i us-
ing Method 2ii. The resulting voltages of the single-phase
networks, |Vi|, are then compared with those of the full
3-phase load flow, |V 3ϕ

i |, with the 3-phase (net) injections
p+3ϕ := [p+a,i, p

+
b,i, p

+
c,i]i∈V added to the system load.

In Fig. 2, a scatter plot of three-phase and single-phase
voltage magnitudes is provided, i.e., |V 3ϕ

i | vs. |Vi| for the
modified IEEE 37-node system. The red dots represent |V 3ϕ

i |
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Fig. 2. Comparison between three-phase and single-phase voltages for the
modified IEEE 37-node system. The dashed red lines indicate the voltage
limits.

Fig. 3. Three-phase voltages after modifying the impedance matrix based on
Theorem 1 for the IEEE 37-node system.

with injections p+3ϕ added and the blue dots correspond to
|V 3ϕ

i | when p−3ϕ is added. As expected, voltage violations arise
from unmodeled unbalanced loads and mutual impedances.

To mitigate the voltage violations, we adjust the impedance
matrix per Theorem 1. Specifically, in P+

CIA and P−
CIA, the

impedance of each line is augmented by mutual impedance
(zmij ), which is set to be the same for all phases (zmij ) in the
modified test system. It should be noted that using the modified
impedance in P+

CIA and P−
CIA successfully eliminates voltage

violations. However, it comes at the cost of a significantly
reduced HC. Specifically, HC decreases from 15.6 MW to
12.3 MW (a 20% reduction), while HC decreases from 9.0
to 6.0 MW (a 33 % reduction). The large drop in estimated
HC is, in large part, due to the margins added at every node
in each phase. We denote the approach to solving P−

CIA with
modified impedance from Theorem 1 as Mod-Z HC.

TABLE II
THE IMPACT OF MODIFYING THE IMPEDANCE MATRIX ON HC AND
VOLTAGE VIOLATIONS FOR THE MODIFIED IEEE 37-NODE SYSTEM.

ϵ (pu) 0 0.0005 0.0010 Method 2ii

HC (MW) 12.31 15.47 15.47 15.55
HC (MW) -6.02 -8.88 -8.89 -8.96
# violations 0 0 2 6
# modified lines 36 5 2 -

In the remainder of this section, we present a simulation-
based approach to adjust the impedance matrix in Mod-Z
to reduce the voltage violations. Thus, instead of (naively)
altering the impedance for all branches at once, the branches
connected to nodes with simulated voltage violations are not
modified. Specifically, we modify the impedance of lines
connected to nodes which satisfy the following condition,

|V 3ϕ
i | − |Vi| < ϵ ∀i, (12)

where ϵ is a design parameter that allows us to limit the
number of line modifications. The more lines we modify, the
larger HC we get, but with the downside of more voltage
violations. No free lunch in engineering.

To explore this tradeoff further, Table II tabulates the effects
of different ϵ values in the Mod-Z approach. Clearly, with ϵ =
0.001 pu, only 5 of 36 lines are modified, all voltage violations
are eliminated, and the increase in HC is more than 26%. That
is pretty close to a free lunch. We denote the approach of
solving P

+/−
CIA with modified impedance from Theorem 1 as

Mod-Z HC.
This section showed the value of selectively modifying line

impedances to enable per-phase optimization to apply directly
to unbalanced distribution systems. Next, we seek to further
enlarge the three-phase HC by not just modifying impedances
of each phase, but also by (incrementally) relaxing voltage
bounds in the per-phase optimization formulation.

V. ITERATIVE VOLTAGE BOUNDS TO INCREASE HC

In this section, a novel approach is introduced that incre-
mentally improves the three-phase HC estimate by coupling
3-phase load flows with per-phase optimization P

ϕ,+\−
CIA . The

proposed Method is summarized in Fig. 4 and outlined as
follows for p+ HC (the approach is similar for p− and HC):
Step 1: Single-phase optimization: given per-phase voltage

bounds V and V , solve P+
CIA for each phase using

Method 2ii to get nodal HC values p+ϕ and HCϕ.
Step 2: Single-phase load flow: Apply p+ϕ to each phase ϕ

and perform single-phase load flow: V per
ϕ and Iper

ϕ .
Step 3: Three-phase load flow: Apply {p+ϕ }ϕ={a,b,c} to 3-

phase system and perform load flow: V 3ϕ and I3ϕ.
Step 4: Termination condition: The algorithm stops if any

element of |V 3ϕ
i | exceeds [V , V ].

Step 5: Estimate per-phase voltage: The per-phase model
ignores mutual impedances, which leads to a voltage
difference across phases relative to the three-phase
model. To estimate this difference, consider (7) and
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Fig. 4. Flowchart of the proposed iterative voltage bound approach.

assume currents Iϕij ≈ I3ϕij,ϕ are common across both
the per-phase and three-phase systems. Then, the
estimated voltage for each phase becomes,

V est
j = V est

i −

za
ij zab

ij zac
ij

zba
ij zb

ij zbc
ij

zca
ij zcb

ij zc
ij

 I3ϕij ∀(i, j) ∈ E .

