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Abstract—Hybrid Energy Systems (HES), amalgamating re-
newable sources, energy storage, and conventional generation,
have emerged as a responsive resource for providing valuable
grid services. Subsequently, modeling and analysis of HES
has become critical, and the quality of grid services hedges
on it. Currently, most HES models are temperature-agnostic.
However, the temperature-dependent factors can significantly
impact HES performance, necessitating advanced modeling and
optimization techniques. With the inclusion of temperature-
dependent models, the challenges and complexity of solving
optimization problem increases. In this paper, the electro-thermal
modeling of HES is discussed. Based on this model, a nonlinear
predictive optimization framework is formulated. A simplified
model is developed to address the challenges associated with
solving nonlinear problems. Further, projection and homotopy
approaches are proposed. In the homotopy method, the NLP
is solved by incrementally changing the C-rating of the bat-
tery. Simulation-based analysis of the algorithms highlights the
effects of different battery ratings, ambient temperatures, and
energy price variations. Finally, comparative assessments with
a temperature-agnostic approach illustrates the effectiveness of
electro-thermal methods in optimizing HES.

Index Terms—Hybrid energy systems, energy storage, solar
PV, temperature-dependent modeling, predictive optimization,
homotopy, projection

I. INTRODUCTION

The imperative to decarbonize the electric power sector and
fortify grid resilience has sparked heightened interest in the
seamless integration of renewable energy sources [1]. Dis-
tributed generation and microgrids have emerged as promising
solutions, offering localized generation and enhanced grid ro-
bustness [2]. However, the inherent intermittency of renewable
sources poses significant challenges to grid stability and reli-
ability. Addressing these limitations requires a transformative
shift towards adopting cutting-edge Hybrid Energy Systems
(HES), intelligently combining diverse energy sources and ad-
vanced storage technologies [3]. Through precise orchestration
of energy source integration, these HES exhibit remarkable
potential in mitigating the drawbacks associated with DG and
microgrids, thereby ensuring reliable power [4]. Through a
cohesive approach that harnesses renewable energy sources
alongside state-of-the-art energy storage, HES offers enhanced
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grid stability, improved energy management, increased re-
silience, flexibility, reduced emissions and cost-effectiveness
through optimized energy management, leveraging diverse
energy sources and storage technologies with greater energy
security over DG and micro-grids [5], [6].
As the number of HES technologies increases, the technology
gap associated with their analysis becomes more significant
[7]. This significance is accentuated under extreme weather
conditions, where the temperature dependence of various HES
components becomes crucial. The 2021 winter storm Uri,
Texas proved a fantastic revenue opportunity for batteries,
enabling some systems to return multiples of their capital
installation costs in a single year. The battery resources with
the highest and lowest revenue differed by two primary factors:
bidding optimization and time in the market [8]. Similarly, the
September 2022 California heat wave highlighted batteries’
substantial role by contributing a significant portion of their ca-
pacity to the market, impacting regulation dynamics. Operating
constraints, particularly those tied to the state of charge (SoC)
and related factors, emerge as pivotal under exigent circum-
stances like extreme weather [9]. These variables collectively
underscore the disproportionate revenue impact experienced
amidst extreme weather conditions.
Many battery manufacturers ignore ambient weather’s in-
fluence on performance, opting for large, insulated enclo-
sures to mitigate environmental effects using HVAC systems.
As demand for fast-charging batteries rises, HVAC com-
plexity grows. Consequently, battery dispatch scheduling be-
comes highly temperature-dependent and must consider HVAC
performance and power consumption. To enable predictive
scheduling in such systems, temperature-dependent models are
crucial. These models, tailored to high-rate discharge batteries,
ensure efficient utilization amidst varying weather conditions,
aligning battery performance with evolving energy system
needs [10]. Optimal scheduling of HES using temperature-
dependent models entails several challenges, such as model
complexity, the introduction of non-linearities into the sys-
tem’s behavior, mixed integer nature due to discrete operating
modes, increased dynamic nature, and limited data associated
with thermal variables.
Numerous contemporary studies have explored solutions to
these problems. In [11], a machine learning-based algorithm
was proposed to optimize the HES. However, this approach
does not account for simultaneous charging discharging (SCD)
of the battery and neglects the battery’s temperature depen-
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dence. In [12], the emergence of suboptimal solutions due
to SCD has been discussed and a convex battery model is
introduced to ensure optimal outcomes. Notably, this model
is applicable only if battery power is not exported back to
the grid. In [13], a weighted battery power term was intro-
duced into the objective function to mitigate SCD in multi-
period distributed energy resources (DER) dispatch, aiming at
objectives such as voltage regulation, line loss minimization,
and power reference point tracking. A non-linear IVQ model
for battery optimization is proposed in [14]. Here, SCD has
been excluded by allowing curtailing generation at no cost.
However, these models do not account for thermal constraints
limiting battery charge and discharge. Temperature effect
and thermal impact on the performance of Li-ion batteries
are detailed in [15]. Hence, a comprehensive electro-thermal
model was developed that emphasizes the physical attributes
of the battery and associated losses [16]. Different electro-
thermal battery models are presented and it can be observed
that battery system complexity increases with thermo-dynamic
considerations [17].
This paper discusses a temperature-dependent model for HES
based on physical dynamics. It formulates and analyzes a
non-convex, non-linear problem (NLP) for predictive HES
scheduling using the temperature-dependent HES model. It
introduces a simplified mixed integer model to obtain the
best solution under simplified constraints while identifying
the bounds of the objective. However, this simplified solution
may not guarantee feasibility in the original NLP. Therefore,
a projection algorithm is proposed to find the closest feasible
NLP solution to the best solution obtained from the simplified
model. Additionally, an incremental homotopy algorithm is
introduced to ensure the best NLP solution over the battery’s
C-rating. The paper presents various case studies demonstrat-
ing the performance of both the NLP and simplified HES
models, along with the projection and homotopy algorithms.
Furthermore, a temperature-agnostic HES model has been used
and compared with the original NLP model’s solution to assess
its dispatch schedule’s feasibility. The predictive optimization
has been stress-tested against the negative energy prices. The
PV curtailment approach has been integrated into problem
formulation to avoid the loss of revenue during negative
pricing.
The structure of the paper is given as: Section II and Section III
detail HES and its subcomponent models, including temper-
ature dependencies, respectively. Section IV formulates rev-
enue maximizing models and discusses associated challenges.
Section V presents performance comparisons of HES models
under different conditions. Section VI provides the paper’s
conclusion.

