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Abstract—Scenario reduction (SR) aims to identify a small yet
representative scenario set to depict the underlying uncertainty,
which is critical to scenario-based stochastic optimization (SBSO)
of power systems. Existing SR techniques commonly aim to
achieve statistical approximation to the original scenario set.
However, SR and SBSO are commonly considered into two dis-
tinct and decoupled processes, which cannot guarantee a superior
approximation of the original optimality. Instead, this paper
incorporates the SBSO problem structure into the SR process and
introduces a novel problem-driven scenario reduction framework.
Specifically, we transform the original scenario set in distribution
space into the decision applicability between scenarios in problem
space. Subsequently, the SR process, embedded by a distinctive
problem-driven distance metric, is rendered as a mixed-integer
linear programming formulation to obtain the representative sce-
nario set while minimizing the optimality gap. Furthermore, ex-
ante and ex-post problem-driven evaluation indices are proposed
to evaluate the performance of SR. A two-stage stochastic eco-
nomic dispatch problem with renewable generation and energy
storage validates the effectiveness of the proposed framework.
Numerical experiments demonstrate that the proposed frame-
work significantly outperforms existing SR methods by identify-
ing salient (e.g., worst-case) scenarios, and achieving an optimal-
ity gap of less than 0.1% within acceptable computation time.

Index Terms—Problem-driven, scenario reduction, stochastic
optimization, worst-case scenario, risk management

I. INTRODUCTION

THE rapid integration of renewable energy sources (RES)
and new loads into the power systems has led to in-

creased variability and uncertainty in operations. Thus, effec-
tive decision-making in power system operations must account
for these uncertainties to effectively manage risks [1]. With
complete information of uncertainties (e.g., a known prob-
ability distribution), distributionally robust optimization [2],
[3], chance-constrained optimization [4], [5] and robust opti-
mization [6], [7], have been shown to be effective approaches.
In cases where incomplete information of uncertainties (e.g.,
historical, forecasted scenarios), a common practice is to
employ scenario-based stochastic optimization (SBSO), where
a finite scenario set is utilized to approximate the probability
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distribution of uncertainties [8]. However, scenario-based tech-
niques typically struggle with the “curse of dimensionality”,
which becomes more pronounced as the variety and number of
uncertainties increase [9]. To reduce this complexity, scenario
reduction (SR) can be used to identify a smaller representative
scenario set that replaces the original scenario set for decision
making while maintaining an acceptably robust optimal solu-
tion. However, two critical questions exist for SR: (i) how to
evaluate the representativeness of the reduced scenarios? (ii)
how to perform SR to yield a representative scenario set that
optimally reflects the full original formulation?

Most SR methods implicitly assume that statistically better
representations of the original scenario set in the distribution
space necessarily yield better optimal solutions of SBSO. We
refer these methods as distribution-driven scenario reduction
(DDSR) methods. The overview of DDSR methods is summa-
rized in Fig.1(a). DDSR methods generally construct the orig-
inal scenario set using raw data from historical scenarios [10],
deep features extracted by machine learning [11], and relevant
problem properties manually selected based on engineering ex-
perience (e.g., power ramping [12], network power flow [13],
and investment cost [14]). Moreover, to account for the im-
pacts of worst-case scenarios, the original scenario set is often
split into “normal” and “worst-case” subsets and SR is per-
formed separately on each subset [15]. However, the definition
of “worst-case” scenarios vary across different problem for-
mulations (e.g., economic dispatch and resilience-oriented dis-
patch [16]) and are often difficult to explicitly define. Subse-
quently, distribution-driven distance metrics, such as Euclidean
distance [10], Wasserstein distance [17] and dynamic time
warping distance [18] are frequently used to measure the sim-
ilarity between scenarios. Furthermore, clustering techniques,
such as hierarchical clustering (HC) [19], K-means [20],
Gaussian mixture model [21], are employed to cluster the orig-
inal scenario set into the representative scenario set. However,
these methods generally rely on a myriad of hyper-parameters
(e.g., random initialization and iterative adjustments). Finally,
statistical indices based on distribution-driven distance metrics
(e.g., Davis-Bouldin index), are used to validate the cluster-
ing performance. Unfortunately, higher statistical similarities
between reduced and original scenario sets may not guarantee
a better optimal solution, which is particularly the case in
optimization of power systems [22]. That is, since DDSR
methods generally consider SR and SBSO as two distinct and
decoupled processes, DDSR methods suffer from a critical
oversight: an inability to consider the impacts of the reduced
scenario set on the optimal solution to the original SBSO.

To address this gap, SR methods should re-evaluate
representativeness of scenarios. Specifically, the efficacy of
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Fig. 1. Diagrams of scenario reduction methodologies: (a) distribution-driven
scenario reduction and (b) problem-driven scenario reduction.

SR should be gauged by the performance of the representative
scenarios with consideration of the SBSO problem structure,
i.e., in problem space, as illustrated in Fig. 1(b). This paper,
therefore, focuses on identifying scenarios with high decision
applicability, which refers to their relatively large impacts on
the optimal objective value and decision-making. Recently,
literature has employed decision applicability into the SR
process and denote the framework problem-dependent SR.
In [23], a problem-dependent methodology is proposed for SR
that relies on a computationally complex Wasserstein distance
metric and alternating minimization algorithm, which limits
scalability. A symmetric opportunity cost is employed in [24]
as the distance metric to measure the decision applicability
between scenarios, and heuristic methods are used to perform
SR, which limits the ability to characterize the optimality gap.
Ref. [25] interestingly develops a problem-driven scenario
clustering method with asymmetric distance metric where the
representative scenarios are selected based on their average
decision applicability in the entire cluster, which limits
scalability of the method to SBSOs with few scenarios and
is impractical in power system applications.

In this paper, we propose a novel problem-driven scenario
reduction (PDSR) framework for solving SBSO problems to
near-optimality and case studies illustrate improvements of
up to ten times in terms of scalability and optimality gap
over seven state-of-the-art methods, which enables PDSR
applications to power systems for the first time. Specifically,
our contributions are as follows:

1) Problem-Driven Scenario Reduction Framework: We
propose a novel PDSR framework for general SBSO
problems by defining the concept of optimality gap (OG)
for SR and analytically characterizing the impacts of SR
on the SBSO problem.