(13)

Since V est
0 , i.e. head node voltage is known, the

voltage of other nodes of a radial grid can be found
using (13).

Step 6: Per-phase voltage difference : Using (13), the differ-
ence in per-phase voltage can be found as,

∆Vi = |V est
i | − |V

per
i | ∀i ∈ V. (14)

Step 7: Updating voltage bounds: the voltage bounds are up-
dated for Pϕ,+

CIA to reflect the cumulative path voltage
difference that arises due to per-phase optimization
neglecting mutual impedances. The update is as fol-
lows:

V ← V +∆Vi

V ← V −∆Vi. (15)

Step 8: Iterate: Go to Step 1.
Next section, numerical results are presented to validate the

proposed methodology.

VI. NUMERICAL RESULTS

In this section, simulation results on IEEE 37-node test
system are presented together with a realistic 534-node radial
distribution system from Vermont. IEEE 37-node test system is
a three-phase, unbalanced medium voltage (4.8 kV) network
with a total load of 2.45 MW. The realistic feeder used in
this paper is a 7.2 kV radial network including 534 nodes,
533 lines, and 160 loads with a total load of 2.47 MW. The
MATLAB code provided by [19] is used for three-phase sim-
ulations. Using the proposed approach enables an increase in

Fig. 5. Voltage bounds upon termination of the iterative method for Pϕ,+
CIA .

TABLE III
COMPARING THE DIFFERENT METHODS ACROSS TWO NETWORKS.

Network Method 2ii Iterative HC Mod-Z

HC HC HC HC HC HC

IEEE 37
HC (MW) -9.0 15.6 -9.5 17.0 -9.2 19.6
Run Time (s) 50 58 133 124 49 61

Real Feeder
HC (MW) -42.3 70.7 -71.2 79.2 -24.8 46.6
Run time (s) 148 209 613 422 221 237

the HC. Fig. 5 shows the voltage bounds upon the termination
of the proposed iterative method for Pϕ,+

CIA problem. It is
important to highlight that the outcomes obtained using the
Mod-Z method differ from those in Table II because we used
the original 37-node feeder instead of its modified version
from Section IV that satisfied Assumptions 1 and 2. The
mutual impedance values are set as zmij = (zbc

ij + zac
ij + zab

ij )/3

in the Pϕ,+
CIA . It can be seen that all of the three-phase voltages

are within V , V .
For the IEEE 37-node system, the results of p−i and p+i

obtained from three different methods—Method 2ii, Mod-Z,
and the iterative HC approach—are displayed in Fig. 6. It
is worth noting that the iterative method, can lead to lower
nodal hosting capacity (p+i and p−i ) at some of the nodes.
However, HC and HC consistently show improvements when
utilizing the iterative method. This enhancement is achieved
by leveraging information regarding the mutual impedance of
the grid. This increase in hosting capacity does not lead to any
voltage violations, therefore no line modification is required
in Pϕ,+

CIA . That is, Mod-Z is not used for iterative method.
Fig. 7 presents |V 3ϕ| for Methods 2ii and the iterative

voltage bound method applied to the 534-node network for
Pϕ,−

CIA . It can be seen that using the proposed iterative method,
the voltage profile becomes more unbalanced. Specifically, the
VUF increases from 0.44% in Method 2ii to 1.37% in the
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Fig. 6. Comparing the hosting capacity calculation from the iterative approach
to that of Method 2ii and Mod-Z for 37-node network.

Fig. 7. Voltage profiles for 534-node feeder. The top figure illustrates the
voltage profile using Method 2ii, while the bottom figure presents the voltages
obtained from the proposed iterative HC method. In these figures, blue, red,
and yellow correspond to phases a, b, and c, respectively.

iterative voltage bound method.
It is important to note that the optimization problem may

result in very small HC values in some nodes while leading
to significantly higher HC values in a few nodes within the
system. This discrepancy can raise concerns regarding fairness
since only certain consumers will be permitted to install DERs.
We consider two sets of wi, in the objective function and
evaluate the HC for a realistic 534-node network under two
scenarios: 1) Weight values (wi) for leaf nodes are halved
compared to other nodes. 2) Weight values for leaf nodes
are doubled compared to other nodes. Modifying the wi

coefficients enables us to expand the locations where DERs
can be installed. However, this adjustment comes at the cost
of reduced HC, which decreases from 78.1 MW to 27.6 MW,
and reduced HC, which decreases from 44.9 MW to 13.1 MW.

Future research efforts could delve into exploring the trade-

off between fairness in DER allocation and its impact on the
overall HC of the grid.