II. HYBRID ENERGY SYSTEM DESCRIPTION

An HES represents an amalgamation of energy generation,
storage, and conversion assets whose coordination achieves
desired operational objectives. For example, HES applications
can range from GW-scale multi-energy systems that leverage
waste heat from thermal generators to improve electrolyzer

production to electricity-only, colocated battery+PV off-grid
microgrids to multi-locational virtual power plants (VPPs) [4].
These hybrid PV+battery systems have the potential to reduce
costs and increase the energy output compared to separate PV
and battery storage systems of similar size. Today, PV+battery
HES are being deployed at an increasing rate and is the focus
of this paper [18].
The schematic of a PV+ battery storage HES is shown in
Fig. 1. The PV and battery storage systems are tied to the
grid through a power converter having part-load efficiency.
The part-load efficiency of the power converter depends on DC
power. The total power injected into the grid, denoted as Phes,
is calculated as the combined sum of PV and battery power
contributions, with the ambient temperature dependency. In
the figure, P c

batt and P d
batt represent charging and discharging

power respectively, while P dc
pv is the total dc power output of

the PV arrays with icell and vcell as dc currents and voltages
of each PV cell, respectively. Further details regarding the
electro-thermal battery model can be found in the subsequent
subsection as shown in Fig. 2.

Fig. 1: Schematic diagram of hybrid energy system.

III. TEMPERATURE-DEPENDENT HES MODELS

The paper focuses on optimizing accurate temperature-
dependent models for HES constituents, including PV, battery
storage, and inverters. These models pave the way for metic-
ulous fine-tuning of energy generation, storage, and distribu-
tion, thereby orchestrating effective energy management and
informed decision-making. The ensuing sections delve into the
temperature-dependent modeling intricacies of the HES sub-
components.

A. Power converter model

The power converter interfaces the HES sub-components (PV
and battery) with the grid, assuming a stiff grid voltage. The
relationship between the grid-side power P ac and the input dc
power P dc is determined by the part-load inverter efficiency
ηiv and it is given by [19],

P ac(t) = ηivP
dc(t) (1a)

ηiv = σ(P dc(t)) =
0.95

1 + e−γP dc(t)
(1b)

The σ and γ represent the sigmoid function and the gradient
of the efficiency curve respectively. The dc side of the power
converter is connected to the PV and battery. It has been
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observed from the test results presented in [20] that the
inverter efficiencies typically do not have a strong temperature
dependence. Next, DC-connected PV and battery systems are
discussed.