2) Problem-Driven Distance Metric: To evaluate the
representativeness of scenarios, we introduce a provably

effective problem-driven distance (PDD) metric that
quantifies the mutual decision applicability between
scenarios. We show that the OG can be bounded above
by minimizing the sum of PDD within clusters (SPDD).
Furthermore, we use the PDD to introduce new ex-ante
and ex-post problem-driven SR evaluation indices.

3) Clustering Methodology: Based on the PDD, we convert
the original scenario set partitioning and representative
scenario selection processes into a mixed-integer
linear program (MILP). The MILP objective balances
minimization of SPPD within clusters and the total
number of clusters (i.e., representative scenarios).

4) Simulation-based Analysis: A 24-hour, active distribution
network (ADN) case study validates the presented PDSR
framework by applying it to a stochastic economic
dispatch problem, which co-optimizes day-ahead and
intraday market participation by trading off energy
storage capacity procurement and curtailment of
renewable generation and load. Simulation results
demonstrate PDSR’s ability to identify salient scenarios
that achieve an SR optimality gap up to ten times smaller
than the seven state-of-the-art SR methods.

The remainder of the paper is organized as follows.
Section II introduces the proposed PDSR framework.
Formulation of a scenario-based stochastic economic dispatch
problem for an active distribution network is presented in
Section III. Numerical studies based on real-world data are
provided in Section IV to illustrate comparative performance.
Finally, conclusions are summarized in Section V.

II. PROBLEM-DRIVEN SCENARIO REDUCTION
FRAMEWORK

In this section, we detail the novel PDSR framework within
the context of a general two-stage stochastic optimization
(TSSO) problem, which represents a rich set of power system
problems. Note that the PDSR framework can be adapted to
single-stage and multi-stage SBSO problems.

A. Formulation of Two-Stage Stochastic Optimization

Two-stage stochastic optimization is an effective
formulation in stochastic optimization to address uncertainties
due to its “here-and-now” and “wait-and-see” characteristics,
which respectively represent the decisions to be made before
and after the uncertainty is revealed. The general formulation
of the TSSO built on the original scenario set is

min
z∈Z

F (z,ξ) :=f(z)+
∑N

i=1
γiG(yi,ξi|z) (1a)

G(yi,ξi|z) := min
yi∈Y (z,ξi)

g(yi,ξi), (1b)

where F (z, ξ) is the objective function of the TSSO,
including the cost of the first stage and the expected cost of
the second stage. The original set of N scenarios is denoted
as ξ = {ξ1,ξ2, ...,ξN} and f(z) is the objective function of
the first stage with the decision variable z∈Z. Here, Z⊆Rn

denotes the bounded feasible set. The second-stage problem is
G(yi,ξi|z) under the uncertainty ξi with yi∈Y (z,ξi),Y ⊆Rm
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as the decision variable and z as the parameter. g(yi, ξi) is
the objective function of the second stage. The probability
of scenario ξi is γi ≥ 0, which satisfies

∑N
i=1 γi = 1. We

denote the optimal solution of (1) as z∗ξ = argmin
z∈Z

F (z,ξ).

Additionally, we denote F (z, ξi) := f(z) + G(yi, ξi) with
z∗ξi = argmin

z∈Z
F (z,ξi). We have F (z,ξ) =

∑N
i=1γiF (z,ξi).

We reasonably require the TSSO to satisfy the assumption
of relatively complete recourse, implying that there exists a
solution to TSSO for any z ∈ Z and ξ ∈ ξ. This assumption
is common in stochastic optimization, ensuring sufficient
resources to handle potential risks, even costly.

To address the challenges of computation complexity when
N is large, SR is employed to significantly reduce the com-
putation complexity while maintaining the problem optimality
approximation accuracy at an acceptable level. The SR process
can be denoted as C(ξ,K) = {{C1,...,CK} : Ci ̸= ∅,∀i;Ci∩
Cj = ∅,∀i ̸= j;∪iCi= I,I = {1,...,N}}. The original scenario
set ξ is partitioned into K(K≪N) clusters and is reduced to
a representative scenario set ζ={ζ1,ζ2,...,ζK}. Each scenario
cluster Ck is represented by the representative scenario ζk
with corresponding weight ωk =

∑
i∈Ck

γi, which satisfies∑K
k=1ωk=1. In this paper, we concentrate on selecting ζ as

a subset of ξ, instead of generating new scenarios. The TSSO
formulated on the representative scenario set ζ is given by

min
z∈Z

F̃ (z,ζ) :=f(z)+
∑K

k=1
ωkG(yk,ζk|z) (2a)

G(yk,ζk|z) := min
yk∈Y (z,ζk)

g(yk,ζk). (2b)

The optimal solution of the reduced problem (2) is denoted
as z∗ζ = argmin

z∈Z
F̃ (z, ζ). Specifically, we would like to

understand how SR affects the optimality of SBSO. Thus, we
seek to define an SR optimality gap metric next.

B. SR Optimality Gap

SR aims to minimize the optimality gap from using K
representative (ζ) vs. N scenarios (ξ). Towards this purpose,
the OG can be defined as

OG :=F (z∗ζ ,ξ)−F (z∗ξ ,ξ), (3)

where F (z∗ζ , ξ) means solving (1) with z = z∗ζ . Compared
to [25], we present a distinct and rigorous derivation of an
upper bound on OG.