VII. CONCLUSION

This paper has introduced a comprehensive approach to
obtaining the DER HC in a three-phase distribution feeder.
Leveraging CIA of the AC power flow, our methodology
establishes bounds on positive and negative DER injections at
each node. A rigorous analysis is developed to ascertain the
conditions under which this per-phase approach can guarantee
compliance with three-phase constraints. The approach is
capable of improving HC. Furthermore, we have presented
an iterative approach to enhance HC by adjusting per-phase
voltage bounds. A simulation-based analysis using both the
IEEE 37-node test feeder and a real 534-node unbalanced
radial distribution feeder is performed and results demonstrate
that the proposed iterative method increases the feeder HC.
Potential future research encompasses the extension of the pro-
posed method to analyze comprehensive 3-phase networks, as
well as comparing its conservativeness to the method presented
in this paper. Additionally, extending the HC analysis methods
to meshed distribution and sub-transmission networks will be
explored in future work.
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APPENDIX

A. Derivation of current proxy bounds l− and l+

The goal of this appendix is to clarify the structure of
the affine faff(.) and quadratic fquad(.) functions that un-
derpin bounds l−, l+ used in (3). To derive the lower and
upper bounds of l, we consider the second-order Taylor-
series approximation of (2) about an appropriate nominal
operating point, x0ij := col{P 0

ij , Q
0
ij , v

0
j } ∈ R3. This yields

an approximation that is accurate across a range of operating
conditions [10]:

lij(Pij , Qij , Vi) ≈ l0ij(x0ij) + J⊤
ij δij +

1

2
δ⊤ijHe,ijδij , (16)

where δij := [Pij−P 0
ij , Qij−Q0

ij , vj−v0j ], the Jacobian, Jij ,
and Hessian, He,ij , are defined as

Jij :=
[
2P 0
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 . (18)

From (16), the square of current magnitude is always
positive, so:

lij = |lij | ≈
∣∣∣∣l0ij + J⊤

ij δij +
1

2
δ⊤ijHe,ijδij

∣∣∣∣ . (19)
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Applying the triangle inequality and the fact that Hessian
in (18) is positive semi-definite (PSD) [9], we have

lij ≤ l0ij +
∣∣J⊤

ij δij
∣∣+ 1

2
δ⊤ijHe,ijδij . (20)

Applying the properties of the maximum operator, we get
quadratic function:

lij ≤ l0ij +max
{
2
∣∣J⊤

ij δij
∣∣ , δ⊤ijHe,ijδij

}
. (21)

Note that the RHS of (21) is quadratic in terms of the three
physical variables (Pij , Qij , Vi) that embody δij . To charac-
terize the upper bound in terms of the proxy variables requires
considering worst-case combinations of upper (+) and lower
(−) proxy variables, i.e., over all eight combinations: δ+ij :=

δij(P
+
ij , Q

+
ij , V

+
i ), δij(P+

ij , Q
+
ij , V

−
i ), . . ., δij(P−

ij , Q
−
ij , V

+
i ),

and δ−ij := δij(P
−
ij , Q

−
ij , V

−
i ). Thus, we get:

fquad(.) := l0ij +max
{
2
∣∣J⊤

ij,+δ
+
ij + J⊤

ij,−δ
−
ij

∣∣ , ψij

}
, (22)

where Jij,+ and Jij,− are composed of the positive and
negative entries of Jij , respecitively, and Jij = Jij,+ + Jij,−.
Further, ψij := max{δ+/−

ij He,ijδ
+/−
ij } is the largest product

among the eight proxy pairs. Clearly, relaxing fquad(.) provides
a convex upper bound on lij as utilized in (3).

For the lower bound, consider (16) and drop the term with
PSD He,ij , which gives

lij ≥ l0ij + J⊤
ij δij := lij . (23)

Thus, in terms of proxy variables, we get

faff(.) := l0ij + J⊤
ij,+δ

−
ij + J⊤

ij,−δ
+
ij . (24)

This completes the derivations. For full details on these bounds
and the CIA-based methods and results (for balanced feeders),
please see [9], [10].

B. Proof of Theorem 1

From Assumption 2, the impedance matrix has identical
mutual impedances zmij , which together with (6), means that
∆V 3ϕ

ij can be expressed as,

∆V 3ϕ
ij =

zaijIaij + zmij (I
b
ij + Icij)

zbijI
b
ij + zmij (I

a
ij + Icij)

zcijI
c
ij + zmij (I

a
ij + Ibij)

 . (25)

Now, under Assumption 1, Iaij + Ibij + Icij = 0, which
decouples the phases as

∆V 3ϕ
ij =

zaij − zmij 0 0
0 zbij − zmij 0
0 0 zcij − zmij

 I3ϕij . (26)

The diagonal structure clearly extends per-phase analyses to
the corresponding full 3-phase (unbalanced) feeder. Thus, HC
analysis via Pϕ,+

CIA meets 3-phase voltage requirements. This
concludes the proof.
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