B. The Photovoltaic (PV) model

One of the simplest and most popular PV models for system-
level studies, is based on the efficiency of the PV cells (ηcell)
and solar irradiance (SI(t)), which is given by [19],

Pcell(t) = ηcellApvSI(t) (2)
where Pcell(t) is the power generation from each cell and Apv
is the area of PV cells in m2. This model has limitations,
notably due to the exclusion of semiconductor physics, tem-
perature impacts, and contact losses. This has been used as a
temperature agnostic model in this paper. This underscores
the necessity for a more accurate PV characterization model.
These limitations can be addressed by building the PV model
from the cell level and expanding it to PV arrays. For this
work, an equivalent circuit model of PV has been used [21],
whose behavior can be described by,

icell(t) = isc(t)− I0

(
e38.9v

pv
oc − 1

)
−
(
vpv

oc

RP

)
, (3)

where isc(t) is the short circuit current and voc(t) is the
open circuit terminal voltage, i.e., the photodiode voltage
when conducting. The constant value 38.9 is calculated at
300K operating temperature from the charge and Boltzmann’s
constant. RP is the parallel resistance denoting the shading
effect. Here, the isc(t) is proportional to the irradiance SI(t).
The voltage and power equations are given by,

vcell(t) = vpv
oc (t)− icell(t)RS (4a)

Pcell(t) = icell(t)vcell(t) (4b)

P in
pv(t) = (L M K) Pcell(t) (4c)

where RS is the series resistance denoting the contact losses,
L is the series connected modules per string, M is parallel
strings and K is the number of PV arrays. The PV output
power is sensitive to changes in temperature. The relation
between ambient temperature (Tamb) and PV cell temperature
(Tcell) is given by,

Tcell(t) = Tamb(t) +

(
(NOCT− 20o)

800

)
SI(t) (5)

where NOCT is nominal operating cell temperature when
Tamb = 20◦C and wind speed is 1 m/s. The temperature-
dependent power and voltage equations of PV cell are given
by [21],

vpv
oc (t) = V std

oc [1− CVT(Tcell(t)− 25)] (6a)
Pcell(t) = icell(t)vcell(t)[1− CPT(Tcell(t)− 25)] (6b)

Here, CVT and CPT are temperature sensitivity coefficients
for voltage and power. The V std

oc is the open circuit voltage
at standard temperature of Tcell = 25oC. The described PV
model is nonlinear due to the diode current and the bilinear
i− v relation to cell power. However, solar PV output is also
inherently variable, which can strain grid stability. When faced
with high PV generation, low demand, or negative energy

prices, PV curtailment can be employed as a solution [22].
PV curtailment can be achieved using a curtailment factor
βcur ∈ [0, 1]. For the total PV power generated P g

pv, the power
exported to the grid would be denoted as Ppv. Mathematically,
this relationship is expressed as follows,

Ppv(t) = βcurP
g
pv(t) (7)

Secondly, By adding batteries to PV installations to engender a
HES, energy can be stored during periods of excess generation
and discharged when needed. Thus, (partly) overcoming solar
PV’s intermittency, thereby enhancing the reliability, utiliza-
tion, and sustainability of HES.

C. The battery model
In the realm of battery modeling, a spectrum of approaches
graces the literature, encompassing both rudimentary approx-
imations and intricate physical precision. In the context of
HES applications, an ideal pursuit is a model that seamlessly
merges computational efficiency with versatility [23]. The
Energy Reservoir Model (ERM) is commonly used in system
level research. In this model, the battery’s SoC dynamics,
E(t) ∈ [E, Ē], depends on the charging and discharging
power, P c

batt and P d
batt, respectively. The ERM model is as

follows [24],

E(t) = E0 +
1

Ec

∫ t

0

(
1

ηbatt
iv

P c
batt(τ) + ηbatt

iv P d
batt(τ)

)
dτ (8a)

SoC limits : E ≤ E(t) ≤ Ē (8b)
0 ≤ P c

batt(t) ≤ Pmax
batt , Pmax

batt ≤ P d
batt(t) ≤ 0 (8c)

where Ec is the energy capacity of the battery in kWh.
This model is sufficiently accurate when the battery operates
over a small voltage range but has inaccuracies when a larger
range of voltage values is encountered [17]. Further, this model
ignores temperature’s impact on SoC and charging/discharging
schedules. Striking a balance between exactitude and intricacy,
an electro-thermal Equivalent Circuit Model (ECM) for Li-ion
battery is used as illustrated in Fig. 2. The zeroth-order ECM
model is computationally simple and adequate for system-level
steady state analysis [25].

Fig. 2: Battery’s ECM with enclosure and HVAC.

Mathematically, the zeroth order ECM model is defined by the
following equations,

CAh
∂E(t)

∂t
= −ibatt(t) (9a)

vbatt(t) = VOC + ibatt(t)R0 (9b)
VOC = VmE(t) + V0 (9c)

where ibatt and vbatt are battery net current and terminal volatge
respectively, R0 is internal resistance, CAh is charge capacity
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in Ah and VOC is open circuit battery voltage at 100% SoC.
The slope and intercepts of a linear VOC model are represented
by Vm and V0, respectively. The battery temperature can
significantly affect SoC and state of health (SoH), especially in
hot environments or in high-power operations, where excessive
losses drive up cell temperatures. Thus, enforcing temperature
constraints is essential to prevent adverse effects like thermal
run-away, which can damage the battery and pose safety risks.
To extend the thermal capability of a battery, an HVAC system,
as shown in Fig. 2, can be used to keep the battery temperature
within its design limits i.e. Tbatt ∈ [Tmin

batt , T
max
batt ]. Considering

battery within an enclosure with an HVAC system, overall
thermal dynamics are given by the following two equations,