Since F (z,ξ) ≥ F (z∗ξ ,ξ) for all z ∈ Z, we have OG ≥ 0.
A smaller OG indicates a more accurate problem optimality
approximation of ζ to ξ. Since F̃ (z, ζ) ≥ F̃ (z∗ζ , ζ) for all
z∈Z, we can derive an upper bound of OG as

OG≤F (z∗ζ ,ξ)−F (z∗ξ ,ξ)+(F̃ (z∗ξ ,ζ)−F̃ (z∗ζ ,ζ))

=(F (z∗ζ ,ξ)−F̃ (z∗ζ ,ζ))−(F (z∗ξ ,ξ)−F̃ (z∗ξ ,ζ)).
(4)

Note that both the first and the last pair of terms share a
common expression of F (z,ξ)−F̃ (z,ζ), which can be further
reformulated as

F (z,ξ)−F̃ (z,ζ)=

N∑
i=1

γiF (z,ξi)−
K∑

k=1

ωkF (z,ζk)

=

K∑
k=1

∑
i∈Ck

γiF (z,ξi)−
K∑

k=1

∑
i∈Ck

γiF (z,ζk)

=

K∑
k=1

∑
i∈Ck

γi
(
F (z,ξi)−F (z,ζk)

)
. (5)

Combining (4) and (5), the upper bound of OG can be
further expanded as

OG≤
∑K

k=1

∑
i∈Ck

γi
(
F (z∗ζ ,ξi)−F (z∗ζ ,ζk)

)
−
∑K

k=1

∑
i∈Ck

γi
(
F (z∗ξ ,ξi)−F (z∗ξ ,ζk)

)
≤
∑K

k=1

∑
i∈Ck

γi
(
|F (z∗ζ ,ξi)−F (z∗ζ ,ζk)|

+|F (z∗ξ ,ξi)−F (z∗ξ ,ζk)|
)
.

(6)

Given that z∗ξ and z∗ζ are not known, we use result from [26]
to derive an upper bound on (6) based on (7), which states that
for a locally Lipschitz continuous function F (z,ξ), there exists
a continuous symmetric function d(·) and a non-decreasing
function h(·), such that for each z∈Z and ξi,ζk∈ξ, we have

|F (z,ξi)−F (z,ζk)|≤h(∥z∥)d(ξi,ζk), (7)

where d(ξi,ζk) is required to satisfy the following properties:
C1) Consistency: d(ζk,ξi)=0⇔ζk=ξi;
C2) Symmetricity: d(ζk,ξi)=d(ξi,ζk), ∀ζk,ξi∈ξ;
C3) Convergence: sup{d(ζk,ξi) :ζk,ξi∈ξ,∥ζk−ξi∥≤δ} tends
to 0 as δ→0;
C4) Triangle inequality: ∃ measurable, bounded function
λ(·), where d(ζk,ξi)<λ(ζk)+λ(ξi).

Finally, combining (6) and (7) begets

OG≤(h(∥z∗ξ∥)+h(∥z∗ζ∥))
∑K

k=1

∑
i∈Ck

γid(ξi,ζk). (8)

Now, the primary challenge to apply the above result lies in
defining an appropriate distance metric in the problem space,
d(ξi,ζk), that satisfies properties C1)-C4). Note that since that
Z is bounded, ∥z∥ is well-defined, i.e, ∃M≫1, ∥z∥≤M ∀z∈
Z. Next, we construct the problem space and then define an
appropriate metric d(ξi,ζk) within the problem space.

C. Problem Space Transformation

In scenario-based problem formulations, each z∗ζk is usually
implemented within its respective scenario clusters. We denote
z∗ζk = argmin

z∈Z
F (z, ζk). Motivated by this, our framework

transforms the original scenario set in the distribution space
into the problem space, which is constructed by the decision
applicability between scenarios. The transformation process
can be denoted as ξ→F , where F :={Fij =F (z∗ξi ,ξj) | i,j∈
I}. Each Fij is a scenario-specific problem and is bounded
under the condition of relatively complete recourse. In this
way, we can directly quantify the impacts of uncertainty and
systematically incorporate the inherent characteristics of the
SBSO problem into the SR process. Of course, this approach
necessitates solving N2 optimization problems to determine
F , which may be computationally intensive for large N .
However, since each problem is independent and can be solved
in parallel, the absolute time required to find F can be reduced
significantly. The algorithmic efficiency is analyzed in IV-C.
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D. Problem-Driven Distance Metric

One way to describe the decision applicability is to use the
opportunity cost, which pertains to the trade-off wherein the
selection of a particular action necessitates the relinquishment
of potential benefits associated with the best alternative. In
the context of SR, when we choose scenario ζk to represent
scenario ξi, the opportunity cost is defined as

c(ζk,ξi) :=F (z∗ζk ,ξi)−F (z∗ξi ,ξi). (9)

However, c(ζk, ξi) does not satisfy all properties C1)-
C4) and cannot serve as distance metric, d(·). Instead,
we consider the following problem-driven distance metric
between scenarios ξi and ζk:

d(ξi,ζk) :=c(ζk,ξi)+c(ξi,ζk) (10)
=F (z∗ζk ,ξi)−F (z∗ξi ,ξi)+F (z∗ξi ,ζk)−F (z∗ζk ,ζk).

Proposition 1. The distance metric d(ξi,ζk) in (10) satisfies
all four properties C1)-C4) for (7).

Proof. Please see proof in Appendix A.

The PDD metric in (10) effectively quantifies the mutual
decision applicability between two scenarios. That is, a small
d(ξi, ζk) implies that scenario ζk can accurately represent
scenario ξi.

Combining (8) and (10) begets

OG≤2h(M)
∑K

k=1

∑
i∈Ck

γi
(
F (z∗ζk ,ξi)−F (z∗ξi ,ξi)

+F (z∗ξi ,ζk)−F (z∗ζk ,ζk)
)
.

(11)

Note that while the above analysis extends to non-convex
formulations in (2), it is conditioned on finding the global
optimum z∗. That is, convexity in (2) guarantees that bounds
on OG hold and is the focus of this paper. Next, we select
salient scenarios that minimize the upper bound in (11).

E. MILP Reformulation of Clustering

Since 2h(M) in (11) is a constant, minimizing the sum
of PDD within clusters achieves the lowest upper bound of
OG. To achieve this, the processes of scenarios partitioning
and representative scenarios selection can be rendered as the
following MILP formulation.

min
v,u,l,K

∑N

j=1
lj+βK/N (12a)

s.t.
∑N

i=1
γivij(Fji−Fii+Fij−Fjj)≤ lj , ∀j∈I (12b)

vij≤uj , vjj=uj , ∀i,j∈I (12c)∑N

j=1
vij=1, ∀i∈I (12d)∑N

j=1
uj=K (12e)

In (12a),
∑N

j=1 lj describes the SPDD, and K/N describes
the reduction degree. β is the trade-off factor to achieve
a balance between the SPDD and reduction degree, while
simultaneously deciding the optimal clustering number K. The
binary variable uj indicates whether scenario ξj is selected as
a representative scenario of a cluster, while the binary variable

vij determines whether scenario ξi is included in the cluster
represented by scenario ξj . Constraint vij≤uj ensures that ξi
can only be assigned to a cluster that has a designated repre-
sentative, while vjj=uj enforces that ξi must be assigned to
its own cluster if it’s a representative scenario. Constraint (12d)
ensures that each scenario ξj can only be assigned to one clus-
ter, while (12e) guarantees that exactly K clusters are formed.
The weight of each cluster is calculated as ωk=

∑N
i=1vikγi.