CT
∂Tbatt(t)

∂t
= R0i

2
batt(t) + U(Ten(t)− Tbatt(t)) (10a)

Cen
∂Ten(t)

∂t
= Ncell [U(Tbatt(t)− Ten(t))] + Uen(Tamb(t)

(10b)
− Ten(t))− ηhvPhv(t)

where CT and Cen are the heat capacity of the lumped volume
and battery enclosure respectively, U represents the thermal
transmittance between the battery surface and the enclosure,
while Uen pertains to the thermal transmittance between the
enclosure and the surrounding environment, and Ncell is the
number of battery cells in the enclosure. The ηhv and Phv
are efficiency and power drawn by HVAC, respectively. This
model assumes constant or no airflow. Battery power is given
as follows,

P c
batt(t) = ic

batt(t)vbatt(t) (11a)

P d
batt(t) = id

batt(t)vbatt(t) (11b)
where ic

batt and id
batt represent charging and discharging battery

currents respectively. Using these models of the inverter, PV
and battery, the predictive optimization problem has been
formulated and discussed in the next section.

IV. PREDICTIVE OPTIMIZATION OF HES

The predictive optimization enables the seamless integration
of various energy sources. It extends to providing grid services
(such as voltage regulation and frequency control) and efficient
use of energy storage by predicting energy demand and supply
fluctuations. This includes optimizing charge and discharge
cycles to reduce costs and elongate the system lifespan.
In this paper, predictive optimal scheduling of the HES is
formulated as an optimization problem, subject to equality
and inequality constraints governed by physics-based models
of PV, battery and inverter. The objective of the optimization
problem is maximization of revenue generated by the grid-
connected HES. This is defined by the sum of the product of
net HES power, energy price and time step. The energy price
in $/kWh denoted by P r[k], with k ∈ {0 . . . N − 1}. The
equality constraints are defined using (1) and (9)-(11). The
inequality constraints on SoC, charging-discharging currents,
battery temperature and voltage are defined as the bounds
based on battery operation and performance. The decision
variables are denoted by x ={icbatt, i

d
batt, Phv}, each decision

variable can be denoted by vector xi where i ∈ {1 . . . 3} and
xi ∈ RN .
The HES predictive optimization, rooted in physics-based
models, addresses a single-objective, multi-period determin-
istic problem. Within this framework, two temperature-
dependent models, namely NLP and simplified (MIP), along-
side a temperature-agnostic model based on ERM battery
model and PV model from (2) have been formulated. Fur-
thermore, a projection algorithm has been introduced to yield
the optimal solution from the MIP problem within the NLP
feasible set. Additionally, a homotopy algorithm has been
proposed to guarantee the attainment of the best solution for
the original NLP.

A. NLP problem

Based on the HES model discussed in section III, a non-linear
and non-convex (NLP) predictive optimization problem has
been formulated as follows,
Objective:

max
x

N−1∑
k=0

P r[k]Phes[k]Ts (12)

Subject to:
Phes[k]− Ppv[k]− Pbatt[k] + Phv[k] = 0 (13a)

Pbatt[k]− (1/ηbatt
iv [k])P c

batt[k]− ηbatt
iv [k]P d

batt[k] = 0 (13b)

ηbatt
iv [k]− σ(Pbatt[k]) = 0 (13c)

P c
batt[k]− 0.001 (icbatt[k]vbatt[k]) = 0 (13d)

P d
batt[k]− 0.001 (idbatt[k]vbatt[k]) = 0 (13e)

ibatt[k]− icbatt[k]− idbatt[k] = 0 (13f)

E[k]− E[k − 1]− 1

CAh
ibatt[k]Ts = 0 (13g)

ic
batt[k] i

d
batt[k] = 0 (13h)

vbatt[k]− VmE[k]− V0 − ibatt[k]R0 = 0 (13i)

Tbatt[k]− Tbatt[k − 1]− 1

CT
(R0i

2
batt[k − 1]

+U(Ten[k − 1]− Tbatt[k − 1]))Ts = 0 (13j)

Ten[k]− Ten[k − 1]− 1

Cen
(NcellU(Tbatt[k]

−Ten[k]) + Uen(Tamb[k]− Ten[k])

−ηhvPhv[k])Ts = 0 (13k)
E ≤ E[k] ≤ Ē (13l)

vbatt ≤ vbatt[k] ≤ ¯vbatt (13m)

Tmin
batt ≤ Tbatt[k] ≤ Tmax

batt (13n)

Tmin
en ≤ Ten[k] ≤ Tmax

en (13o)
0 ≤ Phv[k] ≤ P̄hv (13p)
0 ≤ icbatt[k] ≤ imax

batt (13q)

−imax
batt ≤ idbatt[k] ≤ 0 (13r)

Ten[0] = T 0
en, Tbatt[0] = T 0

batt (13s)
E[0] = E0, E[N ] = E0 (13t)

The complementary slackness given by (13h) avoids the
simultaneous charging and discharging of the battery. The
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(13l)-(13r) represent the inequality associated with the NLP.
The (13t) ensures sustainability, i.e. the SoC should return to
the initial level at the end of the day.
In this HES system, the PV subsystem plays no role in
decision-making; instead, it depends on inputs SI and Tamb.
The power generated by the PV subsystem is calculated using
a temperature-dependent model described by (14). In this
case, the contact losses and shading effect in PV have been
neglected. This calculated PV power is then directly used to
compute the total HES power (Phes) in (13a).

Ppv[k]− ηpv
iv [k]P

dc
pv [k] = 0 (14a)

ηpv
iv [k]− σ(P dc

pv [k]) = 0 (14b)

P dc
pv [k]− (L M K)Pcell[k] = 0 (14c)

Pcell[k]− icell[k]vcell[k][1− CPT(Tcell[k]− 25)] = 0 (14d)

icell[k]−
(

isc

Srated
I

)
SI[k] + I0

(
e38.9V

pv
oc [k] − 1

)
= 0 (14e)

vpv
oc [k]− V std

oc [1− CVT(Tcell[k]− 25)] = 0 (14f)

Tcell[k]− Tamb[k]− SI[k]

(
NOCT− 20o

800

)
= 0 (14g)

The above formulated NLP pose challenges in optimization
due to the complexity of finding the best solution amid
multiple potential optima. Secondly, the NLP problem can be
very sensitive to the initial conditions.

B. Simplified Model

A significant challenge in solving the NLP problem is the
prevalence of numerous local optima, often causing optimiza-
tion algorithms to converge to suboptimal solutions. In the pre-
viously formulated optimization problem, the equations (13c)-
(13e), (13h)-(13j) introduce non-linearity and non-convexity.
Specifically, equations (13d) and (13e) exhibit bilinear char-
acteristics. To mitigate this bilinearity effect, it is possible
to make an approximation by considering a constant battery
voltage V batt at a specific SoC. The simplified equations are
given by,

P c
batt[k]− ic

batt[k]V batt = 0 (15a)

P d
batt[k]− id

batt[k]V batt = 0 (15b)
for k ∈ {0 . . . N−1}. This approach linearizes the bilinearity

associated with the P c
batt and P d

batt w.r.t the vbatt. Secondly, The
non-convexity due to the complementary slackness condition
can be reformulated as a mixed-integer problem (MIP), pre-
sented as follows [12],

0 ≤ ic
batt[k] ≤ Z[k]imax

batt (16a)

(Z[k]− 1)imax
batt ≤ id

batt[k] ≤ 0 (16b)
for k ∈ {0 . . . N − 1}. Where Z[k] ∈ {0, 1} such that

if Z[k] = 1 → id
batt[k] = 0 and ic

batt[k] ∈ {0, imax
batt }. To

handle non-linearity in (13j), we apply second-order conic
programming (SOCP) relaxation, which linearizes quadratic
terms for efficient optimization while preserving convexity.
The SOCP relaxation is expressed as follows,

α[k] ≤ i2batt[k] (17)
for k ∈ {0 . . . N − 1}. The non-linearity associated with the
inverter efficiency is addressed by taking ηbatt = 0.95. Now,
the original NLP has been reformulated as mixed integer linear
program using (15)-(17). The robust MIP solvers (e.g. Gurobi,
CPLEX, etc) enable feasible and fast solutions leveraging the
optimality gap as a measure of the quality of the solution.
Utilizing the solution derived from the relaxed problem as an
initial point significantly enhances the efficiency of the NLP
solver when seeking the optimal solution to the original, more
intricate NLP.

C. Projection
The solutions obtained from the simplified model are most
likely a global optimal based on the optimality gap. However,
it may yield solutions that only partially adhere to the NLP’s
constraints, which are based on the physics of the HES model.
Hence, the projection technique is used to ensure that the
obtained solutions are best and feasible, bridging the gap
between the mathematical rigour and the physics of the model.
The objective of the projection problem is often defined as
finding the solutions that minimize the 2-norm between the
solution from simplified model (x∗) and projected solutions
(x). It is given as,
Objective:

min
x
∥(x[k]− x∗[k])∥2 (18)

for k ∈ {0 . . . N − 1}. The equality and inequality constraints
are same as the NLP problem defined by (13). Even though
projection is still an NLP problem, it gives the solution in
the vicinity of the best solution obtained from the simplified
model while satisfying the feasibility of the NLP model.