F. Problem-Driven Evaluation Indices

In this section, two types of problem-driven evaluation
indices are introduced: ex-ante and ex-post indices. Ex-ante
indices emphasizes the SR’s ability in partitioning and
representing the original scenario set in the problem space
before solving the reduced problem. Ex-post indices focus on
the impacts of SR on the outcomes of the TSSO after solving
the reduced problem. For the following indices, the first three
indices are classified as ex-ante indices, while the last two
indices are ex-post indices.

1) Sum of PDD within clusters (SPDD):

SPDD :=

N∑
j=1

lj=

K∑
k=1

∑
i∈Ck

γi(Fki−Fii+Fik−Fkk). (13)

SPDD measures the dispersion between scenarios and their
respective clusters. A smaller SPDD value indicates a tighter
clustering result in the problem space.

2) Problem-Driven Davies-Bouldin Index: Based on the
Davies-Bouldin Index, we introduce the Problem-driven
Davies-Bouldin Index (PDDBI) utilizing the PDD:

PDDBI :=
1

K

K∑
m=1

max
1≤n ̸=m≤K

(Dm+Dn

d(ζm,ζn)

)
(14a)

Dm :=
∑
i∈Cm

γi
ωm

d(ζm,ξi). (14b)

A smaller PDDBI value indicates a better quality of the
balance between the within-cluster compactness and the
between-cluster separation.

3) Cluster decision similarity: PDSR underscores the
emphasis on high strategy adaptability, which often aligns
with similar strategies within the same cluster. Noted that
clustering solely based on strategy similarity, as one of the
DDSR methods, can not guarantee high strategy adaptability.
We denote sim(z∗ξi , z

∗
ξj
) as the similarity between z∗ξi and

z∗ξj , and determine the decision similarity of the cluster Ck as

SCk
:=

∑
i∈Ck

∑
j∈Ck

γiγj
ω2
k

sim(z∗ξi ,z
∗
ξj ). (15)

S̄C = 1
K

∑K
k=1 SCk

denotes the average cluster decision
similarity of all clusters. The selection of sim(·) depends
on the nature of decision variables. For instance, cosine
similarity can be employed for continuous decision variables,
while normalized Euclidean distance is a suitable choice for
decision variables within intervals.
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4) Optimality gap: After solving (1) and (2), we apply z∗ξ
and z∗ζ to ξ, and calculate the percentage value of OG as

OGζ(%):=
(
F (z∗ζ ,ξ)−F (z∗ξ ,ξ)

)
/F (z∗ξ ,ξ). (16)

This metric indicates the percentage deviation of the
approximated optimality from the optimality of the original
problem, and is desired to be close to zero 1.

5) Representative scenario effectiveness: For the SBSO
based on the representative scenarios, identifying the relative
importance of individual representative scenario is crucial for
comprehending the problem structure and making reasonable
decisions. We introduce the concept of “Scenario Effective-
ness”, measuring the significance of a given representative
scenario in the problem space. The scenario effectiveness of
scenario ζk, denoted as SEζk(%), is characterized by the
changes in the percentaged OG upon its removal from ζ:

SEζk(%):=OGζ−k
(%)−OGζ(%), (17)

where ζ−k = ζ \{ζk}. A higher value of SEζk(%) signifies
that the removal of ζk induces more substantial changes in
the OG. This indicates that ζk holds greater significance in
influencing the reduced problem outcomes.

The proposed PDSR framework is illustrated in
Algorithm 1. To illustrate the effectiveness of the proposed
PDSR framework, we consider the following two-stage
stochastic economic dispatch problem.

Algorithm 1: Problem-Driven Scenario Reduction
Input: Scenario set ξ of N scenarios and weights γ.
Output: Scenario set ζ of K scenarios and weights ω.
Step 1 - Transformation in Problem Space

Step 1.1: Initialize problem space matrix F =0.
Step 1.2: Transform the distribution space into

problem space by:
for i=1 to N do

Solve the scenario-specific TSSO problem
F (z,ξi) and obtain the optimal decision z∗ξi .

Set Fii=F (z∗ξi ,ξi).
for j=1 to N , i ̸=j parallel do

Solve the single-stage and deterministic
problem G(yj ,ξj |z∗ξi) in (1b).

Set Fij=F (z∗ξi ,ξj).
end

end
Step 2 - Clustering

Step 2.1: Select β in (12a) from ex-ante indices.
Step 2.2: Solve MILP in (12) to obtain the

representative scenario set ζ with weights ω.

III. TWO-STAGE STOCHASTIC ECONOMIC
DISPATCH FOR ACTIVE DISTRIBUTION NETWORKS

In this section, we consider an optimal stochastic economic
dispatch of an ADN that trades with the transmission

1The feasibility for unexpected scenario realizations or outliers is ensured
by the assumption of relatively complete recourse and the availability of
corrective measures in the second stage.

system. The ADN’s assets include wind turbines (WT),
photovoltaic system (PV) and energy storage (ES) facilities.
We will focus on uncertainties from WT, PV, loads and two
electricity markets: day-ahead and intraday prices [27], which
engenders the two stages for dispatch. In the day-ahead stage,
uncertainties are addressed using the representative scenario
set and the ADN needs to sign contracts for power trading with
the transmission system operator and procure ES capacity from
the ES owner. In the intraday stage, due to the uncertainties,
there will exist deviations between the scheduled day-ahead
power trading and the actual intraday power demand, and
even violations of safety constraints especially in worst-case
scenarios. Therefore, the ADN decision-maker is risk-averse
and prefers to limit constraint violations, which are mainly
considered as voltage magnitude constraint violations.