D. Homotopy
The homotopy algorithm is frequently used to tackle intri-
cate non-convex optimization problems across various fields
[26]. Homotopy employs a continuous trajectory in NLP,
transitioning from the initial complex problem to a tractable
one. By varying the homotopy factor (in this case, the C-
rating of the battery), the problem is transformed into a
sequence of sub-problems, each solved sequentially. The first
subproblem is trivial, whose solution can be easily obtained,
and subsequent ones converge rapidly, starting from the prior
subproblem’s solution, eventually leading to the original prob-
lem and facilitating robust mathematical convergence [27]. In
this subsection, the homotopy method is explored to tackle
battery optimization problems with varying C-ratings which is
an essential factor affecting battery performance, determining
the imax

batt .
In this case, the NLP trajectory starts with a battery C-rating
of ≈ 0.0, where the solution space is notably limited but easily
navigable. From there, it progressively increases the battery’s
C-rating, moving towards higher C-ratings, with a small step
size denoted as ∆Crating. This gradual transition allows the
optimization algorithm to explore solutions incrementally,
avoiding abrupt jumps that might lead to convergence issues.
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Moving through intermediate C-ratings efficiently traverses
the entire spectrum of feasible solutions, ensuring potential
optimum haven’t been overlooked. The gradual transition from
a small C-rating to higher values enables thorough exploration
of the solution space, significantly enhancing the chances
of finding a global solution. Fig. 3 illustrates the contour
path depicting the NLP’s feasible space and the progressive
navigation through the homotopy solution space, with an
emphasis on ascending C-ratings. Additionally, it provides a
clear depiction of the projection of the simplified solution
within the NLP’s feasible space.

Fig. 3: Contour plot illustrating the different methods, including the
iterative homotopy approach based on the battery’s C-ratings.

Algorithm 1: Homotopy via battery’s C-rating
1: Parse: Battery data, energy price, Tamb, Ppv and Ts.
2: Decision: ic

batt[k], i
d
batt[k], and Phv[k]

3: Warm start: Enable warm_start_initi_point
4: Initialize: set Crating ≈ 0, calculate current limits

imax
batt := Crating × CAh

5: while Crating ≤ Cmax

• Solve the NLP(Crating)⇒ (x∗, λ∗, µ∗),
• If primal and dual feasibility
• Then increment Crating ← Crating +∆Crating
• Update the previous solution to warm start NLP.

6: end for loop

E. Temperature agnostic model

A comparison with the temperature-agnostic model is crucial
to assess the impacts and benefits of temperature-dependent
model. In this subsection, the predictive optimization employs
the temperature-agnostic model which is formulated using (2)
and (8) as discussed in Section III. The problem formulation
is as follows,

Objective:

max
x

N−1∑
k=0

P r[k]Phes[k]Ts (19)

Subject to:
Phes[k]− Ppv[k]− Pbatt[k] = 0 (20a)

Pbatt[k]− P c
batt[k]− P d

batt[k] = 0 (20b)

P c
batt[k] P

d
batt[k] = 0 (20c)

E[k]− E[k − 1]− (1/EC)[(1/η
batt
iv )P c

batt[k] (20d)

+ηbatt
iv P d

batt[k]]Ts = 0 (20e)
E ≤ E[k] ≤ Ē (20f)

0 ≤ P c
batt[k] ≤ Pmax

batt (20g)

−Pmax
batt ≤ P d

batt[k] ≤ 0 (20h)
E[0] = E0, E[N ] = E0 (20i)

In this case, the temperature agnostic PV model, given by
(2) is used to calculate the Ppv over the periodic horizon, k ∈
{0, . . . , N − 1}. The discretized PV equations are given as
follows,

Ppv[k]− (L M K)ηcellApvSI[k] = 0 (21a)

ηpv[k]− h(P dc
pv [k]) = 0 (21b)

Ppv[k]− ηpviv [k]P
dc
pv [k] = 0 (21c)

Various case studies demonstrating the performance of dif-
ferent HES models with different battery ratings and under
different ambient temperatures are presented and discussed in
the next section.

V. CASE STUDIES

The codebase of the HES predictive optimization problem
has been developed in Pyomo (a Python-based, open-source
optimization modeling tool). The NLP problems (including
projection, homotopy and temperature agnostic model) are
solved using IPOPT (Interior Point OPTimizer) solver, while
the simplified MIP problem has been solved using the Gurobi
solver. The original NLP problem was warm-started by the
solution of the simplified model. All the problems have been
solved assuming constant ambient temperature throughout 24
hours.