A. Objective Function

In the day-ahead stage, the objective is to minimize the
total operation cost including the day-ahead trading cost and
the expected intraday balancing cost and penalty cost. The
day-ahead trading cost in (18b) includes the cost of trading
power with transmission system and the procurement of ES
capacity. The intraday cost includes the balancing cost in the
intraday balancing market in (18c), and the penalty cost of
load shedding and RES curtailment in (18d).

min CDA+CIN,im+CIN,p (18a)

CDA=

S∑
s=1

ωs

T∑
t=1

πT
s,tP

T
t ∆t+

∑
j∈ΩE

πE
j Ej (18b)

CIN,im=

S∑
s=1

ωs

T∑
t=1

∆t(πT+
s,t P

T+
s,t +πT−

s,t P
T−
s,t ) (18c)

CIN,p=

S∑
s=1

ωs

T∑
t=1

∆t(
∑
j∈ΩR

πR,cPR,c
j,s,t+

∑
j∈ΩL

πL,sPL,s
j,s,t). (18d)

πT
s,t and PT

t are the trading electricity price and trading
power between the ADN and transmission system in the day-
ahead market, respectively. πE

j and Ej are the procurement
price and procured ES capacity at bus j. T and ∆t are time
period and time interval for scheduling. S is the number of
scenarios and ωs is the weight of scenario s. πT+

s,t /π
T−
s,t are

the imbalancing price of up-regulation and down-regulation
in the intraday balancing market under scenario s and time t.
PT+
s,t /PT−

s,t are the imbalanced purchasing and selling power
in the intraday balancing market. In the intraday balancing
market, the ADN can only purchase balancing energy at
a higher price than in the day-ahead market, while selling
electricity at a lower price. PR,c

j,s,t/P
L,s
j,s,t are the power of RES

curtailment and load shedding at bus j. ΩR/ΩL/ΩE refer
to the set of buses of RES, load, and ES. πR,c/πL,s are the
penalty cost of RES curtailment and load shedding.

B. Operational Constraints

1) Power flow constraints: The linear version of the
DistFlow model, i.e., LinDistFlow [28] is used in this paper
to approximate nodal voltage magnitudes and active/reactive
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line flows in the ADN with the assumption that line losses
can be neglected. For ∀j∈ΩB, we have

V 2
j,s,t=V 2

i,s,t−2(rijPij,s,t+xijQij,s,t) (19a)

pj,s,t=Pij,s,t−
∑
l:j→l

Pjl,s,t (19b)

qj,s,t=Qij,s,t−
∑
l:j→l

Qjl,s,t (19c)

Vj≤Vj,s,t≤Vj , (19d)

where rij/xij are the line resistance/reactance between
bus i and j, respectively. Vj,s,t is the voltage at bus j for
scenario s at time t. Pij,s,t/Qij,s,t are the line active/reactive
power between bus i and j, respectively. pj,s,t/qj,s,t are the
active/reactive injection power at bus j. (19a) describes the
voltage drop over branch from bus i to bus j. (19b) and (19c)
represent the active and reactive power balance at bus j.
(19d) describes voltage magnitude limits at bus j, with Vj/Vj

as the upper/lower bound of voltage magnitude.
2) RES curtailment and load shedding constraints: For

∀j∈ΩR, we have

0≤PR,c
j,s,t≤PR

j,s,t (20a)

0≤PL,s
j,s,t≤PL

j,s,t, (20b)

where PR
j,s,t/P

L
j,s,t are the RES injection/active power

consumption at bus j for scenario s at time t, respectively.
3) ES operation constraints: For ∀j∈ΩE, we have

SoCj,s,t+1=SoCj,s,t+∆t(PE,c
j,s,tη

c
j−PE,d

j,s,t/η
d
j )/Ej (21a)∑T

t=1
(PE,c

j,s,tη
c
j−PE,d

j,s,t/η
d
j )∆t=0 (21b)

0≤PE,c
j,s,t≤(1−DE

j,s,t)P
E
j (21c)

0≤PE,d
j,s,t≤DE

j,s,tP
E
j (21d)

SoC≤SoCj,s,t≤SoC, (21e)

where PE,c
j,s,t/P

E,d
j,s,t are the charge/discharge power.

Constraints (21a)-(21b) and (21e) are related to the state of
charge (SoC). SoC/SoC denote the maximum/minimum SoC,
respectively. ηcj/η

d
j are the charge/discharge efficiency, respec-

tively. Constraint (21b) guarantees that the capacity at the last
time period is equal to the initial capacity. Constraints (21c)
and (21d) impose restrictions on the maximum charging and
discharging power and charging state of ES. DE

j,s,t is a binary
variable indicating the charging/discharging state.

4) Trading constraints with transmission system:

0≤PT+
s,t ≤(1−DT

s,t)P
T (22a)

0≤PT−
s,t ≤DT

s,tP
T (22b)

−PT≤PT
t +PT+

s,t −PT−
s,t ≤PT, (22c)

where PT is the maximum trading power between ADN and
transmission system. (22a) and (22b) indicate that the ADN
can only be in one balancing state at one time, with DT

s,t as
the balancing state of ADN.

5) Energy balancing constraints:

pj,s,t=PE,c
j,s,t−PE,d

j,s,t+PL
j,s,t−PL,s

j,s,t−(PR
j,s,t−PR,c

j,s,t) (23a)

qj,s,t=QL
j,s,t−QL,s

j,s,t, (23b)

where QL
j,s,t/Q

L,s
j,s,t are the reactive power consumption and

load shedding at bus j. We assume that all the RESs are of
the unity power factor and the power factor of load demand
remains the same after load shedding. ∀ s,t, if j /∈ΩE, PE,c

j,s,t=

PE,d
j,s,t=0. Similarly, if j /∈ΩR, PR

j,s,t=PR,c
j,s,t=0.