A. With ISO New England energy price

The input data, P r for 15 minutes energy market is taken
from ISO New England with a time step Ts = 0.25 hour and
SI are shown in Fig.4. These data are only used to realize
real-world settings and do not represent any particular event.
Further, the HES’s battery parameters are given in TABLE
I. The initial values of state variable SoC, Tbatt and Ten are
assumed to be E0, T 0

batt and T 0
en respectively. The PV consists

of 120 modules and it is configured to form a 40 kW PV
array. For temperature agnostic model, ηcell of PV is 19.76%,
Apv=1.67 m2 and energy capacity of the battery Ec is taken as
43.2 kWh. To better align with real-world systems and observe
the impact, we have scaled up our system by a factor of 1000,
transitioning from a kW setup to a MW-scale configuration.
In the electro-thermal model, battery temperature plays a crit-
ical role while making the charging and discharging decisions
as the Tbatt is correlated to ibatt and Phv as shown in (13j) i.e.
if the Tbatt hits the Tmax

batt or Tmin
batt , the charging and discharging
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TABLE I: Battery parameters

Parameter Value Parameter Value

imax
batt 50A (1C) E0 0.5

Ē 0.95 E 0.2

¯vbatt 976 V vbatt 714 V

Tmax
batt 15oC Tmax

batt 35oC

Tmax
en 15oC Tmax

en 35oC

CAh 50 Ah CT 10 KJ/oC

U 0.2 W/oC Uen 0.001 kW/oC

R0 0.0716 Ω Cen 30 KJ/oC

Ncell 100 T 0
batt/ T

0
en 20oC
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Fig. 4: Input data: NE-ISO energy price and solar irradiance at 15-
minute intervals for a day (24 hours).

processes will be halted until the temperature falls back to
a lower temperature level. Notably, the higher temperature
limit will give more flexibility in charging and discharging
but requires more HVAC power to maintain the temperature
within the limits. The choice of an appropriate temperature
limit is pivotal and hinges upon the objectives of predictive
optimization. Fig. 5 shows the maximum HES revenue and
expense of using HVAC by solving the NLP problem under
varying ∆TBatt condition. Here, ∆TBatt represents the temper-
ature bound i.e. ∆TBatt = (Tmax

batt - Tmin
batt ).

0 5 10 15 20

 T
Batt

: Battery Temperature Bound, C

4000

4500

5000

R
ev

en
u
e 

($
)

0

50

Revenue HVAC cost

Fig. 5: Impact of variation in ∆TBatt on overall revenue and HVAC
cost at ambient temperature of 20o C, 0.5C battery.

It is observed that the maximum revenue of the HES increases
by 1.25 times while the HVAC cost increases by 20 times
as the ∆TBatt increases from 10C to 200C. The increased

limit will affect the battery’s health by permitting rapid high
charging and discharging, providing the option for complete
discharges when prices are elevated. Thus, there exists a trade-
off between revenue and battery health. In this paper, values
of Tmax

batt = 350C and Tmin
batt = 150C have been selected.

The Fig. 6 shows the predicted revenue of the temperature-
dependent optimization problem formulated in Section IV. The
problem has been solved for different Tamb and C-ratings of
the battery.
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(a) 0.25C battery
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(b) 0.5C battery
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(c) 1C battery

0 10 20 30 40

Ambient Temperature, C

4800

5000

5200

5400

5600

R
ev

en
u
e 

($
) NLP

Simplified

Projection

Homotopy

(d) 4C battery

Fig. 6: Predicted revenue comparison of various models under
different ambient temperatures. Note that the simplified model’s
predicted revenue is not always realizable because it violates physical
constraints.

It can be observed that the predicted revenue declines linearly
for the simplified model and follows non-linear trends for
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NLPs as the Tamb increases. The maximum deviation occurs at
Tamb = 00C, when the simplified model predicts the revenue
3.5% extra revenue, which may not be the feasible schedule
for HES and can lead to a penalty. This deviation is due to
the simplified model’s assumed constant vbatt. The solution
obtained through projection has been close to the solution from
the NLP solution. However, across all battery ratings, the NLP
model consistently performs better. This shows that the NLP
model provides a better solution within the feasible space.
Furthermore, the homotopy demonstrates that it converges to
the NLP solution, reinforcing the earlier claim that the NLP
model finds the best solution.
The trajectory of the homotopy solution is shown in Fig. 7.
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Fig. 7: Homotopy trajectory: 2-norm between previous and current
solution on a normal day (at Tamb = 20o C).

The 2-norm of the difference between the current (denoted by
superscript ’n’) and the previous (denoted by superscript ’n-
1’) decisions and the objective have been plotted. The figure is
plotted until the 2C-rating for clarity as the 2-norm converges
to 0 way before it. It can be observed that the solution is

going from significant deviation to convergence to zero 2-
norm, progressing towards the best solution by expanding
the feasible solution space with each incremental increase in
battery C-rating.
In Fig 8, a progressive increase in predicted revenue has been
observed with the transition from lower C-rated batteries to
higher ones.
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Fig. 8: Revenue comparison of different C-rated battery under
different ambient temperatures. Note that the simplified model’s
predicted revenue is not always realizable because it violates physical
constraints.

Notably, the predicted revenue by HES employing 1C and
4C batteries closely align. This convergence is attributed to
stringent temperature constraints; as these bounds become
more restrictive, the higher charging speed associated with
4C batteries reaches a point of diminishing returns in revenue
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generation. Beyond a certain threshold, the faster charging
does not significantly enhance the revenue due to thermal
limitations.
The solutions from the temperature-agnostic models are very
aggressive as they can charge or discharge very quickly
ignoring the battery’s thermal constraints. The predicted rev-
enues of the temperature agnostic model for different C-rated
batteries are given in TABLE II. Here, The revenue increases
with an increase in the C-rating of the battery which does
not depict the charging limitations due to excessive heating
of fast-charging batteries. The only feasible solution of the
temperature agnostic model is with a 0.25C battery and if
Tamb ≤ 15oC, other schedules are not realizable considering
the actual HES model.

TABLE II: Predicted revenue for temperature-agnostic model

C-rating Revenue Feasible# C-rating Revenue Feasible#

0.25C $5054.62 ✓ 1C $7261.83 ×
0.50C $5431.92 × 4C $8468.97 ×

# indicates whether this schedule is realizable with actual HES.

B. Negative energy price scenario and PV curtailment

In the previous case, the energy prices were always positive.
Hence, to test the robustness of the NLP and homotopy
algorithm, test price P r has been used as shown in Fig.9.
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Fig. 9: Energy price

Negative energy prices can significantly reduce or even result
in negative revenue for PV system owners. During such
periods, PV generators might incur costs to offload excess
electricity to grid operators or utilities. Curtailing PV gen-
eration in these circumstances is financially advantageous,
preventing losses from selling surplus electricity at negative
prices. Hence, another decision variable curtailment factor βcu
is integrated in the optimization problem using (7). The PV
curtailment scheme is given by,

Ppv[k]− βcur[k]P
g
pv[k] = 0 (22a)

0 ≤ βcur[k] ≤ 1 (22b)
where P g

pv denotes generated PV power, while Ppv is total
exported PV power to the grid. TABLE III compares the rev-
enue of all the temperature-dependent models and algorithms
with and without PV curtailment under extreme temperatures
and different C-ratings. It can be observed that the homotopy
algorithm (highlighted using box) always convergence to same

the solution as the original NLP. Without the PV curtailment,
the revenue increases as the ambient temperature increases due
to lesser PV generation.
TABLE III: Predicted revenue from the HES without PV curtailment

Method/Algorithm 0.25C battery 1C battery

at 0oC at 40oC at 0oC at 40oC

NLP $5235.96 $5512.94 $5452.63 $5729.61

Homotopy $5235.96 $5512.94 $5452.63 $5729.61

Simplified∗ $5245.50 $5522.47 $5462.83 $5739.80

Projection $5231.01 $5507.99 $5448.43 $5725.41

*Simplified method’s realized revenue is given by Projection value.

TABLE IV shows the predicted revenues with the PV curtail-
ment. With the incorporation of the PV curtailment scheme,
the predicted revenues grow under every condition. It can be
observed from both the scenarios that simplified model always
gives the upper bound of the solution but predicted revenues
fall when the simplified solutions are projected in NLP space.

TABLE IV: Predicted revenue from the HES with PV curtailment

Method/Algorithm 0.25C battery 1C battery

at 0oC at 40oC at 0oC at 40oC

NLP $7363.87 $7399.37 $7580.54 $7616.04

Homotopy $7363.87 $7399.37 $7580.54 $7616.04

Simplified∗ $7373.40 $7408.91 $7590.73 $7626.24

Projection $7358.89 $7394.39 $7576.31 $7611.81

*Simplified method’s realized revenue is given by Projection value.

VI. CONCLUSION

In this paper, a comprehensive electro-thermal model for HES
has been thoroughly discussed and analyzed to give valuable
insights. Within this framework, a predictive optimal schedul-
ing problem, to maximize HES revenue has been formulated.
The intrinsic challenges arising from the system’s nonlinear
and non-convex nature, influenced by underlying physics and
thermal constraints, make this problem inherently challenging.
To address these complexities, a simplified problem using
mixed-integer formulation has been proposed, which delivers
the best solutions within defined constraints. The solution
obtained from this simplified model is used to warm start
the NLP. To validate the feasibility of the solution from the
simplified model, a projection algorithm has been proposed.
A homotopy algorithm has been proposed, which iterates over
the c-rating of the battery. Lastly, To underscore the impact
of temperature-dependent scheduling for HES, a temperature-
agnostic model has been used.
These models are tested under various ambient temperatures,
C-ratings and energy prices. Based on the performance of the
models, the homotopy solution displayed convergence towards
zero 2-norm, as the feasible solution space gradually expands.
The homotopy method also produces the same solution as
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the original NLP, while the simplified model provides the
upper bound during stress testing. The predicted schedules
from the temperature agnostic model are not realizable in
actual plant settings. This work will be useful to give insight
into HES complexities while highlighting the importance of a
temperature-dependent model.
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