Finally, the optimal day-ahead economic dispatch problem
is formulated as (24), which is a mixed-integer linear problem,
and can be solved by commercial solvers.

min CDA+CIN,im+CIN,p

s.t. (19)−(23).
(24)

IV. NUMERICAL CASE STUDY

A. Problem Description

In this section, the proposed problem-driven scenario reduc-
tion framework is tested for two-stage stochastic economic
dispatch in the modified IEEE 33-bus ADN. One WT is
located at bus 10 and two PVs are located at buses 16 and 24,
respectively. ES is located at bus 13. The voltage magnitude
is restricted as |Vi|∈ [0.90,1.10] (p.u.), ∀i∈ΩB. The time step
is set as ∆t=15min with T =96 steps. The original scenario
set ξ comprises N scenarios. It is worth mentioning that, to
validate the performance of proposed PDSR framework in
uncovering salient scenarios, particularly worst-case scenarios,
we construct ξ by randomly selecting from historical observa-
tions, while also ensuring that it contains a specified number
of bad scenarios [29]. Each individual scenario ξ ∈R7T , ξ ∈
ξ is a multi-variable high-dimensional vector characterizing
7 sources of uncertainty. The capacities of WT and PVs are
normalized to 1MW, 1.2MW and 1MW. For simplicity, the
intraday balancing market prices are set as πT+

s,t = 1.3πT
s,t

and πT−
s,t = 0.7πT

s,t. The power rating of ES is set as
0.4MW/0.8MWh, and ES capacity procurement is limited by
E≤0.8MWh. The initial SoC of ES is 0.5 and ηc=ηd=0.95.
The penalty costs of load shedding and RES curtailment are
set as $1000/MWh and $280/MWh, respectively. The TSSO
problem built on ξ is used as the Benchmark. The optimization
is coded in Python with the Yalmip interface and solved by
Gurobi 11.0 solver. The programming environment is Intel
Core i9-13900HX @ 2.30GHz with RAM 16 GB.

B. Performance of PDSR

First, we consider N = 400 scenarios and construct the
F matrix by solving N2 scenario-specific deterministic
problems. For all Fij , the MIP-gap is < 10−4 (i.e., default
Gurobi MIPGap), which ensures that the optimal solution
is found. Then, we utilize the MILP formulation in (12) to
decide K through a comprehensive analysis of the normalized
ex-ante indices under different β. The results are shown in
Fig. 2. It is observed that β = 150 and K = 7 correspond to
a local minimum in PDDBI alongside a relatively large S̄C ,
and the balance between reduction degree K/N and SPDD is
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Fig. 2. The ex-ante validity comparison of different β

also achieved. It indicates that 7 representative scenarios can
provide the most favorable clustering structure for the dataset
under analysis.

The obtained K = 7 representative scenario clusters of
the proposed PDSR framework are presented in Fig. 3(a)
to Fig. 3(g). Fig. 3(h) indicates the un-optimization voltage
magnitude violations and energy trading cost of the
7 representative scenarios from AC power flow. This highlights
the severity of these scenarios and underscores the importance
of implementing reasonable dispatching practices. Curves in
the same color belong to the same cluster. The corresponding
weights of each cluster are 0.275, 0.085, 0.3025, 0.0425,
0.0525, 0.1375 and 0.105, respectively. The representative
scenarios in Fig. 3 illustrate PDSR’s effectiveness in identi-
fying salient features from a large set of uncertainties in the
system. Moreover, PDSR includes two worst-case scenarios
(red ζ4 and purple ζ5) in the reduced set, where worst-case
is based on top 5% decision adaptability rating defined as
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Fig. 3. Representative scenarios obtained by the PDSR framework for
N=400 and K=7: (a) WT at bus 10, (b) PV at bus 16, (c) PV at bus 24, (d)
load at bus 10, (e) load at bus 16, (f) load at bus 24, (g) day-ahead electricity
price and (h) un-optimization voltage magnitude violations (boxplot, left)
and energy trading cost (violinplot, right) of the 7 representative scenarios
from AC power flow.

∑N
j=1F (z∗ξj ,ξi) in the problem space. This metric describes

the decision adaptability level of all other potential solutions
to scenario ξi. Besides, their relatively small associated
weight (only 0.0425 and 0.0525, indicating low occurrence
probabilities), significant volatility and high values, and
significant voltage magnitude violations and trading cost also
verify them as worst-case scenarios. This observation is critical
because incorporating too many worst-case scenarios into
the representative scenario set may introduce conservatism,
potentially leading to reduced economic efficiency.

The optimality gap OG(%) is 0.09%, which suggests a high
level of approximation accuracy. We utilize the evaluation
indices of cluster decision similarity and representative
scenario effectiveness to further validate the performance of
the proposed PDSR framework. In the two-stage stochastic
economic dispatch problem of ADN, the similarity of power
trading with transmission system is computed using cosine
function, while the similarity in ES capacity procurement is
calculated using normalized Euclidean distance. The results
are illustrated in Table I.

TABLE I
EVALUATION RESULTS OF CLUSTER DECISION SIMILARITY AND

REPRESENTATIVE SCENARIO EFFECTIVENESS FOR N=400 AND K=7

C1 C2 C3 C4 C5 C6 C7

SCk
0.920 0.983 0.981 0.938 0.922 0.933 0.928

SEζk 0.14% 0.19% 0.12% 0.35% 0.50% 0.12% 0.22%

Table I indicates that the strategies across all clusters
of the PDSR framework exhibit a notably high degree of
similarity. This demonstrates that the PDSR framework has
effectively grouped scenarios with similar operation strategies
into the same cluster. Regarding the representative scenario
effectiveness, Table I indicates that all the representative
scenarios have a considerable impacts on the results of the
problem. Notably, the scenario effectiveness of representative
scenarios ζ4 and ζ5, corresponding to the red and purple
curves in Fig. 3, are highlighted. This is consistent with the
earlier analysis of the two scenarios being worst-case scenarios
and important components of the representative scenario set.

C. Comparison with State-of-the-Art Methods

To further demonstrate the benefit of the proposed PDSR
framework, we conduct a comparative analysis. DDSR
methods including HC using Wasserstein distance (HC-W),
K-means using Euclidean distances (KM-E), K-means using
dynamic time warping distance (KM-D), and Gaussian mixture
model using Mahalanobis distance (G-M) are compared. For
DDSR methods incorporating relevant problem properties,
we include K-means based on network power flow (KM-pf),
and HC based on operational cost (HC-c) in comparison.
Besides, we also include the method developed in ref. [24]
with graph clustering (GC) for comparison. Additionally, the
method of constructing the representative scenario set based
on worst-case statistical indicators in the distribution space
(WS) is included for comparison. The comparative indices
include the number of worst-case scenarios captured in the
representative scenario set (κ), the OG(%) defined in (16),
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the ES capacity procurement E from solving (2), the average
penalty cost C̄IN,p from solving F (z∗ζ , ξ) for all the ξ ∈ ξ,
the time required to process the data for clustering (τp), and
the time required to solve the clustering problem (τc). The
comparison results are presented in Table II.

TABLE II
COMPARING SR METHODS FOR N=400 AND K=7

Method κ OG(%) E(MWh) C̄IN,p($) τp(s) τc(s)

Benchmark 20 0 0.44 632.4 − −
PDSR 2 0.09 0.475 621.2 <0.3 2.74

GC 1 1.79 0.08 816.3 <0.3 0.21

WS 5 1.65 0.79 559.5 0.01 −
HC-c 0 2.69 0 860.1 86.31 0.01

KM-pf 0 2.63 0 859.9 86.31 0.78

G-M 0 2.51 0.01 852.0 − 6.96

KM-D 0 2.73 0 860.1 − 440.9

KM-E 0 2.66 0 860.1 − 0.31

HC-W 0 2.61 0 860.1 1.38 0.03

SR Performance: The observations from Table II suggest
that the PDSR framework, with a small value of OG(%) =
0.09%, significantly outperforms other SR methods. Besides,
the ES capacity procurement E and C̄IN,p of PDSR also
best approximate to the results of Benchmark. The DDSR
methods, seeking for minimum statistical difference, fail to
capture worst-case scenarios in their representative scenario
sets, which leads to a neglect of potential risks during the
operation, resulting in a zero procurement of ES capacity
and an inability to cope with uncertainties, thus achieving
relatively high penalty costs and OG(%). For instance, in
heavy load situations, the bus voltage might drop below safety
requirements. Without the support of ES, the ADN must resort
to lots of load shedding to prevent violating the voltage safety
constraints, thereby incurring substantial penalty cost. WS se-
lects 7 statistical worst-case scenarios in the distribution space,
but only 5 of them are real worst-case scenarios in the problem
space. This discrepancy highlights that severity in statistical
metrics does not necessarily equate to severity in problem out-
comes. Moreover, focusing only on worst-case scenarios may
result in overly conservative decisions and unnecessarily high
costs. WS procures too much ES capacity as E=0.79MWh,
achieving a low penalty cost, which also leads to a relatively
high OG(%)= 1.65%. The GC method in ref. [24] captures
1 worst-case scenario with OG(%) = 1.79%, which is much
lower than the DDSR methods. This indicates that measuring
the difference between scenarios by the symmetric opportunity
cost can enhance the SR performance, but GC relies on heuris-
tic methods to obtain the representative scenarios, potentially
yielding suboptimal outcomes. Additionally, the method devel-
oped in [25] fails to solve the clustering process within 3 hours
as their clustering methodology does not scale well with
N=400. Compared to the above methods, the proposed PDSR
framework efficiently considers the potential impacts of the
scenarios on the problem, and include two reasonable worst-
case scenarios in the representative scenario set, as analyzed in
Section. IV-B. These comparative findings suggest that PDSR

exhibits superior accuracy in representing the original scenario
set, thereby offering more reliable information for decision-
making in energy management under uncertainty.

Cluster Decision Similarity and Representative Scenario
Effectiveness: The comparative results are illustrated in
Fig. 4. Fig. 4(a) presents the comparative results of cluster
decision similarity. We can see that the cluster decision
similarity of DDSR methods and GC are substantially lower
than those of PDSR. In Fig. 4(b), the comparative results of
representative scenario effectiveness are depicted. For DDSR
methods, the removal of any representative scenario does
not have much impacts on the problem outcomes, whereas
in PDSR, such a removal can significantly alter the problem
outcomes. This indicates that the proposed PDSR framework
can effectively capture the salient scenarios with significant
impacts on the SBSO problem. Furthermore, all OG(%)
results of PDSR are much lower than the DDSR methods and
GC. These results indicate that statistically proximity in the
distribution space does not equal to strategy closeness and
better solution approximation in the problem space. Besides,
the comparison between GC and PDSR indicates that the
proposed MILP clustering methodology is more effective
than the graph clustering employed in GC.
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Fig. 4. Comparative results for N = 400 and K = 7: (a) cluster decision
similarity and (b) representative scenario effectiveness.

Computational Efficiency: The Benchmark struggles with
computational complexity when N is large. For example, for
N = 400 and N = 500, the Benchmark takes nearly 38 and
60 mins, respectively. Moreover, for N≥600, computing times
become impractical for the Benchmark. The DDSR methods,
however, overcome computation bottlenecks, but at the price
of potentially large OG(%) values. GC and PDSR decompose
the original SBSO problem into mostly parallelizable and
simple scenario-specific subproblems. Specifically, both
GC and PDSR involve N parallel computations followed
by N(N − 1) parallel computations to determine matrix
F . In this paper, the computation time for each scenario-
specific subproblem is τp < 0.3s (with LinDistFlow model).
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Theoretically, with N(N−1) parallel processes available, the
computation time for calculating the F matrix can be reduced
to 2×τp=0.6s 2. For N=400 and K=7, after calculating the
F matrix, the MILP clustering problem is solved consistently
with MIP-gap with τc < 3s. We define τo(K) as the time
required to solve (2) with K representative scenarios and
τo(7) < 3s. Generally, with W parallel processors, the total
computation time of the PDSR is

τ :=(⌈N/W ⌉+⌈N(N−1)/W ⌉)τp+τc+τo(K).

For example, with N = 400 and a practical W = 100
processors, τ = 8 mins (or 21% of the Benchmark).
Furthermore, as long as the original set of scenarios and
SBSO problem formulation remain unchanged, matrix F can
be stored and re-used. In conclusion, the PDSR framework
can effectively reduce computational complexity while
achieving a low SR optimality gap.

Scalability: We further compare the OG(%) results under
different N and K, as illustrated in Fig. 5. In Figs. 5(a,b),
we observe that the proposed PDSR framework outperforms
DDSR methods and GC across all values of N and K, as
evidenced by its consistently lower OG(%). This underscores
the distinct superiority of the PDSR framework in identifying
salient scenarios. Interestingly, the PDSR results (in blue) with
N=100 has smaller OG(%) than the DDSR methods even for
N=400, which means that to attain a comparable level of OG,
the PDSR framework requires far fewer scenarios. Besides,
As expected, increasing K decreases the OG(%) for PDSR.
However, for DDSR methods and GC, this inherent structural
benefit of PSDR is not present. Furthermore, we conduct
the performance comparison with a large original scenario
set, using N = 1000 and K = 10 (i.e., a 99% reduction)
as an example in Fig. 5(c). In this case, the original SBSO
problem in (1) is computationally intractable. Therefore, we
use F (z∗ζ , ξ) as the performance evaluation metric, instead
of OG(%). A smaller value of F (z∗ζ , ξ) indicates a better
approximation to the original SBSO optimality. Notably,
PDSR outperforms other SR methods with the lowest F (z∗ζ ,ξ).
Based on the representative scenarios from PDSR, the day-
ahead SBSO problem obtains superior operational strategies
with high adaptability and effectiveness across different
scenarios. Moreover, for N = 1000 and K = 10, we have
τc=50s, indicating that the MILP formulation can be solved
efficiently. In conclusion, the above comparative analysis fur-
ther emphasizes the benefit of the proposed PDSR framework.

D. Summarizing Discussion on PDSR Framework

For SBSO problems, the definition of “representativeness”
is essential to construct the representative scenario set and
yield effective strategies. In this paper, we demonstrate, both
through theoretical analysis and numerical validation, that
the “representativeness” should be defined as the decision
applicability of the representative scenario to its represented
scenario cluster. The advantages of the proposed PDSR
framework lie in the following aspects:

2Replacing LinDistFlow with its more accurate second-order conic
relaxation, F can still be calculated in parallel within 2×τp =3.2s.
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Fig. 5. Comparing results for different N and K: (a) N=100, (b) N=400
and (c) N=1000 and K=10.

(i) Representativeness: With the problem space constructed
from decision applicability, the PDSR framework
successfully achieves a low optimality gap, demonstrating
a significant level of representativeness.

(ii) Efficiency: The PDSR framework successfully captures
the scenarios with significant impacts on the problem,
especially the worst-case scenarios, enhancing the
robustness and reliability. Moreover, in comparison to
other SR methods, the PDSR framework effectively
reduces the number of required scenarios with the same
level of optimality gap, which is beneficial in cases with
limited monitoring and data accumulation.

(iii) Determinateness: Instead of using heuristic methods, the
PDSR framework transforms the processes of scenarios
partitioning and representative scenarios selection into
a MILP formulation, which attains deterministic and
optimal outcomes with commercial solvers.

(iv) Generality: The proposed PDSR framework operates
without reliance on probability distribution, and only
have limited assumptions on the SBSO problem structure.
As a result, the PDSR framework can be applied to a
broad range of SBSO problems, ensuring high generality
and scalability.

V. CONCLUSION

In this paper, a novel problem-driven scenario reduction
(PDSR) framework is proposed for power system SBSO
problems, which fully incorporates the problem structure into
the SR process. Specifically, we utilize the mutual decision ap-
plicability to construct the problem space as the input for SR,
and propose the problem-driven distance metric to measure
the similarity of scenarios in problem space. That is, PDSR
decomposes the original large-scale and complex optimization
problem into independent and simpler scenario-specific sub-
problems, thus, significantly decreasing computational com-
plexity. Thus, the presented PDSR framework obtains near-
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optimal approximation accuracy with just a few salient rep-
resentative scenarios whithin acceptable computation time, as
illustrated with an extensive case study that balances opera-
tional energy storage capacity and economic costs. Moreover,
a comprehensive comparative analysis with other SR methods
is provided for different N and K values and demonstrates
broadly the superior performance of our PDSR framework.

Future work will focus on further scaling Algorithm 1 by
filtering the original scenario set for PDSR to reduce the size
of the F matrix necessary to guarantee the desired optimality
gap. Additionally, PDSR will benefit from extending the anal-
ysis to characterize the impacts of local solutions arising from
non-convex problems, such as with the AC optimal power flow.
Lastly, we are interested in extending the PDSR framework
to other SBSO problems relevant to power engineering.

APPENDIX

A. Proof of Proposition 1

In this part, we prove that the proposed problem-driven
distance metric in (10) satisfies the required properties of (7).

Proof. C1) Consistency: First we notice that ζk = ξi ⇒
d(ζk,ξi)=0. Conversely, given that both c(ζk,ξi), c(ξi,ζk) are
nonnegative, d(ζk,ξi)=0 implies c(ζk,ξi)= c(ξi,ζk)=0, thus
z∗ζk = z∗ξi . We reasonably require the problem to satisfy the
assumption that z∗ζk = z∗ξi ⇒ ζk = ξi. This hypothesis rests on
the premise that F (z,ξ) is highly sensitive to variations in ξ at
particular z, suggesting that identical solutions imply identical
scenarios. This assumption depends on the problem structure
and can be restrictive. For certain problems dissatisfy this
assumption, we can adjust the PDD by simply incorporating
a regularized scaled norm component (µ>0) as

d̃(ξi,ζk)=F (z∗ζk ,ξi)−F (z∗ξi ,ξi)

+F (z∗ξi ,ζk)−F (z∗ζk ,ζk)+µ∥ζk−ξi∥2.
(25)

In this case, d̃(ξi,ζk)=0⇒ζk=ξi holds for any µ. In this
paper, we set µ=0 and continue to use d(ζk,ξi) for brevity,
but all the proofs and algorithms can be adapted for d̃(ξi,ζk).

C2) Symmetricity: From definition, d(ζk,ξi)=d(ξi,ζk).
C3) Convergence: As δ→ 0, ζk and ξi become arbitrarily

close. Given the Lipschitz continuity of F (z, ξ) with
respect to ξ, it follows that F (z∗ζk , ξi) → F (z∗ζk , ζk) and
F (z∗ξi ,ξi)→F (z∗ξi ,ζk). Consequently, d(ζk,ξi) tends to 0.

C4) Triangle inequality: Let λ(ξi) = 2 supz∈Z |F (z, ξi)|,
given F (z, ξ) is bounded for all z and ξ. We have
F (z∗ζk ,ξi)−F (z∗ξi ,ξi)< |F (z∗ζk ,ξi)|+ |F (z∗ξi ,ξi)|<λ(ξi), and
similar for λ(ζk). Thus, we have d(ζk,ξi)<λ(ζk)+λ(ξi).
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